PDF (9.8 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
References
Show full outline
Hide outline
Research Article | Open Access

Ultrafast Miniature Robotic Swimmers with Upstream Motility

Yibin Wang1,2Hui Chen1,2Junhui Law3Xingzhou Du1,2Jiangfan Yu1,2()
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
Show Author Information

Abstract

With the development of materials science and micro–nano fabrication techniques, miniature soft robots at millimeter or submillimeter size can be manufactured and actuated remotely. The small-scaled robots have the unique capability to access hard-to-reach regions in the human body in a noninvasive manner. To date, it is still challenging for miniature robots to accurately move in the diverse and dynamic environments in the human body (e.g., in blood flow). To effectively locomote in the vascular system, miniature swimmers with upstream swimming capability are required. Herein, we design and fabricate a miniature robotic swimmer capable of performing ultrafast swimming in a fluidic environment. The maximum velocity of the swimmer in water is 30 cm/s, which is 60 body lengths. Moreover, in a tubular environment, the swimmer can still obtain a swimming velocity of 17 cm/s. The swimmer can also perform upstream swimming in a tubular environment with a velocity of 5 cm/s when the flow speed is 10 cm/s. The ultrasound-guided navigation of the swimmer in a phantom mimicking a blood vessel is also realized. This work gives insight into the design of agile undulatory milliswimmers for future biomedical applications.

References

1

Nelson BJ, Kaliakatsos IK, Abbott JJ. Microrobots for minimally invasive medicine. Annu Rev Biomed Eng, 2010,12(1):55–85.

2

Hu Y. Self-assembly of DNA molecules: Towards DNA nanorobots for biomedical applications. Cyborg Bionic Syst, 2021:1–3.

3

Sitti M, Ceylan H, Hu W, Giltinan J, Turan M, Yim S, Diller E. Biomedical applications of untethered mobile milli/microrobots. Proc IEEE Inst Electr Electron Eng, 2015,103(2):205–224.

4

Fukuda T. Cyborg Bionic Syst: Signposting the future. Cyborg Bionic Syst, 2020:1–2.

5

Dai Y, Bai X, Jia L, Sun H, Feng Y, Wang L, Zhang C, Chen Y, Ji Y, Zhang D, et al. Precise control of customized macrophage cell robot for targeted therapy of solid tumors with minimal invasion. Small, 2021,17(41):2103986.

6

Wang H, Kan J, Zhang X, Gu C, Yang Z. Pt/CNT micro-nanorobots driven by glucose catalytic decomposition. Cyborg Bionic Syst, 2021:1–8.

7

Bunea A-I, Martella D, Nocentini S, Parmeggiani C, Taboryski R, Wiersma DS. Light-powered microrobots: Challenges and opportunities for hard and soft responsive microswimmers. Adv Intell Syst, 2021,3(4):2170041.

8

Sun Z, Yamauchi Y, Araoka F, Kim YS, Bergueiro J, Ishida Y, Ebina Y, Sasaki T, Hikima T, Aida T. An anisotropic hydrogel actuator enabling earthworm-like directed peristaltic crawling. Angew Chem Weinheim Bergstr Ger, 2018,130(48):15998–16002.

9

Aghakhani A, Yasa O, Wrede P, Sitti M. Acoustically powered surface-slipping mobile microrobots. Proc Natl Acad Sci USA, 2020,117(7):3469–3477.

10

Liang X, Mou F, Huang Z, Zhang J, You M, Xu L, Luo M, Guan J. Hierarchical microswarms with leader-follower-like structures: Electrohydrodynamic self-organization and multimode collective photoresponses. Adv Funct Mater, 2020,30(16):1908602.

11

Chen H, Zhang H, Xu T, Yu J. An overview of micronanoswarms for biomedical applications. ACS Nano, 2021,15(10):15625–15644.

12
Song L, Dai Y, Wang L, Zhang W, Ji Y, Cao Y, Wei J, Wang F, Zhong J, Yang J, et al. Motion control of capsule robot based on adaptive magnetic levitation using electromagnetic coil. IEEE Trans Autom Sci Eng, 2022:1–12.
13

Dai Y, Jia L, Wang L, Sun H, Ji Y, Wang C, Song L, Liang S, Chen D, Feng Y, et al. Magnetically actuated cell-robot system: Precise control, manipulation, and multimode conversion. Small, 2022,18(15):2105414.

14

Alapan Y, Bozuyuk U, Erkoc P, Karacakol AC, Sitti M. Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow. Sci Robot, 2020,5(42):eaba5726.

15

Tottori S, Zhang L, Qiu F, Krawczyk KK, Franco-Obregón A, Nelson BJ. Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport. Adv Mater, 2012,24(6):811–816.

16
Hou Y, Wang H, Zhong S, Qiu Y, Shi Q, Sun T, Huang Q, Fukuda T. Design and control of a surface-dimple-optimized helical microdrill for motions in high-viscosity fluids. IEEE ASME Trans Mechatron, 2022:1–11.
17

Yu J, Wang B, Du X, Wang Q, Zhang L. Ultra-extensible ribbon-like magnetic microswarm. Nat Commun, 2018,9(1):3260.

