PDF (15.5 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
References
Show full outline
Hide outline
Review Article | Open Access

Cross-Frequency Coupling and Intelligent Neuromodulation

Chien-Hung Yeh1Chuting Zhang1Wenbin Shi1()Men-Tzung Lo2Gerd Tinkhauser3Ashwini Oswal4
School of Information and Electronics, Beijing Institute of Technology, Beijing, China
Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
Show Author Information

Abstract

Cross-frequency coupling (CFC) reflects (nonlinear) interactions between signals of different frequencies. Evidence from both patient and healthy participant studies suggests that CFC plays an essential role in neuronal computation, interregional interaction, and disease pathophysiology. The present review discusses methodological advances and challenges in the computation of CFC with particular emphasis on potential solutions to spurious coupling, inferring intrinsic rhythms in a targeted frequency band, and causal interferences. We specifically focus on the literature exploring CFC in the context of cognition/memory tasks, sleep, and neurological disorders, such as Alzheimer's disease, epilepsy, and Parkinson's disease. Furthermore, we highlight the implication of CFC in the context and for the optimization of invasive and noninvasive neuromodulation and rehabilitation. Mainly, CFC could support advancing the understanding of the neurophysiology of cognition and motor control, serve as a biomarker for disease symptoms, and leverage the optimization of therapeutic interventions, e.g., closed-loop brain stimulation. Despite the evident advantages of CFC as an investigative and translational tool in neuroscience, further methodological improvements are required to facilitate practical and correct use in cyborg and bionic systems in the field.

References

1

Eusebio A, Thevathasan W, Doyle Gaynor L, Pogosyan A, Bye E, Foltynie T, Zrinzo L, Ashkan K, Aziz T, Brown P. Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. J Neurol Neurosurg Psychiatry, 2011,82(5):569–573.

2

Bradley C, Nydam AS, Dux PE, Mattingley JB. State-dependent effects of neural stimulation on brain function and cognition. Nat Rev Neurosci, 2022,23(8):459–475.

3

Scangos KW, Khambhati AN, Daly PM, Makhoul GS, Sugrue LP, Zamanian H, Liu TX, Rao VR, Sellers KK, Dawes HE, et al. Closed-loop neuromodulation in an individual with treatment-resistant depression. Nat Med, 2021,27(10):1696–1700.

4

McCormick DA, McGinley MJ, Salkoff DB. Brain state dependent activity in the cortex and thalamus. Curr Opin Neurobiol, 2015(31):133–140.

5

Lakatos P, Shah AS, Knuth KH, Ulbert I, Karmos G, Schroeder CE. An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J Neurophysiol, 2005,94(3):1904–1911.

6

Wang Y, Shi W, Yeh C-H. A novel measure of cardiopulmonary coupling during sleep based on the synchrosqueezing transform algorithm. IEEE J Biomed Health Inform, 2023,27(4):1790–1800.

7

Hyafil A, Giraud AL, Fontolan L, Gutkin B. Neural cross-frequency coupling: Connecting architectures, mechanisms, and functions. Trends Neurosci, 2015,38(11):725–740.

8

Fries P. A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends Cogn Sci, 2005,9(10):474–480.

9

Amzica F, Steriade M. Short- and long-range neuronal synchronization of the slow (<1 Hz) cortical oscillation. J Neurophysiol, 1995,73(1):20–38.

10

Axmacher N, Henseler MM, Jensen O, Weinreich I, Elger CE, Fell J. Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc Natl Acad Sci USA, 2010,107(7):3228–3233.

11

Belluscio MA, Mizuseki K, Schmidt R, Kempter R, Buzsáki G. Cross-frequency phase-phase coupling between θ and γ oscillations in the hippocampus. J Neurosci, 2012,32(2):423–435.

12

Scheffer-Teixeira R, Tort ABL. On cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. eLife, 2016(5):e20515.

