PDF (6.7 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
References
Show full outline
Hide outline
Review Article | Open Access

Carbon-Based Stimuli-Responsive Nanomaterials: Classification and Application

Chen ZhaoJun KangYuwen LiYan WangXiaoying Tang()Zhenqi Jiang()
School of Life Science, School of Medical Technology, Analysis & Testing Center, Beijing Institute of Technology, Beijing 100081, China
Show Author Information

Abstract

Carbon-based nanomaterials, including carbon nanotubes, carbon nanospheres, and carbon nanofibers, are becoming a research hotspot due to their unique structure and good mechanical, thermal, electrical, optical, and chemical properties. With the development of material synthesis technology, they can be functionalized and used in various fields such as energy, environment, and biomedicine. In particular, stimuli-responsive carbon-based nanomaterials have stood out in recent years because of their smart behavior. Researchers have applied carbon-based nanomaterials to different disease treatments based on their stimulus-response properties. In this paper, based on stimuli-responsive carbon-based nanomaterials’ morphology, we categorize them into carbon nanotubes, carbon nanospheres, and carbon nanofibers according to their morphology. Then, their applications in probes, bioimaging, tumor therapy, and other fields are discussed. Finally, we address the advantages and disadvantages of carbon-based stimuli-responsive nanomaterials and discuss their future perspective.

References

1

Patel KD, Singh RK, Kim HW. Carbon-based nanomaterials as an emerging platform for theranostics. Mater Horiz. 2019;6(3):434–469.

2

Weng Z, Yu F, Leng Q, Zhao S, Xu Y, Zhang W, Zhu Z, Ye J, Wei Q, Wang X. Electrical and visible light dual-responsive ZnO nanocomposite with multiple wound healing capability. Mater Sci Eng C Mater Biol Appl. 2021;124:112066.

3

Taghavi S, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Hybrid carbon-based materials for gene delivery in cancer therapy. J Control Release. 2020;318:158–175.

4

Zhao C, Sun S, Li S, Lv A, Chen Q, Jiang K, Jiang Z, Li Z, Wu A, Lin H. Programmed stimuli-responsive carbon dot-nanogel hybrids for imaging-guided enhanced tumor phototherapy. ACS Appl Mater Interfaces. 2022;14(8):10142–10153.

5

Chen Q, Sun S, Lin H, Li Z, Wu A, Liu X, Wu F-G, Zhang W. Supra-carbon dots formed by Fe3+-driven assembly for enhanced tumor-specific photo-mediated and chemodynamic synergistic therapy. ACS Appl Bio Mater. 2021;4(3):2759–2768.

6

Harish V, Tewari D, Gaur M, Yadav AB, Swaroop S, Bechelany M, Barhoum A. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials. 2022;12(3):457.

7

Barhoum A, Garcia-Betancourt ML, Jeevanandam J, Hussien EA, Mekkawy SA, Mostafa M, Omran MM, Abdalla MS, Bechelany M. Review on natural, incidental, bioinspired, and engineered nanomaterials: History, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations. Nanomaterials. 2022;12(2):177.

8

Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56–58.

9

Angione MD, Pilolli R, Cotrone S, Magliulo M, Mallardi A, Palazzo G, Sabbatini L, Fine D, Dodabalapur A, Cioffi N, et al. Carbon based materials for electronic bio-sensing. Mater Today. 2011;14(9):424–433.

10

Osama R, Morsy M, Al-Kamel AN, Mahmoud EA, Ashery A, El-Sayed A. Stimulating photodiode characteristics of hybrid ZnPc-MWCNTs. J Alloys Compd. 2022;891:161783.

11

Ajayan PM, Schadler LS, Giannaris C, Rubio A. Single-walled carbon nanotube-polymer composites: Strength and weakness. Adv Mater. 2000;12(10):750–753.

12

Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363(6430):603–605.

13

Vamvakaki V, Tsagaraki K, Chaniotakis N. Carbon nanofiber-based glucose biosensor. Anal Chem. 2006;78(15):5538–5542.

14

Grunlan JC, Liu L, Kim YS. Tunable single-walled carbon nanotube microstructure in the liquid and solid states using poly(acrylic acid). Nano Lett. 2006;6(5):911–915.

15

Zhang L, Li Y, Yu JC. Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment. J Mater Chem B. 2014;2(5):452–470.

16

Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: Developing chemistries that facilitate nanotechnology. Chem Rev. 2013;113(3):1904–2074.

17

Liu Z, Sun X, Nakayama-Ratchford N, Dai H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano. 2007;1(1):50–56.

18

Dayyoub T, Maksimkin AV, Filippova OV, Tcherdyntsev VV, Telyshev DV. Shape memory polymers as smart materials: A review. Polymers. 2022;14(17):3511.

