PDF (6.6 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
References
Show full outline
Hide outline
Research Article | Open Access

Magnetic Microrobots with Folate Targeting for Drug Delivery

Min YeYan ZhouHongyu ZhaoXiaopu Wang()
Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
Show Author Information

Abstract

Untethered microrobots can be used for cargo delivery (e.g., drug molecules, stem cells, and genes) targeting designated areas. However, it is not enough to just reach the lesion site, as some drugs can only play the best therapeutic effect within the cells. To this end, folic acid (FA) was introduced into microrobots in this work as a key to mediate endocytosis of drugs into cells. The microrobots here were fabricated with biodegradable gelatin methacryloyl (GelMA) and modified with magnetic metal–organic framework (MOF). The porous structure of MOF and the hydrogel network of polymerized GelMA were used for the loading of enough FA and anticancer drug doxorubicin (DOX) respectively. Utilizing the magnetic property of magnetic MOF, these microrobots can gather around the lesion site with the navigation of magnetic fields. The combination effects of FA targeting and magnetic navigation substantially improve the anticancer efficiency of these microrobots. The result shows that the cancer cells inhibition rate of microrobots with FA can be up to 93%, while that of the ones without FA was only 78%. The introduction of FA is a useful method to improve the drug transportation ability of microrobots, providing a meaningful reference for further research.

References

1

York PA, Peña R, Kent D, Wood RJ. Microrobotic laser steering for minimally invasive surgery. Sci Robot. 2021;6(50):Article eabd5476.

2

Xie L, Pang X, Yan X, Dai Q, Lin H, Ye J, Cheng Y, Zhao Q, Ma X, Zhang X, et al. Photoacoustic imaging­trackable magnetic microswimmers for pathogenic bacterial infection treatment. ACS Nano. 2020;14(3):2880–2893.

3

Lee H, Kim D­i, Kwon S­h, Park S. Magnetically actuated drug delivery helical microrobot with magnetic nanoparticle retrieval ability. ACS Appl Mater Interfaces. 2021;13(17):19633–19647.

4

Gong D, Celi N, Zhang D, Cai J. Magnetic biohybrid microrobot multimers based on chlorella cells for enhanced targeted drug delivery. ACS Appl Mater Interfaces. 2022;14(5):6320–6330.

5

Zhang F, Zhuang J, Li Z, Gong H, de Avila BE, Duan Y, Zhang Q, Zhou J, Yin L, Karshalev E, et al. Nanoparticle-modified microrobots for in vivo antibiotic delivery to treat acute bacterial pneumonia. Nat Mater. 2022;21(11):1324–1332.

6

Chen L, Zhang M­J, Zhang S­Y, Shi L, Yang Y­M, Liu Z, Ju X­J, Xie R, Wang W, Chu L­Y. Simple and continuous fabrication of self­propelled micromotors with photocatalytic metal–organic frameworks for enhanced synergistic environmental remediation. ACS Appl Mater Interfaces. 2020;12(31):35120–35131.

7

Zarei M, Zarei M. Self­propelled micro/nanomotors for sensing and environmental remediation. Small. 2018;14(30):Article 1800912.

8

Vilela D, Parmar J, Zeng Y, Zhao Y, Sánchez S. Graphene­based microbots for toxic heavy metal removal and recovery from water. Nano Lett. 2016;16(4):2860–2866.

9

Liu D, Zhang T, Guo Y, Liao Y, Wu Z, Jiang H, Lu Y. Biohybrid magnetic microrobots for tumor assassination and active tissue regeneration. ACS Appl Bio Mater. 2022;5(12):5933–5942.

10

Rahman MA, Wang Z, Ohta AT. Collaborative micromanipulation using multiple bubble microrobots in an open reservoir. Micro Nano Lett. 2017;12(11):891–896.