13

Pogosyan A, Gaynor LD, Eusebio A, Brown P. Boosting cortical activity at beta-band frequencies slows movement in humans. Curr Biol, 2009,19(19):1637–1641.

14

Joundi RA, Jenkinson N, Brittain JS, Aziz TZ, Brown P. Driving oscillatory activity in the human cortex enhances motor performance. Curr Biol, 2012,22(5):403–407.

15

Vinogradov S, Herman A. Psychiatric illnesses as oscillatory connectomopathies. Neuropsychopharmacology, 2016,41(1):387–388.

16

Oswal A, Brown P, Litvak V. Synchronized neural oscillations and the pathophysiology of Parkinson's disease. Curr Opin Neurol, 2013,26(6):662–670.

17

Canolty RT, Knight RT. The functional role of cross-frequency coupling. Trends Cogn Sci, 2010,14(11):506–515.

18

Riddle J, Alexander ML, Schiller CE, Rubinow DR, Frohlich F. Reward-based decision-making engages distinct modes of cross-frequency coupling. Cereb Cortex, 2022,32(10):2079–2094.

19

Yeh CH, Young HWV, Wang CY, Wang YH, Lee PL, Kang JH, Lo MT. Quantifying spasticity with limited swinging cycles using pendulum test based on phase amplitude coupling. IEEE Trans Neural Syst Rehabil Eng, 2016,24(10):1081–1088.

20

Voytek B, Canolty RT, Shestyuk A, Crone NE, Parvizi J, Knight RT. Shifts in gamma phase-amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks. Front Hum Neurosci, 2010(4):191.

21

van Wingerden M, van der Meij R, Kalenscher T, Maris E, Pennartz CMA. Phase-amplitude coupling in rat orbitofrontal cortex discriminates between correct and incorrect decisions during associative learning. J Neurosci, 2014,34(2):493.

22

Chen KH, Tang AM, Gilbert ZD, Martin del Campo-Vera R, Sebastian R, Gogia AS, Sundaram S, Tabarsi E, Lee Y, Lee R, et al. Theta low-gamma phase amplitude coupling in the human orbitofrontal cortex increases during a conflict-processing task. J Neural Eng, 2022,19(1):016026.

23

Yeh CH, Lo MT, Hu K. Spurious cross-frequency amplitude-amplitude coupling in nonstationary, nonlinear signals. Physica A, 2016(454):143–150.

24

Mazaheri A, Nieuwenhuis ILC, Van Dijk H, Jensen O. Prestimulus alpha and mu activity predicts failure to inhibit motor responses. Hum Brain Mapp, 2009,30(6):1791–1800.

25

Siegel M, Warden MR, Miller EK. Phase-dependent neuronal coding of objects in short-term memory. Proc Natl Acad Sci USA, 2009,106(50):21341–21346.

26

Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, Moser MB, Moser EI. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature, 2009,462(7271):353–357.

27

Igarashi KM, Lu L, Colgin LL, Moser MB, Moser EI. Coordination of entorhinal-hippocampal ensemble activity during associative learning. Nature, 2014,510(7503):143–147.

28

Kikuchi Y, Attaheri A, Wilson B, Rhone AE, Nourski KV, Gander PE, Kovach CK, Kawasaki H, Griffiths TD, Howard MA, et al. Sequence learning modulates neural responses and oscillatory coupling in human and monkey auditory cortex. PLOS Biol, 2017,15(4):e2000219.

29

Amemiya S, Redish AD. Hippocampal theta-gamma coupling reflects state-dependent information processing in decision making. Cell Rep, 2018,22(12):3328–3338.

30

Aru J, Aru J, Priesemann V, Wibral M, Lana L, Pipa G, Singer W, Vicente R. Untangling cross-frequency coupling in neuroscience. Curr Opin Neurobiol, 2015(31):51–61.

31

Yeh CH, al-Fatly B, Kühn AA, Meidahl AC, Tinkhauser G, Tan H, Brown P. Waveform changes with the evolution of beta bursts in the human subthalamic nucleus. Clin Neurophysiol, 2020,131(9):2086–2099.