19

Lee H-F, Yu HH. Study of electroactive shape memory polyurethane-carbon nanotube hybrids. Soft Matter. 2011;7(8):3801–3807.

20

Zhang R, Deng H, Valenca R, Jin J, Fu Q, Bilotti E, Peijs T. Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading. Compos Sci Technol. 2013;74:1–5.

21

You Y-Z, Yan J-J, Yu Z-Q, Cui M-M, Hong C-Y, Qu B-J. Multi-responsive carbon nanotube gel prepared via ultrasound-induced assembly. J Mater Chem. 2009;19(41):7656–7660.

22

Dang ZM, Yao SH, Xu HP. Effect of tensile strain on morphology and dielectric property in nanotube/polymer nanocomposites. Appl Phys Lett. 2007;90(1):012907.

23

Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE. C60: Buckminsterfullerene. Nature. 1985;318(6042):162–163.

24

Liu J, Wickramaratne NP, Qiao SZ, Jaroniec M. Molecular-based design and emerging applications of nanoporous carbon spheres. Nat Mater. 2015;14(8):763–774.

25

Xie Y, Yuan X, Wu Z, Zeng G, Jiang L, Peng X, Li H. Adsorption behavior and mechanism of Mg/Fe layered double hydroxide with Fe3O4-carbon spheres on the removal of Pb(Ⅱ) and Cu(Ⅱ). J Colloid Interface Sci. 2019;536:440–455.

26

Peng L, Hung CT, Wang S, Zhang X, Zhu X, Zhao Z, Wang C, Tang Y, Li W, Zhao D. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J Am Chem Soc. 2019;141(17):7073–7080.

27

Kim M, Xu X, Xin R, Earnshaw J, Ashok A, Kim J, Park T, Nanjundan AK, El-Said WA, Yi JW, et al. KOH-activated hollow ZIF-8 derived porous carbon: Nanoarchitectured control for upgraded capacitive deionization and supercapacitor. ACS Appl Mater Interfaces. 2021;13(44):52034–52043.

28

Kim M, Wang C, Earnshaw J, Park T, Amirilian N, Ashok A, Na J, Han M, Rowan AE, Li J, et al. Co, Fe and N co-doped 1D assembly of hollow carbon nanoboxes for high-performance supercapacitors. J Mater Chem A. 2022;10(45):24056–24063.

29

Zhao H, Zhang F, Zhang S, He S, Shen F, Han X, Yin Y, Gao C. Scalable synthesis of sub-100 nm hollow carbon nanospheres for energy storage applications. Nano Res. 2018;11(4):1822–1833.

30

Liu CQ, Chen ZW, Wang ZZ, Li W, Ju EG, Yan ZQ, Liu Z, Ren JS, Qu XG. A graphitic hollow carbon nitride nanosphere as a novel photochemical internalization agent for targeted and stimuli-responsive cancer therapy. Nanoscale. 2016;8(25):12570–12578.

31

Wang W, Xu D, Cheng B, Yu J, Jiang C. Hybrid carbon@TiO2 hollow spheres with enhanced photocatalytic CO2 reduction activity. J Mater Chem A. 2017;5(10):5020–5029.

32

Zhao N, Fan W, Zhao X, Liu Y, Hu Y, Duan F, Xu F-J. Polycation-carbon nanohybrids with superior rough hollow morphology for the NIR-Ⅱ responsive multimodal therapy. ACS Appl Mater Interfaces. 2020;12(10):11341–11352.

33

Kim M, Xin RJ, Earnshaw J, Tang J, Hill JP, Ashok A, Nanjundan AK, Kim J, Young C, Sugahara Y, et al. MOF-derived nanoporous carbons with diverse tunable nanoarchitectures. Nat Protoc. 2022;17(12):2990–3027.

34

Kim M, Firestein KL, Fernando JFS, Xu X, Lim H, Golberg DV, Na J, Kim J, Nara H, Tang J, et al. Strategic design of Fe and N co-doped hierarchically porous carbon as superior ORR catalyst: From the perspective of nanoarchitectonics. Chem Sci. 2022;13(36):10836–10845.

35

Kapri S, Maiti S, Bhattacharyya S. Lemon grass derived porous carbon nanospheres functionalized for controlled and targeted drug delivery. Carbon. 2016;100:223–235.

36

Zhang L, Li Y, Jin Z, Chan K, Yu JC. Mesoporous carbon/CuS nanocomposites for pH-dependent drug delivery and near-infrared chemo-photothermal therapy. RSC Adv. 2015;5(113):93226–93233.

