Magnetic beads manipulation in microfluidic chips is a promising research field for biological application, especially in the detection of biological targets. In this review, we intend to present a thorough and in-depth overview of recent magnetic beads manipulation in microfluidic chips and its biological application. First, we introduce the mechanism of magnetic manipulation in microfluidic chip, including force analysis, particle properties, and surface modification. Then, we compare some existing methods of magnetic manipulation in microfluidic chip and list their biological application. Besides, the suggestions and outlook for future developments in the magnetic manipulation system are also discussed and summarized.
Manz A, Graber N, Widmer HM. Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sens Actuators B Chem. 1990;1(1–6):244–248.
Akgönüllü S, Bakhshpour M, Pişkin AK, Denizli A. Microfluidic systems for cancer diagnosis and applications. Micromachines. 2021;12(11):1349.
Kung C-T, Gao H, Lee C-Y, Wang Y-N, Dong W, Ko C-H, Wang G, Fu L-M. Microfluidic synthesis control technology and its application in drug delivery, bioimaging, biosensing, environmental analysis and cell analysis. Chem Eng J. 2020;399:Article 125748.
Xu X, Wang J, Wu L, Guo J, Song Y, Tian T, Wang W, Zhu Z, Yang C. Microfluidic single-cell omics analysis. Small. 2020;16(9):Article 1903905.
Gijs MAM. Magnetic bead handling on-chip: New opportunities for analytical applications. Microfluid Nanofluidics. 2004;1:22–40.
Shi Y, Song Q, Toftul I, Zhu T, Yu Y, Zhu W, Tsai DP, Kivshar Y, Liu AQ. Optical manipulation with metamaterial structures. Appl Phys Rev. 2022;9(3):Article 031303.
Shi Y, Zhu T, Liu J, Tsai DP, Zhang H, Wang S, Chan CT, Wu PC, Zayats AV, Nori F, et al. Stable optical lateral forces from inhomogeneities of the spin angular momentum. Sci Adv. 2022;8(48):eabn2291.
Shi Y, Zhu T, Zhang T, Mazzulla A, Tsai DP, Ding W, Liu AQ, Cipparrone G, Sáenz JJ, Qiu C-W. Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation. Light Sci Appl. 2020;9(1):62.
Yang S, Tian Z, Wang Z, Rufo J, Li P, Mai J, Xia J, Bachman H, Huang P-H, Wu M, et al. Harmonic acoustics for dynamic and selective particle manipulation. Nat Mater. 2022;21(5):540–546.
Zhao Q, Yuan D, Zhang J, Li W. A review of secondary flow in inertial microfluidics. Micromachines. 2020;11(5):461.
Feng S, Skelley AM, Anwer AG, Liu G, Inglis DW. Maximizing particle concentration in deterministic lateral displacement arrays. Biomicrofluidics. 2017;11(2):Article 024121.
Zhang J, Yuan D, Zhao Q, Yan S, Tang SY, Tan SH, Guo J, Xia H, Nguyen NT, Li W. Tunable particle separation in a hybrid dielectrophoresis (DEP)-inertial microfluidic device. Sens. Actuators B Chem. 2018;267:14–25.
Rikken RSM, Nolte RJM, Maan JC, van Hest JCM, Wilson DA, Christianen PCM. Manipulation of micro- and nanostructure motion with magnetic fields. Soft Matter. 2014;10(9):1295–1308.
Liao J, Huang H. Review on magnetic natural polymer constructed hydrogels as vehicles for drug delivery. Biomacromolecules. 2020;21(7):2574–2594.
Zhang T, Xu Q, Huang T, Ling D, Gao J. New insights into biocompatible iron oxide nanoparticles: A potential booster of gene delivery to stem cells. Small. 2020;16(37):Article 2001588.
Alves MN, Miró M, Breadmore MC, Macka M. Trends in analytical separations of magnetic (nano)particles. TrAC Trends Anal Chem. 2019;114:89–97.
Ennen I, Hütten A. Magnetic nanoparticles meet microfluidics. Mater Today Proc. 2017;4: S160–S167.
Ruffert C. Magnetic bead—Magic bullet. Micromachines. 2016;7(2):21.
Cao Q, Han X, Li L. Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic applications: Magnet systems and manipulation mechanisms. Lab Chip. 2014;14(15):2762–2777.