32

Kramer MA, Tort ABL, Kopell NJ. Sharp edge artifacts and spurious coupling in EEG frequency comodulation measures. J Neurosci Methods, 2008,170(2):352–357.

33

Lo MT, Novak V, Peng CK, Liu Y, Hu K. Nonlinear phase interaction between nonstationary signals: A comparison study of methods based on Hilbert-Huang and Fourier transforms. Phys Rev E Stat Nonlinear Soft Matter Phys, 2009,79(6):061924.

34

Lozano-Soldevilla D, Huurne N, Oostenveld R. Neuronal oscillations with non-sinusoidal morphology produce spurious phase-to-amplitude coupling and directionality. Front Comput Neurosci, 2016(10):87.

35

Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc A, 1998(454):903–995.

36

Pittman-Polletta B, Hsieh WH, Kaur S, Lo MT, Hu K. Detecting phase-amplitude coupling with high frequency resolution using adaptive decompositions. J Neurosci Methods, 2014(226):15–32.

37

Shi W, Yeh CH, Hong Y. Cross-frequency transfer entropy characterize coupling of interacting nonlinear oscillators in complex systems. IEEE Trans Biomed Eng, 2019,66(2):521–529.

38

Yeh CH, Shi W. Identifying phase-amplitude coupling in cyclic alternating pattern using masking signals. Sci Rep, 2018,8(1):2649.

39
Hu Y, Shi W, Yeh C-H. A novel nonlinear bispectrum analysis for dynamical complex oscillations. Cogn Neurodyn, 2023:1–21.
40

Zhang C, Yeh C-H, Shi W. Variational phase-amplitude coupling characterizes signatures of anterior cortex under emotional processing. IEEE J Biomed Health Inform, 2023,27(4):1935–1945.

41

Tort ABL, Komorowski R, Eichenbaum H, Kopell N. Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J Neurophysiol, 2010,104(2):1195–1210.

42

Penny WD, Duzel E, Miller KJ, Ojemann JG. Testing for nested oscillation. J Neurosci Methods, 2008,174(1):50–61.

43

Cohen MX. Assessing transient cross-frequency coupling in EEG data. J Neurosci Methods, 2008,168(2):494–499.

44

Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT. High gamma power is phase-locked to theta oscillations in human neocortex. Science, 2006,313(5793):1626–1628.

45

Özkurt TE, Schnitzler A. A critical note on the definition of phase-amplitude cross-frequency coupling. J Neurosci Methods, 2011,201(2):438–443.

46

Mormann F, Fell J, Axmacher N, Weber B, Lehnertz K, Elger CE, Fernández G. Phase/amplitude reset and theta-gamma interaction in the human medial temporal lobe during a continuous word recognition memory task. Hippocampus, 2005,15(7):890–900.

47

Bruns A, Eckhorn R. Task-related coupling from high- to low-frequency signals among visual cortical areas in human subdural recordings. Int J Psychophysiol, 2004,51(2):97–116.

48

Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci, 2011:156869.

49

Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: A user-friendly application for MEG/EEG analysis. Comput Intell Neurosci, 2011:879716.

50

Combrisson E, Nest T, Brovelli A, Ince RAA, Soto JLP, Guillot A, Jerbi K. Tensorpac: An open-source Python toolbox for tensor-based phase-amplitude coupling measurement in electrophysiological brain signals. PLOS Comput Biol, 2020,16(10):e1008302.

51

Tort ABL, Komorowski RW, Manns JR, Kopell NJ, Eichenbaum H. Theta-gamma coupling increases during the learning of item-context associations. Proc Natl Acad Sci USA, 2009,106(49):20942–20947.

52

Liu CC, Chien JH, Kim JH, Chuang YF, Cheng DT, Anderson WS, Lenz FA. Cross-frequency coupling in deep brain structures upon processing the painful sensory inputs. Neuroscience, 2015(303):412–421.