37

Zhou L, Jing Y, Liu Y, Liu Z, Gao D, Chen H, Song W, Wang T, Fang X, Qin W, et al. Mesoporous carbon nanospheres as a multifunctional carrier for cancer theranostics. Theranostics. 2018;8(3):663–675.

38

Li Y, Nie M, Wang Q. Facile fabrication of electrically conductive low-density polyethylene/carbon fiber tubes for novel smart materials via multiaxial orientation. ACS Appl Mater Interfaces. 2018;10(1):1005–1016.

39

Bai Y, Wang Z, Feng L. Chemical recycling of carbon fibers reinforced epoxy resin composites in oxygen in supercritical water. Mater Des. 2010;31(2):999–1002.

40

Contreras-Caceres R, Cabeza L, Perazzoli G, Diaz A, Lopez-Romero JM, Melguizo C, Prados J. Electrospun nanofibers: Recent applications in drug delivery and cancer therapy. Nanomaterials. 2019;9(4):656.

41

Liguori A, Pandini S, Rinoldi C, Zaccheroni N, Pierini F, Focarete ML, Gualandi C. Thermoactive smart electrospun nanofibers. Macromol Rapid Commun. 2022;43(5):e2100694.

42

Xu T, Wu F, Gu Y, Chen Y, Cai J, Lu W, Hu H, Zhu Z, Chen W. Visible-light responsive electrospun nanofibers based on polyacrylonitrile-dispersed graphitic carbon nitride. RSC Adv. 2015;5(105):86505–86512.

43

Li Z, Lin Z, Han M, Mu Y, Yu P, Zhang Y, Yu J. Flexible electrospun carbon nanofibers/silicone composite films for electromagnetic interference shielding, electrothermal and photothermal applications. Chem Eng J. 2021;420(Part 1):129826.

44

Jeong JH, Kim BH. Low-cost effective photocatalytic activity under visible light of pitch-based porous carbon nanofiber composites aided by zinc oxide. Synth Met. 2019;247:163–169.

45

Yun SI, Kim SH, Kim DW, Kim YA, Kim BH. Facile preparation and capacitive properties of low-cost carbon nanofibers with ZnO derived from lignin and pitch as supercapacitor electrodes. Carbon. 2019;149:637–645.

46

Lee HP, Gaharwar AK. Light-responsive inorganic biomaterials for biomedical applications. Adv Sci. 2020;7(17):2000863.

47

Lu W, Qin X, Liu S, Chang G, Zhang Y, Luo Y, Asiri AM, Al-Youbi AO, Sun X. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of Mercury(Ⅱ) ions. Anal Chem. 2012;84(12):5351–5357.

48

Barman S, Sadhukhan M. Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. J Mater Chem. 2012;22(41):21832–21837.

49

Chen L, Lu J, Luo M, Yu H, Chen X, Deng J, Hou X, Hao E, Wei J, Li P. A ratiometric fluorescent sensing system for the selective and ultrasensitive detection of pesticide residues via the synergetic effects of copper nanoclusters and carbon quantum dots. Food Chem. 2022;379:132139.

50

Cao L, Wang X, Meziani MJ, Lu FS, Wang HF, Luo PJG, Lin Y, Harruff BA, Veca LM, Murray D, et al. Carbon dots for multiphoton bioimaging. J Am Chem Soc. 2007;129(37):11318–11319.

51

Sheng Y, Tang X, Peng E, Xue J. Graphene oxide based fluorescent nanocomposites for cellular imaging. J Mater Chem B. 2013;1(4):512–521.

52

Jiang K, Sun S, Zhang L, Lu Y, Wu A, Cai C, Lin H. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew Chem Int Ed Engl. 2015;54(18):5360–5363.

53

Liu Q, Guo B, Rao Z, Zhang B, Gong JR. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett. 2013;13(6):2436–2441.

54

Liu J, Li D, Zhang K, Yang M, Sun H, Yang B. One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for invivo imaging. Small. 2018;14(15):1703919.

55

He J, Shi M, Liang Y, Guo B. Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds. Chem Eng J. 2020;394:124888.

56

Sun S, Chen Q, Tang Z, Liu C, Li Z, Wu A, Lin H. Tumor microenvironment stimuli-responsive fluorescence imaging and synergistic cancer therapy by carbon-dot–Cu2+ nanoassemblies. Angew Chem Int Ed Engl. 2020;59(47):21041–21048.

57

Bai Y, Zhao J, Wang S, Lin T, Ye F, Zhao S. Carbon dots with absorption red-shifting for two-photon fluorescence imaging of tumor tissue pH and synergistic phototherapy. ACS Appl Mater Interfaces. 2021;13(30):35365–35375.

58

Tian B, Wang C, Zhang S, Feng L, Liu Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano. 2011;5(9):7000–7009.

