Untethered microrobots can be used for cargo delivery (e.g., drug molecules, stem cells, and genes) targeting designated areas. However, it is not enough to just reach the lesion site, as some drugs can only play the best therapeutic effect within the cells. To this end, folic acid (FA) was introduced into microrobots in this work as a key to mediate endocytosis of drugs into cells. The microrobots here were fabricated with biodegradable gelatin methacryloyl (GelMA) and modified with magnetic metal–organic framework (MOF). The porous structure of MOF and the hydrogel network of polymerized GelMA were used for the loading of enough FA and anticancer drug doxorubicin (DOX) respectively. Utilizing the magnetic property of magnetic MOF, these microrobots can gather around the lesion site with the navigation of magnetic fields. The combination effects of FA targeting and magnetic navigation substantially improve the anticancer efficiency of these microrobots. The result shows that the cancer cells inhibition rate of microrobots with FA can be up to 93%, while that of the ones without FA was only 78%. The introduction of FA is a useful method to improve the drug transportation ability of microrobots, providing a meaningful reference for further research.
York PA, Peña R, Kent D, Wood RJ. Microrobotic laser steering for minimally invasive surgery. Sci Robot. 2021;6(50):Article eabd5476.
Xie L, Pang X, Yan X, Dai Q, Lin H, Ye J, Cheng Y, Zhao Q, Ma X, Zhang X, et al. Photoacoustic imagingtrackable magnetic microswimmers for pathogenic bacterial infection treatment. ACS Nano. 2020;14(3):2880–2893.
Lee H, Kim Di, Kwon Sh, Park S. Magnetically actuated drug delivery helical microrobot with magnetic nanoparticle retrieval ability. ACS Appl Mater Interfaces. 2021;13(17):19633–19647.
Gong D, Celi N, Zhang D, Cai J. Magnetic biohybrid microrobot multimers based on chlorella cells for enhanced targeted drug delivery. ACS Appl Mater Interfaces. 2022;14(5):6320–6330.
Zhang F, Zhuang J, Li Z, Gong H, de Avila BE, Duan Y, Zhang Q, Zhou J, Yin L, Karshalev E, et al. Nanoparticle-modified microrobots for in vivo antibiotic delivery to treat acute bacterial pneumonia. Nat Mater. 2022;21(11):1324–1332.
Chen L, Zhang MJ, Zhang SY, Shi L, Yang YM, Liu Z, Ju XJ, Xie R, Wang W, Chu LY. Simple and continuous fabrication of selfpropelled micromotors with photocatalytic metal–organic frameworks for enhanced synergistic environmental remediation. ACS Appl Mater Interfaces. 2020;12(31):35120–35131.
Zarei M, Zarei M. Selfpropelled micro/nanomotors for sensing and environmental remediation. Small. 2018;14(30):Article 1800912.
Vilela D, Parmar J, Zeng Y, Zhao Y, Sánchez S. Graphenebased microbots for toxic heavy metal removal and recovery from water. Nano Lett. 2016;16(4):2860–2866.
Liu D, Zhang T, Guo Y, Liao Y, Wu Z, Jiang H, Lu Y. Biohybrid magnetic microrobots for tumor assassination and active tissue regeneration. ACS Appl Bio Mater. 2022;5(12):5933–5942.
Rahman MA, Wang Z, Ohta AT. Collaborative micromanipulation using multiple bubble microrobots in an open reservoir. Micro Nano Lett. 2017;12(11):891–896.
Fu Q, Guo S, Yamauchi Y, Hirata H, Ishihara H. A novel hybrid microrobot using rotational magnetic field for medical applications. Biomed Microdevices. 2015;17(2):31.
Wang X, Hu C, Schurz L, De Marco C, Chen X, Pané S, Nelson BJ. Surfacechemistrymediated control of individual magnetic helical microswimmers in a swarm. ACS Nano. 2018;12(6):6210–6217.
Zeng H, Wasylczyk P, Wiersma DS, Priimagi A. Light robots: Bridging the gap between microrobotics and Photomechanics in soft materials. Adv Mater. 2018;30(24):Article e1703554.
He Q, Wang Z, Wang Y, Wang Z, Li C, Annapooranan R, Zeng J, Chen R, Cai S. Electrospun liquid crystal elastomer microfiber actuator. Sci Robot. 2021;6(57):Article eabi9704.
Zhang X, Chen C, Wu J, Ju H. Bubblepropelled jellyfishlike micromotors for DNA sensing. ACS Appl Mater Interfaces. 2019;11(14):13581–13588.
Panda A, Reddy AS, Venkateswarlu S, Yoon MJN. Bioinspired selfpropelled diatom micromotor by catalytic decomposition of H2O2 under low fuel concentration. Nanoscale. 2018;10(34):16268–16277.
Umebara M, Sugai N, Murayama K, Sugawara T, Akashi Y, Morita Y, Kato R, Komatsu T. Catalasedriven protein microtube motors with different exterior surfaces as ultrasmall biotools. Mater Adv. 2021;2(19):6428–6438.