11

Fu Q, Guo S, Yamauchi Y, Hirata H, Ishihara H. A novel hybrid microrobot using rotational magnetic field for medical applications. Biomed Microdevices. 2015;17(2):31.

12

Wang X, Hu C, Schurz L, De Marco C, Chen X, Pané S, Nelson BJ. Surface­chemistry­mediated control of individual magnetic helical microswimmers in a swarm. ACS Nano. 2018;12(6):6210–6217.

13

Zeng H, Wasylczyk P, Wiersma DS, Priimagi A. Light robots: Bridging the gap between microrobotics and Photomechanics in soft materials. Adv Mater. 2018;30(24):Article e1703554.

14

He Q, Wang Z, Wang Y, Wang Z, Li C, Annapooranan R, Zeng J, Chen R, Cai S. Electrospun liquid crystal elastomer microfiber actuator. Sci Robot. 2021;6(57):Article eabi9704.

15
Wang H, Liang Y, Gao W, Dong R, Wang C. Emulsion hydrogel soft motor actuated by thermal stimulation. 2017;9(49):43211–43219.
16
Kaynak M, Ozcelik A, Nourhani A, Lammert PE, Crespi VH, Huang TJ. Acoustic actuation of bioinspired microswimmers. 2017;17(3):395–400.
17
Xiao Y, Zhang J, Fang B, Zhao X, Hao N. Acoustics­actuated microrobots. 2022;13(3):481.
18

Zhang X, Chen C, Wu J, Ju H. Bubble­propelled jellyfish­like micromotors for DNA sensing. ACS Appl Mater Interfaces. 2019;11(14):13581–13588.

19

Panda A, Reddy AS, Venkateswarlu S, Yoon MJN. Bio­inspired self­propelled diatom micromotor by catalytic decomposition of H2O2 under low fuel concentration. Nanoscale. 2018;10(34):16268–16277.

20

Umebara M, Sugai N, Murayama K, Sugawara T, Akashi Y, Morita Y, Kato R, Komatsu T. Catalase­driven protein microtube motors with different exterior surfaces as ultrasmall biotools. Mater Adv. 2021;2(19):6428–6438.

21

Kosa G, Shoham M, Zaaroor M. Propulsion method for swimming microrobots. IEEE Trans Robot. 2007;23(1):137–150.

22

Abbott JJ, Peyer KE, Lagomarsino MC, Zhang L, Dong L, Kaliakatsos IK, Nelson BJ. How should microrobots swim? Int J Robot Res. 2009;28(11–12):1434–1447.

23

Ceylan H, Yasa IC, Yasa O, Tabak AF, Giltinan J, Sitti M. 3D-printed biodegradable microswimmer for Theranostic cargo delivery and release. ACS Nano. 2019;13(3):3353–3362.

24

Noh S, Jeon S, Kim E, Oh U, Park D, Park SH, Kim SW, Pane S, Nelson BJ, Kim JY, et al. A biodegradable magnetic microrobot based on gelatin methacrylate for precise delivery of stem cells with mass production capability. Small. 2022;18(25):Article 2107888.

25

Llacer­Wintle J, Rivas­Dapena A, Chen XZ, Pellicer E, Nelson BJ, Puigmarti­Luis J, Pane S. Biodegradable small­scale swimmers for biomedical applications. Adv Mater. 2021;33(42):Article 2102049.

26
Terzopoulou A, Wang X, Chen XZ, Palacios-Corella M, Pujante C, Herrero-Martín J, Qin XH, Sort J, DeMello AJ, Nelson B, et al. Biodegradable metal–organic framework­based microrobots (MOFBOTs). 2020;9(20):Article 2001031.
27

Luo Z, Sun W, Fang J, Lee K, Li S, Gu Z, Dokmeci MR, Khademhosseini A. Biodegradable gelatin methacryloyl microneedles for transdermal drug delivery. Adv Healthc Mater. 2019;8(3):Article e1801054.