18

Yu J, Jin D, Chan K-F, Wang Q, Yuan K, Zhang L. Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat Commun, 2019,10(1):5631.

19

Yu J, Yang L, Zhang L. Pattern generation and motion control of a vortex-like paramagnetic nanoparticle swarm. Int J Robot Res, 2018,37(8):912–930.

20

Yu J, Xu T, Lu Z, Vong CI, Zhang L. On-demand disassembly of paramagnetic nanoparticle chains for microrobotic cargo delivery. IEEE Trans Robot, 2017,33(5):1213–1225.

21
Zou Q, Du X, Liu Y, Chen H, Wang Y, Yu J. Dynamic path planning and motion control of microrobotic swarms for mobile target tracking. IEEE Trans Autom Sci Eng, 2022:1–15.
22

Wang X, Hu C, Schurz L, De Marco C, Chen X, Pané S, Nelson BJ. Surface-chemistry-mediated control of individual magnetic helical microswimmers in a swarm. ACS Nano, 2018,12(6):6210–6217.

23

Schuerle S, Soleimany AP, Yeh T, Anand GM, Häberli M, Fleming HE, Mirkhani N, Qiu F, Hauert S, Wang X, et al. Synthetic and living micropropellers for convection-enhanced nanoparticle transport. Sci Adv, 2019,5(4):eaav4803.

24

Zheng Z, Wang H, Dong L, Shi Q, Li J, Sun T, Huang Q, Fukuda T. Ionic shape-morphing microrobotic end-effectors for environmentally adaptive targeting, releasing, and sampling. Nat Commun, 2021,12(1):411.

25

Hu W, Lum GZ, Mastrangeli M, Sitti M. Small-scale soft-bodied robot with multimodal locomotion. Nature, 2018,554(7690):81–85.

26

Xu T, Yu J, Vong C-I, Wang B, Wu X, Zhang L. Dynamic morphology and swimming properties of rotating miniature swimmers with soft tails. IEEE ASME Trans Mechatron, 2019,24(3):924–934.

27

Cianchetti M, Laschi C, Menciassi A, Dario P. Biomedical applications of soft robotics. Nat Rev Mater, 2018,3(6):143–153.

28

Sitti M. Miniature soft robots—Road to the clinic. Nat Rev Mater, 2018,3(6):74–75.

29

Kim Y, Zhao X. Magnetic soft materials and robots. Chem Rev, 2022,122(5):5317–5364.

30

Law J, Wang X, Luo M, Xin L, Du X, Dou W, Wang T, Shan G, Wang Y, Song P, et al. Microrobotic swarms for selective embolization. Sci Adv, 2022,8(29):eabm5752.

31

Yan X, Zhou Q, Vincent M, Deng Y, Yu J, Xu J, Xu T, Tang T, Bian L, Wang Y-XJ, et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot, 2017,2(12):eaaq1155.

32

Ahmed D, Sukhov A, Hauri D, Rodrigue D, Gian M, Harting J, Nelson B. Bio-inspired acousto-magnetic microswarm robots with upstream motility. Nat Mach Intell, 2021,3(2):116–124.

33

Wang T, Ren Z, Hu W, Li M, Sitti M. Effect of body stiffness distribution on larval fish-like efficient undulatory swimming. Sci Adv, 2021,7(19):eabf7364.

34

Yang L, Zhang T, Tan R, Yang X, Guo D, Feng Y, Ren H, Tang Y, Shang W, Shen Y. Functionalized spiral-rolling millirobot for upstream swimming in blood vessel. Adv Sci, 2022,9(16):e2200342.

35

Lucas KN, Johnson N, Beaulieu WT, Cathcart E, Tirrell G, Colin SP, Gemmell BJ, Dabiri JO, Costello JH. Bending rules for animal propulsion. Nat Commun, 2014(5):3293.

36

Lighthill MJ. Hydromechanics of aquatic animal propulsion. Annu Rev Fluid Mech, 1969,1(1):413–446.

37

Yeh PD, Li Y, Alexeev A. Efficient swimming using flexible fins with tapered thickness. Phys Rev Fluids, 2017,2(10):102101.

38

Floryan D, Rowley CW. Distributed flexibility in inertial swimmers. J Fluid Mech, 2020(888):A24.

39

Kim SH, Lee S, Ahn D, Park JY. PDMS double casting method enabled by plasma treatment and alcohol passivation. Sens Actuators B Chem, 2019(293):115–121.

40

Gill IS, Desai MM, Kaouk JH, Meraney AM, Murphy DP, Sung GT, Novick AC. Laparoscopic partial nephrectomy for renal tumor: Duplicating open surgical techniques. J Urol, 2002,167(2):469–476.

Cyborg and Bionic Systems
Article number: 0015
Cite this article:
Wang Y, Chen H, Law J, et al. Ultrafast Miniature Robotic Swimmers with Upstream Motility. Cyborg and Bionic Systems, 2023, 4: 0015. https://doi.org/10.34133/cbsystems.0015
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return