Azcona P, López-Corral I, Lassalle V. Fabrication of folic acid magnetic nanotheranostics: An insight on the formation mechanism, physicochemical properties and stability in simulated physiological media. Colloids Surf Physicochem Eng Asp. 2018;537:185–196.
Aguilar-Arteaga K, Rodriguez JA, Barrado E. Magnetic solids in analytical chemistry: A review. Anal Chim Acta. 2010;674(2):157–165.
Seenuvasan M, Vinodhini G, Malar CG, Balaji N, Kumar KS. Magnetic nanoparticles: A versatile carrier for enzymes in bio-processing sectors. IET Nanobiotechnol. 2018;12(5):535–548.
Faraji M, Yamini Y, Rezaee M. Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications. J Iran Chem Soc. 2010;7(1):1–37.
Zhang H, Wu Z-Y, Yang Y-Y, Yang F-Q, Li S-P. Recent applications of immobilized biomaterials in herbal analysis. J Chromatogr A. 2019;1603:216–230.
Palecek E, Fojta M. Magnetic beads as versatile tools for electrochemical DNA and protein biosensing. Talanta. 2007;74(3):276–290.
Shan S, Zhong Z, Lai W, Xiong Y, Cui X, Liu D. Immunomagnetic nanobeads based on a streptavidin-biotin system for the highly efficient and specific separation of Listeria monocytogenes. Food Control. 2014;45:138–142.
Shan W, Sun J, Liu R, Xu W, Shao B. Duplexed aptamer-isothermal amplification-based nucleic acid-templated copper nanoparticles for fluorescent detection of okadaic acid. Sens. Actuators B Chem. 2022;352:Article 131035.
Sinha A, Ganguly R, De AK, Puri IK. Single magnetic particle dynamics in a microchannel. Phys Fluids. 2007;19(11):Article 117102.
Abbott JJ, Ergeneman O, Kummer MP, Hirt AM, Nelson BJ. Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies. IEEE Trans Robot. 2007;23(6):1247–1252.
Furlani E. Analysis of particle transport in a magnetophoretic microsystem. J Appl Phys. 2006;99(2):Article 024912.
Satoh A, Chantrell RW, Kamiyama S-I, Coverdale GN. Two-dimensional Monte Carlo simulations to capture thick chainlike clusters of ferromagnetic particles in colloidal dispersions. J Colloid Interface Sci. 1996;178(2):620–627.
Hejazian M, Li W, Nguyen N-T. Lab on a chip for continuous-flow magnetic cell separation. Lab Chip. 2015;15(4):959–970.
Huang S, Yong-Qing H, Feng J. Advances of particles/cells magnetic manipulation in microfluidic chips. Chin J Anal Chem. 2017;45(8):1238–1246.
Aoshima M, Satoh A. Two-dimensional Monte Carlo simulations of a colloidal dispersion composed of polydisperse ferromagnetic particles in an applied magnetic field. J Colloid Interface Sci. 2005;288(2):475–488.
Satoh A. Three-dimensional Monte Carlo simulations of internal aggregate structures in a colloidal dispersion composed of rod-like particles with magnetic moment normal to the particle axis. J Colloid Interface Sci. 2008;318(1):68–81.
Degen IL, Kutsenok BS, Zhuravleva EA, Eglit EI. Permanent magnetic field of magnetophoresis in therapy of Perthes’ disease. Ortop Travmatol Protez. 1977;3:67–70.
Pamme N, Manz A. On-chip free-flow magnetophoresis: Continuous flow separation of magnetic particles and agglomerates. Anal Chem. 2004;76(24):7250–7256.
Wang Y, Li Y, Wang R, Wang M, Lin J. Three-dimensional printed magnetophoretic system for the continuous flow separation of avian influenza H5N1 viruses. J Sep Sci. 2017;40(7):1540–1547.
Shih P-H, Shiu J-Y, Lin P-C, Lin C-C, Veres T, Chen P. On chip sorting of bacterial cells using sugar-encapsulated magnetic nanoparticles. J Appl Phys. 2008;103(7):Article 07A316.
Nam J, Huang H, Lim H, Lim C, Shin S. Magnetic separation of malaria-infected red blood cells in various developmental stages. Anal Chem. 2013;85(15):7316–7323.