59

Chakravarty P, Marches R, Zimmerman NS, Swafford AD-E, Bajaj P, Musselman IH, Pantano P, Draper RK, Vitetta ES. Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proc Natl Acad Sci USA. 2008;105(25):8697–8702.

60

Ge J, Jia Q, Liu W, Guo L, Liu Q, Lan M, Zhang H, Meng X, Wang P. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv Mater. 2015;27(28):4169–4177.

61

Qiu Y, Ding D, Sun W, Feng Y, Huang D, Li S, Meng S, Zhao Q, Xue L-J, Chen H. Hollow mesoporous carbon nanospheres for imaging-guided light-activated synergistic thermo-chemotherapy. Nanoscale. 2019;11(35):16351–16361.

62

Liu Y, Zhou L, Li Y, Deng R, Zhang H. Highly fluorescent nitrogen-doped carbon dots with excellent thermal and photo stability applied as invisible ink for loading important information and anti-counterfeiting. Nanoscale. 2017;9(2):491–496.

63

Kalytchuk S, Wang Y, Polakova K, Zboril R. Carbon dot fluorescence-lifetime-encoded anti-counterfeiting. ACS Appl Mater Interfaces. 2018;10(35):29902–29908.

64

Liu C-H, Chang Y-C, Norris TB, Zhong Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat Nanotechnol. 2014;9(4):273–278.

65

Briscoe J, Marinovic A, Sevilla M, Dunn S, Titirici M. Biomass-derived carbon quantum dot sensitizers for solid-state nanostructured solar cells. Angew Chem Int Ed Engl. 2015;54(15):4463–4468.

66

Patil TV, Patel DK, Dutta SD, Ganguly K, Lim K-T. Graphene oxide-based stimuli-responsive platforms for biomedical applications. Molecules. 2021;26(9):2797.

67

Tolvanen J, Kilpijarvi J, Pitkanen O, Hannu J, Jantunen H. Stretchable sensors with tunability and single stimuli-responsiveness through resistivity switching under compressive stress. ACS Appl Mater Interfaces. 2020;12(12):14433–14442.

68

Das S, Ngashangva L, Goswami P. Carbon dots: An emerging smart material for analytical applications. Micromachines. 2021;12(1):84.

69

Guan G, Wu M, Han M-Y. Stimuli-responsive hybridized nanostructures. Adv Funct Mater. 2020;30(2):1903439.

70

Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL. Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials. 2005;26(36):7587–7595.

71

Kumar N, Salehiyan R, Chauke V, Botlhoko OJ, Setshedi K, Scriba M, Masukume M, Ray SS. Top-down synthesis of graphene: A comprehensive review. FlatChem. 2021;27:100224.

72

Abu-Thabit NY, Hamdy AS. Stimuli-responsive polyelectrolyte multilayers for fabrication of self-healing coatings—A review. Surf Coat Technol. 2016;303:406–424.

73

Zhang Z, Wang L, Wang J, Jiang X, Li X, Hu Z, Ji Y, Wu X, Chen C. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater. 2012;24(11):1418–1423.

74

Cifuentes-Rius A, de Pablo A, Ramos-Pérez V, Borrós S. Tailoring carbon nanotubes surface for gene delivery applications. Plasma Process Polym. 2014;11(7):704–713.

75

Singh RK, Patel KD, Kim J-J, Kim T-H, Kim J-H, Shin US, Lee E-J, Know JC, Kim H-W. Multifunctional hybrid nanocarrier: Magnetic CNTs ensheathed with mesoporous silica for drug delivery and imaging system. ACS Appl Mater Interfaces. 2014;6(4):2201–2208.

76

Chatterjee S, Hui PC-L. Review of stimuli-responsive polymers in drug delivery and textile application. Molecules. 2019;24(14):2547.

77

Zhao A, Chen Z, Zhao C, Gao N, Ren J, Qu X. Recent advances in bioapplications of C-dots. Carbon. 2015;85:309–327.

78

Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small. 2015;11(14):1620–1636.

79

Miao P, Han K, Tang Y, Wang B, Lin T, Cheng W. Recent advances in carbon nanodots: Synthesis, properties and biomedical applications. Nanoscale. 2015;7(5):1586–1595.

80

Vedhanarayanan B, Praveen VK, Das G, Ajayaghosh A. Hybrid materials of 1D and 2D carbon allotropes and synthetic π-systems. NPG Asia Mater. 2018;10:107–126.

Cyborg and Bionic Systems
Article number: 0022
Cite this article:
Zhao C, Kang J, Li Y, et al. Carbon-Based Stimuli-Responsive Nanomaterials: Classification and Application. Cyborg and Bionic Systems, 2023, 4: 0022. https://doi.org/10.34133/cbsystems.0022
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return