28

Bordini EAF, Ferreira JA, Dubey N, Ribeiro JS, de Souza Costa CA, Soares DG, Bottino MC. Injectable multifunctional drug delivery system for hard tissue regeneration under inflammatory microenvironments. ACS Appl Bio Mater. 2021;4(9):6993–7006.

29

Zhao H, Zhao Y, Liu D. pH and H(2)S dual­responsive magnetic metal­organic frameworks for controlling the release of 5-fluorouracil. ACS Appl Bio Mater. 2021;4(9):7103–7110.

30

Baikeli Y, Mamat X, He F, Xin X, Li Y, Aisa HA, Hu G. Electrochemical determination of chloramphenicol and metronidazole by using a glassy carbon electrode modified with iron, nitrogen co-doped nanoporous carbon derived from a metal­organic framework (type Fe/ZIF-8). Ecotoxicol Environ Saf. 2020;204:111066.

31

Xin C, Yang L, Li J, Hu Y, Qian D, Fan S, Hu K, Cai Z, Wu H, Wang D, et al. Conical hollow microhelices with superior swimming capabilities for targeted cargo delivery. Adv Mater. 2019;31(25).

32

Wang X, Hu C, Pane S, Nelson BJ. Dynamic modeling of magnetic helical microrobots. IEEE Robot Autom Lett. 2022;7(2):1682–1688.

33

Wang W, He XH, Zhang MJ, Tang MJ, Xie R, Ju XJ, Liu Z, Chu LY. Controllable microfluidic fabrication of microstructured materials from nonspherical particles to helices. Macromol Rapid Commun. 2017;38(23):Article 1700429.

34

Bansal D, Gulbake A, Tiwari J, Jain SK. Development of liposomes entrapped in alginate beads for the treatment of colorectal cancer. Int J Biol Macromol. 2016;82:687–695.

35

Xu W, Lou Y, Chen W, Kang Y. Folic acid decorated metal-organic frameworks loaded with doxorubicin for tumor-targeted chemotherapy of osteosarcoma. Biomed Tech. 2020;65(2):229–236.

36

Yang H, Li Y, Li T, Xu M, Chen Y, Wu C, Dang X, Liu Y. Multifunctional core/shell nanoparticles cross­linked polyetherimide­folic acid as efficient Notch-1 siRNA carrier for targeted killing of breast cancer. Sci Rep. 2014;4:7072.

37

Zhao X, Li H, Lee RJ. Targeted drug delivery via folate receptors. Expert Opin Drug Deliv. 2008;5(3):309–319.

38

Narmani A, Rezvani M, Farhood B, Darkhor P, Mohammadnejad J, Amini B, Refahi S, Abdi Goushbolagh N. Folic acid functionalized nanoparticles as pharmaceutical carriers in drug delivery systems. Drug Dev Res. 2019;80(4):404–424.

39

Arabian T, Amjad­Iranagh S, Halladj R. Molecular dynamics simulation study of doxorubicin adsorption on functionalized carbon nanotubes with folic acid and tryptophan. Sci Rep. 2021;11(1):24210.

40

Wang X, Qin X­H, Hu C, Terzopoulou A, Chen X­Z, Huang T­Y, Maniura­Weber K, Pané S, Nelson BJ. 3D printed enzymatically biodegradable soft helical microswimmers. Adv Funct Mater. 2018;28(45):Article 1804107.

41

Lee BH, Shirahama H, Cho N­J, Tan LP. Efficient and controllable synthesis of highly substituted gelatin methacrylamide for mechanically stiff hydrogels. RSC Adv. 2015;5(128):106094–106097.

Cyborg and Bionic Systems
Article number: 0019
Cite this article:
Ye M, Zhou Y, Zhao H, et al. Magnetic Microrobots with Folate Targeting for Drug Delivery. Cyborg and Bionic Systems, 2023, 4: 0019. https://doi.org/10.34133/cbsystems.0019
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return