Lin S, Zhi X, Chen D, Xia F, Shen Y, Niu J, Huang S, Song J, Miao J, Cui D, et al. A flyover style microfluidic chip for highly purified magnetic cell separation. Biosens Bioelectron. 2019;129:175–181.
Moritz P, Lecerf I, Gonon A, Maties G, Blon T, Cayez S, Bourrier D, Mathieu F, Angulo-Cervera JE, Nicu L, et al. Hybrid Ni–Co–Ni structures prepared by magnetophoresis as efficient permanent magnets for integration into microelectromechanical systems. Adv Eng Mater. 2022;24(12):Article 2200733.
Zhu Y, Zhang B, Gu J, Li S. Magnetic beads separation characteristics of a microfluidic bioseparation chip based on magnetophoresis with lattice-distributed soft magnets. J Magn Magn Mater. 2020;501:Article 166485.
Hale C, Darabi J. Magnetophoretic-based microfluidic device for DNA isolation. Biomicrofluidics. 2014;8(4):Article 044118.
Chung Y-C, Wu C-M, Lin S-H. Particles sorting in micro channel using designed micro electromagnets of magnetic field gradient. J Magn Magn Mater. 2016;407:209–217.
Wu Y, Chuah K, Gooding JJ. Evaluating the sensing performance of nanopore blockade sensors: A case study of prostate-specific antigen assay. Biosens Bioelectron. 2020;165:Article 112434.
Zheng Y, Mannai A, Sawan M. A BioMEMS chip with integrated micro electromagnet array towards bio-particles manipulation. Microelectron Eng. 2014;128:1–6.
Wu X, Wu H, Hu Y. Enhancement of separation efficiency on continuous magnetophoresis by utilizing L/T-shaped microchannels. Microfluid Nanofluidics. 2011;11(1):11–24.
Han X, Feng Y, Cao Q, Li L. Three-dimensional analysis and enhancement of continuous magnetic separation of particles in microfluidics. Microfluid Nanofluidics. 2015;18(5):1209–1220.
Chen Q, Li D, Lin J, Wang M, Xuan X. Simultaneous separation and washing of nonmagnetic particles in an inertial ferrofluid/water coflow. Anal Chem. 2017;89(12):6915–6920.
Zhou R, Wang C. Multiphase ferrofluid flows for micro-particle focusing and separation. Biomicrofluidics. 2016;10(3):Article 034101.
Melle S, Calderón OG, Rubio MA, Fuller GG. Microstructure evolution in magnetorheological suspensions governed by Mason number. Phys Rev E. 2003;68(4):Article 041503.
Cai G, Wang S, Zheng L, Lin J. A fluidic device for Immunomagnetic separation of foodborne bacteria using self-assembled magnetic nanoparticle chains. Micromachines. 2018;9(12):Article 624.
Hou Y, Tang W, Qi W, Guo X, Lin J. An ultrasensitive biosensor for fast detection of Salmonella using 3D magnetic grid separation and urease catalysis. Biosens Bioelectron. 2020;157:Article 112160.
Wang L, Huo X, Zheng L, Cai G, Wang Y, Liu N, Wang M, Lin J. An ultrasensitive biosensor for colorimetric detection of salmonella in large-volume sample using magnetic grid separation and platinum loaded zeolitic imidazolate Framework-8 nanocatalysts. Biosens Bioelectron. 2020;150:Article 111862.
Xue L, Guo R, Huang F, Qi W, Liu Y, Cai G, Lin J. An impedance biosensor based on magnetic nanobead net and MnO2 nanoflowers for rapid and sensitive detection of foodborne bacteria. Biosens Bioelectron. 2021;173:Article 112800.
Lee H, Kim G, Park E, Jeon S. Lenz’s law-based virtual net for detection of pathogenic bacteria from water. Anal Chem. 2019;91(24):15585–15590.
Gao Y, van Reenen A, Hulsen MA, de Jong AM, Prins MWJ, den Toonder JMJ. Chaotic fluid mixing by alternating microparticle topologies to enhance biochemical reactions. Microfluid Nanofluidics. 2014;16(1–2):265–274.
Lee SH, van Noort D, Lee JY, Zhang B-T, Park TH. Effective mixing in a microfluidic chip using magnetic particles. Lab Chip. 2009;9(3):479–482.
Sawetzki T, Rahmouni S, Bechinger C, Marr DWM. In situ assembly of linked geometrically coupled microdevices. Proc Natl Acad Sci USA. 2008;105(51):20141–20145.