Kosa G, Shoham M, Zaaroor M. Propulsion method for swimming microrobots. IEEE Trans Robot. 2007;23(1):137–150.
Abbott JJ, Peyer KE, Lagomarsino MC, Zhang L, Dong L, Kaliakatsos IK, Nelson BJ. How should microrobots swim? Int J Robot Res. 2009;28(11–12):1434–1447.
Ceylan H, Yasa IC, Yasa O, Tabak AF, Giltinan J, Sitti M. 3D-printed biodegradable microswimmer for Theranostic cargo delivery and release. ACS Nano. 2019;13(3):3353–3362.
Noh S, Jeon S, Kim E, Oh U, Park D, Park SH, Kim SW, Pane S, Nelson BJ, Kim JY, et al. A biodegradable magnetic microrobot based on gelatin methacrylate for precise delivery of stem cells with mass production capability. Small. 2022;18(25):Article 2107888.
LlacerWintle J, RivasDapena A, Chen XZ, Pellicer E, Nelson BJ, PuigmartiLuis J, Pane S. Biodegradable smallscale swimmers for biomedical applications. Adv Mater. 2021;33(42):Article 2102049.
Luo Z, Sun W, Fang J, Lee K, Li S, Gu Z, Dokmeci MR, Khademhosseini A. Biodegradable gelatin methacryloyl microneedles for transdermal drug delivery. Adv Healthc Mater. 2019;8(3):Article e1801054.
Bordini EAF, Ferreira JA, Dubey N, Ribeiro JS, de Souza Costa CA, Soares DG, Bottino MC. Injectable multifunctional drug delivery system for hard tissue regeneration under inflammatory microenvironments. ACS Appl Bio Mater. 2021;4(9):6993–7006.
Zhao H, Zhao Y, Liu D. pH and H(2)S dualresponsive magnetic metalorganic frameworks for controlling the release of 5-fluorouracil. ACS Appl Bio Mater. 2021;4(9):7103–7110.
Baikeli Y, Mamat X, He F, Xin X, Li Y, Aisa HA, Hu G. Electrochemical determination of chloramphenicol and metronidazole by using a glassy carbon electrode modified with iron, nitrogen co-doped nanoporous carbon derived from a metalorganic framework (type Fe/ZIF-8). Ecotoxicol Environ Saf. 2020;204:111066.
Xin C, Yang L, Li J, Hu Y, Qian D, Fan S, Hu K, Cai Z, Wu H, Wang D, et al. Conical hollow microhelices with superior swimming capabilities for targeted cargo delivery. Adv Mater. 2019;31(25).
Wang X, Hu C, Pane S, Nelson BJ. Dynamic modeling of magnetic helical microrobots. IEEE Robot Autom Lett. 2022;7(2):1682–1688.
Wang W, He XH, Zhang MJ, Tang MJ, Xie R, Ju XJ, Liu Z, Chu LY. Controllable microfluidic fabrication of microstructured materials from nonspherical particles to helices. Macromol Rapid Commun. 2017;38(23):Article 1700429.
Bansal D, Gulbake A, Tiwari J, Jain SK. Development of liposomes entrapped in alginate beads for the treatment of colorectal cancer. Int J Biol Macromol. 2016;82:687–695.
Xu W, Lou Y, Chen W, Kang Y. Folic acid decorated metal-organic frameworks loaded with doxorubicin for tumor-targeted chemotherapy of osteosarcoma. Biomed Tech. 2020;65(2):229–236.
Yang H, Li Y, Li T, Xu M, Chen Y, Wu C, Dang X, Liu Y. Multifunctional core/shell nanoparticles crosslinked polyetherimidefolic acid as efficient Notch-1 siRNA carrier for targeted killing of breast cancer. Sci Rep. 2014;4:7072.
Zhao X, Li H, Lee RJ. Targeted drug delivery via folate receptors. Expert Opin Drug Deliv. 2008;5(3):309–319.
Narmani A, Rezvani M, Farhood B, Darkhor P, Mohammadnejad J, Amini B, Refahi S, Abdi Goushbolagh N. Folic acid functionalized nanoparticles as pharmaceutical carriers in drug delivery systems. Drug Dev Res. 2019;80(4):404–424.
Arabian T, AmjadIranagh S, Halladj R. Molecular dynamics simulation study of doxorubicin adsorption on functionalized carbon nanotubes with folic acid and tryptophan. Sci Rep. 2021;11(1):24210.
Wang X, Qin XH, Hu C, Terzopoulou A, Chen XZ, Huang TY, ManiuraWeber K, Pané S, Nelson BJ. 3D printed enzymatically biodegradable soft helical microswimmers. Adv Funct Mater. 2018;28(45):Article 1804107.
Lee BH, Shirahama H, Cho NJ, Tan LP. Efficient and controllable synthesis of highly substituted gelatin methacrylamide for mechanically stiff hydrogels. RSC Adv. 2015;5(128):106094–106097.