53

Jirsa V, Müller V. Cross-frequency coupling in real and virtual brain networks. Front Comput Neurosci, 2013(7):78.

54

Klimesch W, Freunberger R, Sauseng P, Gruber W. A short review of slow phase synchronization and memory: Evidence for control processes in different memory systems? Brain Res, 2008(1235):31–44.

55

Sauseng P, Klimesch W, Heise KF, Gruber WR, Holz E, Karim AA, Glennon M, Gerloff C, Birbaumer N, Hummel FC. Brain oscillatory substrates of visual short-term memory capacity. Curr Biol, 2009,19(21):1846–1852.

56

Bonnefond M, Kastner S, Jensen O. Communication between brain areas based on nested oscillations. eNeuro, 2017,4(2):ENEURO.0153-16.2017.

57

Von Stein A, Sarnthein J. Different frequencies for different scales of cortical integration: From local gamma to long range alpha/theta synchronization. Int J Psychophysiol, 2000,38(3):301–313.

58

Lopes-dos-Santos V, van de Ven GM, Morley A, Trouche S, Campo-Urriza N, Dupret D. Parsing hippocampal theta oscillations by nested spectral components during spatial exploration and memory-guided behavior. Neuron, 2018,100(4):940–952.

59

Salimpour Y, Anderson WS. Cross-frequency coupling based neuromodulation for treating neurological disorders. Front Neurosci, 2019(13):125.

60

Zielinski MC, Shin JD, Jadhav SP. Coherent coding of spatial position mediated by theta oscillations in the hippocampus and prefrontal cortex. J Neurosci, 2019,39(23):4550–4565.

61

Maris E, van Vugt M, Kahana M. Spatially distributed patterns of oscillatory coupling between high-frequency amplitudes and low-frequency phases in human iEEG. NeuroImage, 2011,54(2):836–850.

62

Lega B, Burke J, Jacobs J, Kahana MJ. Slow-theta-to-gamma phase-amplitude coupling in human hippocampus supports the formation of new episodic memories. Cereb Cortex, 2016,26(1):268–278.

63

Tok S, Maurin H, Delay C, Crauwels D, Manyakov NV, van der Elst W, Moechars D, Drinkenburg WHIM. Pathological and neurophysiological outcomes of seeding human-derived tau pathology in the APP-KI NL-G-F and NL-NL mouse models of Alzheimer's disease. Acta Neuropathol Commun, 2022,10(1):92.

64

Tort ABL, Kramer MA, Thorn C, Gibson DJ, Kubota Y, Graybiel AM, Kopell NJ. Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc Natl Acad Sci USA, 2008,105(51):20517–20522.

65

Shirvalkar PR, Rapp PR, Shapiro ML. Bidirectional changes to hippocampal theta-gamma comodulation predict memory for recent spatial episodes. Proc Natl Acad Sci USA, 2010,107(15):7054–7059.

66

Bandarabadi M, Boyce R, Gutierrez Herrera C, Bassetti CL, Williams S, Schindler K, Adamantidis A. Dynamic modulation of theta-gamma coupling during rapid eye movement sleep. Sleep, 2019,42(12):zsz182.

67

Daume J, Gruber T, Engel AK, Friese U. Phase-amplitude coupling and long-range phase synchronization reveal frontotemporal interactions during visual working memory. J Neurosci, 2017,37(2):313–322.

68

Musaeus CS, Nielsen MS, Musaeus JS, Høgh P. Electroencephalographic cross-frequency coupling as a sign of disease progression in patients with mild cognitive impairment: A pilot study. Front Neurosci, 2020(14):790.

69

Rajji TK, Zomorrodi R, Barr MS, Blumberger DM, Mulsant BH, Daskalakis ZJ. Ordering information in working memory and modulation of gamma by theta oscillations in humans. Cereb Cortex, 2017,27(2):1482–1490.

70

Goldman-Rakic PS. Cellular basis of working memory. Neuron, 1995,14(3):477–485.