Wittbracht F, Weddemann A, Eickenberg B, Zahn M, Hütten A. Enhanced fluid mixing and separation of magnetic bead agglomerates based on dipolar interaction in rotating magnetic fields. Appl Phys Lett. 2012;100(12):Article 123507.
Shanko E-S, Ceelen L, Wang Y, van de Burgt Y, den Toonder J. Enhanced microfluidic sample homogeneity and improved antibody-based assay kinetics due to magnetic mixing. ACS Sens. 2021;6(7):2553–2562.
Shanko E-S, van Buul O, Wang Y, van de Burgt Y, Anderson P, den Toonder J. Magnetic bead mixing in a microfluidic chamber induced by an in-plane rotating magnetic field. Microfluid Nanofluidics. 2022;26(2):17.
Xiong Q, Lim AE, Lim Y, Lam YC, Duan H. Dynamic magnetic nanomixers for improved microarray assays by eliminating diffusion limitation. Adv Healthc Mater. 2019;8(6):Article 1801022.
Xiong Q, Lim CY, Ren J, Zhou J, Pu K, Chan-Park MB, Mao H, Lam YC, Duan H. Magnetic nanochain integrated microfluidic biochips. Nat Commun. 2018;9(1):1743.
Le Nel A, Minc N, Smadja C, Slovakova M, Bilkova Z, Peyrin J-M, Viovy J-L, Taverna M. Controlled proteolysis of normal and pathological prion protein in a microfluidic chip. Lab Chip. 2008;8(2):294–301.
Pereiro I, Tabnaoui S, Fermigier M, du Roure O, Descroix S, Viovy JL, Malaquin L. Magnetic fluidized bed for solid phase extraction in microfluidic systems. Lab Chip. 2017;17(9):1603–1615.
Pereiro I, Bendali A, Tabnaoui S, Alexandre L, Srbova J, Bilkova Z, Deegan S, Joshi L, Viovy J-L, Malaquin L, et al. A new microfluidic approach for the one-step capture, amplification and label-free quantification of bacteria from raw samples. Chem Sci. 2017;8(2):1329–1336.
Srbova J, Krulisova P, Holubova L, Pereiro I, Bendali A, Hamiot A, Podzemna V, Macak J, Dupuy B, Descroix S, et al. Advanced immunocapture of milk-borne Salmonella by microfluidic magnetically stabilized fluidized bed. Electrophoresis. 2018;39(3):526–533.
Hernández-Neuta I, Pereiro I, Ahlford A, Ferraro D, Zhang Q, Viovy JL, Descroix S, Nilsson M. Microfluidic magnetic fluidized bed for DNA analysis in continuous flow mode. Biosens Bioelectron. 2018;102:531–539.
Lin Y, Ciou Y, Yao D. Virtual stencil for patterning and modeling in a quantitative volume using EWOD and DEP devices for microfluidics. Micromachines. 2021;12(9):1104.
Sukthang K, Kampeera J, Sriprachuabwong C, Kiatpathomchai W, Pengwang E, Tuantranont A, Wechsatol W. Sensitivity validation of EWOD devices for diagnosis of early mortality syndrome (EMS) in shrimp using colorimetric LAMP-XO technique. Sensors. 2021;21(9):3126.
Torabinia M, Dakarapu U, Asgari P, Jeon J, Moon H. Electrowetting-on-dielectric (EWOD) digital microfluidic device for in-line workup in organic reactions: A critical step in the drug discovery work cycle. Sens Actuators B Chem. 2021;330:129252.
Zhang Y, Park S, Liu K, Tsuan J, Yang S, Wang T-H. A surface topography assisted droplet manipulation platform for biomarker detection and pathogen identification. Lab Chip. 2011;11(3):398–406.
Chiou C-H, Jin Shin D, Zhang Y, Wang T-H. Topography-assisted electromagnetic platform for blood-to-PCR in a droplet. Biosens Bioelectron. 2013;50:91–99.
Lehmann U, Hadjidj S, Parashar VK, Vandevyver C, Rida A, Gijs MAM. Two-dimensional magnetic manipulation of microdroplets on a chip as a platform for bioanalytical applications. Sens Actuators B Chem. 2006;117(2):457–463.
Zhang A. Droplets transport together with a small steel ball driven by surface acoustic waves. Ferroelectrics. 2022;589(1):218–227.
Biroun M, Haworth L, Agrawal P, Orme B, McHale G, Torun H, Rahmati M, Fu YQ. Surface acoustic waves to control droplet impact onto superhydrophobic and slippery liquid-infused porous surfaces. ACS Appl Mater Interfaces. 2021;13(38):46076–46087.
Jin Y, Xu W, Zhang H, Li R, Sun J, Yang S, Liu M, Mao H, Wang Z. Electrostatic tweezer for droplet manipulation. Proc Natl Acad Sci USA. 2022;119(2):Article e2105459119.
Zhai C, Hu C, Li S, Ma Y, Zhang Y, Guo T, Li H, Hu X. The formation principle of micro-droplets induced by using optical tweezers. Nanoscale Adv. 2021;3(1):279–286.
Zhang Y, Nguyen N-T. Magnetic digital microfluidics – A review. Lab Chip. 2017;17(6):994–1008.
Mats L, Young R, Gibson GTT, Oleschuk RD. Magnetic droplet actuation on natural (Colocasia leaf) and fluorinated silica nanoparticle superhydrophobic surfaces. Sens Actuators B Chem. 2015;220:5–12.
Long Z, Shetty AM, Solomon MJ, Larson RG. Fundamentals of magnet-actuated droplet manipulation on an open hydrophobic surface. Lab Chip. 2009;9(11):1567–1575.
Juang DS, Juang TD, Dudley DM, Newman CM, Accola MA, Rehrauer WM, Friedrich TC, O’Connor DH, Beebe DJ. Oil immersed lossless total analysis system for integrated RNA extraction and detection of SARS-CoV-2. Nat Commun. 2021;12(1):4317.
Shu B, Li Z, Yang X, Xiao F, Lin D, Lei X, Xu B, Liu D. Active droplet-array (ADA) microfluidics enables multiplexed complex bioassays for point of care testing. Chem Commun. 2018;54(18):2232–2235.
Shi X, Chen C-H, Gao W, Chao S, Meldrum DR. Parallel RNA extraction using magnetic beads and a droplet array. Lab Chip. 2015;15(4):1059–1065.
Huang E, Huang D, Wang Y, Cai D, Luo Y, Zhong Z, Liu D. Active droplet-array microfluidics-based chemiluminescence immunoassay for point-of-care detection of procalcitonin. Biosens Bioelectron. 2022;195:Article 113684.
Park Y, Lee KY, Won T, Kim M, Song H, Hong J, Chung SK. Magnetically maneuverable three-dimensional digital microfluidic manipulation of magnetic droplets for biochemical applications. Jpn J Appl Phys. 2021;60(7):Article 076504.
Kim JA, Kim M, Kang SM, Lim KT, Kim TS, Kang JY. Magnetic bead droplet immunoassay of oligomer amyloid β for the diagnosis of Alzheimer’s disease using micro-pillars to enhance the stability of the oil–water interface. Biosens Bioelectron. 2015;67:724–732.
Ramadan Q, Poenar DP, Yu C. Customized trapping of magnetic particles. Microfluid Nanofluidics. 2009;6(1):53–62.
Ramadan Q, Samper V, Poenar D, Yu C. On-chip micro-electromagnets for magnetic-based bio-molecules separation. J Magn Magn Mater. 2004;281(2–3):150–172.
Ahn CH, Allen MG, Trimmer W, Jun Y-N, Erramilli S. A fully integrated micromachined magnetic particle separator. J Microelectromech Syst. 1996;5(3):151–158.
Ali-Cherif A, Begolo S, Descroix S, Viovy J-L, Malaquin L. Programmable magnetic tweezers and droplet microfluidic device for high-throughput nanoliter multi-step assays. Angew Chem Int Ed. 2012;51(43):10765–10769.
Liénard-Mayor T, Bricteux C, Bendali A, Tran N-T, Bruneel A, Taverna M, Mai TD. Lab-in-droplet: From glycan sample treatment toward diagnostic screening of congenital disorders of glycosylation. Anal Chim Acta. 2022;1221:Article 340150.
Yan Q, Xuan S, Ruan X, Wu J, Gong X. Magnetically controllable generation of ferrofluid droplets. Microfluid Nanofluidics. 2015;19(6):1377–1384.