71

Rajji TK, Sun Y, Zomorrodi-Moghaddam R, Farzan F, Blumberger DM, Mulsant BH, Fitzgerald PB, Daskalakis ZJ. PAS-induced potentiation of cortical-evoked activity in the dorsolateral prefrontal cortex. Neuropsychopharmacology, 2013,38(12):2545–2552.

72
Soto JLP, Jerbi K. Investigation of cross-frequency phase-amplitude coupling in visuomotor networks using magnetoencephalography. Annu Int Conf IEEE Eng Med Biol Soc, 2012:1550–1553.
73

Krugliakova E, Volk C, Jaramillo V, Sousouri G, Huber R. Changes in cross-frequency coupling following closed-loop auditory stimulation in non-rapid eye movement sleep. Sci Rep, 2020,10(1):10628.

74

Babiloni C, Lizio R, Marzano N, Capotosto P, Soricelli A, Triggiani AI, Cordone S, Gesualdo L, del Percio C. Brain neural synchronization and functional coupling in Alzheimer's disease as revealed by resting state EEG rhythms. Int J Psychophysiol, 2016(103):88–102.

75

Mondragón-Rodríguez S, Gu N, Manseau F, Williams S. Alzheimer's transgenic model is characterized by very early brain network alterations and β-CTF fragment accumulation: Reversal by β-secretase inhibition. Front Cell Neurosci, 2018(12):121.

76

Ries ML, McLaren DG, Bendlin BB, GuofanXu, Rowley HA, Birn R, Kastman EK, Sager MA, Asthana S, Johnson SC. Medial prefrontal functional connectivity—Relation to memory self-appraisal accuracy in older adults with and without memory disorders. Neuropsychologia, 2012,50(5):603–611.

77

Brueggen K, Kasper E, Ochmann S, Pfaff H, Webel S, Schneider W, Teipel S. Cognitive rehabilitation in Alzheimer's disease: A controlled intervention trial. J Alzheimers Dis, 2017,57(4):1315–1324.

78

Buschert VC, Friese U, Teipel SJ, Schneider P, Merensky W, Rujescu D, Möller HJ, Hampel H, Buerger K. Effects of a newly developed cognitive intervention in amnestic mild cognitive impairment and mild Alzheimer's disease: A pilot study. J Alzheimers Dis, 2011,25(4):679–694.

79

Guo Y, Dang G, Hordacre B, Su X, Yan N, Chen S, Ren H, Shi X, Cai M, Zhang S, et al. Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex modulates electroencephalographic functional connectivity in Alzheimer's disease. Front Aging Neurosci, 2021(13):679585.

80

Hötting K, Röder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev, 2013,37(9):2243–2257.

81

Etter G, van der Veldt S, Manseau F, Zarrinkoub I, Trillaud-Doppia E, Williams S. Optogenetic gamma stimulation rescues memory impairments in an Alzheimer's disease mouse model. Nat Commun, 2019,10(1):5322.

82

Kim S-E, Kim H-S, Kwak Y, Ahn M-H, Choi KM, Min B-K. Neurodynamic correlates for the cross-frequency coupled transcranial alternating current stimulation during working memory performance. Front Neurosci, 2022(16):1013691.

83

Turi Z, Mittner M, Lehr A, Bürger H, Antal A, Paulus W. θ-γ cross-frequency transcranial alternating current stimulation over the trough impairs cognitive control. eNeuro, 2020,7(5):ENEURO.0126-20.2020–0120.

84

Bragin A, Engel J, Staba RJ. High-frequency oscillations in epileptic brain. Curr Opin Neurol, 2010,23(2):151–156.

85

Thomschewski A, Hincapié AS, Frauscher B. Localization of the epileptogenic zone using high frequency oscillations. Front Neurol, 2019(10):94.

86

Andrade-Valenca LP, Dubeau F, Mari F, Zelmann R, Gotman J. Interictal scalp fast oscillations as a marker of the seizure onset zone. Neurology, 2011,77(6):524–531.