Teste B, Ali-Cherif A, Viovy JL, Malaquin L. A low cost and high throughput magnetic bead-based immuno-agglutination assay in confined droplets. Lab Chip. 2013;13(12):2344–2349.
Lu P-H, Ma Y-D, Fu C-Y, Lee G-B. A structure-free digital microfluidic platform for detection of influenza a virus by using magnetic beads and electromagnetic forces. Lab Chip. 2020;20(4):789–797.
Yang C, Ning Y, Ku X, Zhuang G, Li G. Automatic magnetic manipulation of droplets on an open surface using a superhydrophobic electromagnet needle. Sens Actuators B Chem. 2018;257:409–418.
Rida A, Fernandez V, Gijs MAM. Long-range transport of magnetic microbeads using simple planar coils placed in a uniform magnetostatic field. Appl Phys Lett. 2003;83(12):2396–2398.
Beyzavi A, Nguyen N-T. Programmable two-dimensional actuation of ferrofluid droplet using planar microcoils. J Micromech Microeng. 2010;20(3):Article 039801.
Nguyen N-T, Ng KM, Huang X. Manipulation of ferrofluid droplets using planar coils. Appl Phys Lett. 2006;89(5):052509.
Kim C, Hoffmann G, Searson PC. Integrated magnetic bead–quantum dot immunoassay for malaria detection. ACS Sens. 2017;2(6):766–772.
Pantano P, Walt DR. Ordered nanowell arrays. Chem Mater. 1996;8(12):2832–2835.
Nesterov-Mueller A, Maerkle F, Hahn L, Foertsch T, Schillo S, Bykovskaya V, Sedlmayr M, Weber LK, Ridder B, Soehindrijo M, et al. Particle-based microarrays of oligonucleotides and oligopeptides. Microarrays. 2014;3(4):245–262.
Manzoor AA, Hwang DK. Facile fabrication method of conical microwells using non-uniform photolithography. Adv Mater Interfaces. 2020;7(20):2000981.
Mei Y, Li L, Chen N, Zhong C, Hu W. A microwell array structured surface plasmon resonance imaging gold chip for high-performance label-free immunoassay. Analyst. 2020;145(19):6395–6400.
Kuchenbuch A, Frank R, Vazquez Ramos J, Jahnke H-G, Harnisch F. Electrochemical microwell plate to study electroactive microorganisms in parallel and real-time. Front Bioeng Biotechnol. 2022;9:821734.
Liu M, Feng L, Zhang X, Hua Y, Wan Y, Fan C, Lv X, Wang H. Superwettable microwell arrays constructed by photocatalysis of silver-doped-ZnO nanorods for ultrasensitive and high-throughput electroanalysis of glutathione in Hela cells. ACS Appl Mater Interfaces. 2018;10(38):32038–32046.
Li J, Qiu Y, Zhang Z, Li C, Li S, Zhang W, Guo Z, Yaoad J, Zhou L. Heterogeneous modification of through-hole microwell chips for ultralow cross-contamination digital polymerase chain reaction. Analyst. 2020;145(8):3116–3124.
Lilge I, Jiang S, Schönherr H. Long-term stable poly(acrylamide) brush modified transparent microwells for cell attachment studies in 3D. Macromol Biosci. 2017;17(5):1600451.
Tripodi L, Ven K, Kil D, Rutten I, Puers R, Lammertyn J. Teflon-on-glass molding enables high-throughput fabrication of hydrophilic-in-hydrophobic microwells for bead-based digital bioassays. Materials. 2018;11(11):2154.
Tripodi L, Witters D, Kokalj T, Huber HJ, Puers R, Lammertyn J, Spasic D. Sub-femtomolar detection of DNA and discrimination of mutant strands using microwell-array assisted digital enzyme-linked oligonucleotide assay. Anal Chim Acta. 2018;1041:122–130.
Huang N-T, Hwong Y-J, Lai RL. A microfluidic microwell device for immunomagnetic single-cell trapping. Microfluid Nanofluidics. 2018;22(2):16.
Safdar S, Ven K, van Lent J, Pavie B, Rutten I, Dillen A, Munck S, Lammertyn J, Spasic D. DNA-only, microwell-based bioassay for multiplex nucleic acid detection with single base-pair resolution using MNAzymes. Biosens Bioelectron. 2020;152:112017.
Hsu W, Shih Y-T, Lee M-S, Huang H-Y, Wu W-N. Bead number effect in a magnetic-beads-based digital microfluidic immunoassay. Biosensors. 2022;12(5):340.
Rissin DM, Kan CW, Campbell TG, Howes SC, Fournier DR, Song L, Piech T, Patel PP, Chang L, Rivnak AJ, et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol. 2010;28(6):595–599.
Decrop D, Pardon G, Brancato L, Kil D, Zandi Shafagh R, Kokalj T, Haraldsson T, Puers R, van der Wijngaart W, Lammertyn J. Single-step imprinting of Femtoliter microwell arrays allows digital bioassays with Attomolar limit of detection. ACS Appl Mater Interfaces. 2017;9(12):10418–10426.
Wu C, Maley AM, Walt DR. Single-molecule measurements in microwells for clinical applications. Crit Rev Clin Lab Sci. 2020;57(4):270–290.
Ashiba H, Yasuura M, Fukuda T, Hatano K, Fujimaki M. Quick and ultra-sensitive digital assay of influenza virus using sub-picoliter microwells. Anal Chim Acta. 2022;1213:339926.
Dong J, Li G, Xia L. Microfluidic magnetic spatial confinement strategy for the enrichment and ultrasensitive detection of MCF-7 and Escherichia coli O157: H7. Anal Chem. 2022;94(48):16901–16909.
Park M, Lee D, Bang D, Lee J. MAPS-seq: Magnetic bead-assisted parallel single-cell gene expression profiling. Exp Mol Med. 2020;52(5):804–814.
Dong Y, Wen C-Y, She Y, Zhang Y, Chen Y, Zeng J. Magnetic relaxation switching immunoassay based on hydrogen peroxide-mediated assembly of Ag@Au–Fe3O4 nanoprobe for detection of aflatoxin B1. Small. 2021;17(51):e2104596.
Guo X, Tian T, Deng X, Song Y, Zhou X, Song E. CRISPR/Cas13a assisted amplification of magnetic relaxation switching sensing for accurate detection of miRNA-21 in human serum. Anal Chim Acta. 2022;1209:339853–339853.
Chen Y, Xianyu Y, Wang Y, Zhang X, Cha R, Sun J, Jiang X. One-step detection of pathogens and viruses: Combining magnetic relaxation switching and magnetic separation. ACS Nano. 2015;9(3):3184–3191.
Chen Y, Xianyu Y, Sun J, Niu Y, Wang Y, Jiang X. One-step detection of pathogens and cancer biomarkers by the naked eye based on aggregation of immunomagnetic beads. Nanoscale. 2016;8(2):1100–1107.
Han K-H, Frazier AB. Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. Lab Chip. 2006;6(2):265–273.
Shiriny A, Bayareh M. On magnetophoretic separation of blood cells using Halbach array of magnets. Meccanica. 2020;55:1903–1916.
Kang B, Han S, Son HY, Mun B, Shin MK, Choi Y, Park J, Min JK, Park D, Lim EK, et al. Immunomagnetic microfluidic integrated system for potency-based multiple separation of heterogeneous stem cells with high throughput capabilities. Biosens Bioelectron. 2021;194:113576.
Nasiri R, Shamloo A, Akbari J. Design of two inertial-based microfluidic devices for cancer cell separation from blood: A serpentine inertial device and an integrated inertial and magnetophoretic device. Chem Eng Sci. 2022;252:117283.
Jung T, Jung Y, Ahn J, Yang S. Continuous, rapid concentration of foodborne bacteria (Staphylococcus aureus, Salmonella typhimurium, and Listeria monocytogenes) using magnetophoresis-based microfluidic device. Food Control. 2020;114:107229.
Xu Y, Zhang Z, Su Z, Zhou X, Han X, Liu Q. Continuous microfluidic purification of DNA using magnetophoresis. Micromachines. 2020;11(2):187.
Jalal UM, Jin GJ, Eom KS, Kim MH, Shim JS. On-chip signal amplification of magnetic bead-based immunoassay by aviating magnetic bead chains. Bioelectrochemistry. 2018;122:221–226.
Huang F, Xue L, Qi W, Cai G, Liu Y, Lin J. An ultrasensitive impedance biosensor for salmonella detection based on rotating high gradient magnetic separation and cascade reaction signal amplification. Biosens Bioelectron. 2021;176:112921.