87

Jacobs J, Kobayashi K, Gotman J. High-frequency changes during interictal spikes detected by time-frequency analysis. Clin Neurophysiol, 2011,122(1):32–42.

88

Jacobs J, Levan P, Chtillon CD, Olivier A, Dubeau F, Gotman J. High frequency oscillations in intracranial EEGs mark epileptogenicity rather than lesion type. Brain, 2009,132(4):1022–1037.

89

Sakuraba R, Iwasaki M, Okumura E, Jin K, Kakisaka Y, Kato K, Tominaga T, Nakasato N. High frequency oscillations are less frequent but more specific to epileptogenicity during rapid eye movement sleep. Clin Neurophysiol, 2016,127(1):179–186.

90

Nagasawa T, Juhász C, Rothermel R, Hoechstetter K, Sood S, Asano E. Spontaneous and visually driven high-frequency oscillations in the occipital cortex: Intracranial recording in epileptic patients. Hum Brain Mapp, 2012,33(3):569–583.

91

Wang S, Wang IZ, Bulacio JC, Mosher JC, Gonzalez-Martinez J, Alexopoulos AV, Najm IM, So NK. Ripple classification helps to localize the seizure-onset zone in neocortical epilepsy. Epilepsia, 2013,54(2):370–376.

92

Schnitzler S, Hartmann CJ, Groiss SJ, Wojtecki L, Schnitzler A, Vesper J, Hirschmann J. Occurrence of thalamic high frequency oscillations in patients with different tremor syndromes. Clin Neurophysiol, 2018,129(5):959–966.

93

Hirschmann J, Schoffelen JM, Schnitzler A, van Gerven MAJ. Parkinsonian rest tremor can be detected accurately based on neuronal oscillations recorded from the subthalamic nucleus. Clin Neurophysiol, 2017,128(10):2029–2036.

94

Engel J, Bragin A, Staba R, Mody I. High-frequency oscillations: What is normal and what is not? Epilepsia, 2009,50(4):598–604.

95

Gliske SV, Irwin ZT, Chestek C, Hegeman GL, Brinkmann B, Sagher O, Garton HJL, Worrell GA, Stacey WC. Variability in the location of high frequency oscillations during prolonged intracranial EEG recordings. Nat Commun, 2018,9(1):2155.

96

Zweiphenning W, Klooster MA', van Klink NEC, Leijten FSS, Ferrier CH, Gebbink T, Huiskamp G, van Zandvoort MJE, van Schooneveld MMJ, Bourez M, et al. Intraoperative electrocorticography using high-frequency oscillations or spikes to tailor epilepsy surgery in the Netherlands (the HFO trial): A randomised, single-blind, adaptive non-inferiority trial. Lancet Neurol, 2022,21(11):982–993.

97

Amiri M, Frauscher B, Gotman J. Interictal coupling of HFOs and slow oscillations predicts the seizure-onset pattern in mesiotemporal lobe epilepsy. Epilepsia, 2019,60(6):1160–1170.

98

Motoi H, Miyakoshi M, Abel TJ, Jeong JW, Nakai Y, Sugiura A, Luat AF, Agarwal R, Sood S, Asano E. Phase-amplitude coupling between interictal high-frequency activity and slow waves in epilepsy surgery. Epilepsia, 2018,59(10):1954–1965.

99

Nonoda Y, Miyakoshi M, Ojeda A, Makeig S, Juhász C, Sood S, Asano E. Interictal high-frequency oscillations generated by seizure onset and eloquent areas may be differentially coupled with different slow waves. Clin Neurophysiol, 2016,127(6):2489–2499.

100

Ren G, Yan J, Sun Y, Ren J, Dai J, Mei S, Li Y, Wang X, Yang X, Wang Q. Association between interictal high-frequency oscillations and slow wave in refractory focal epilepsy with good surgical outcome. Front Hum Neurosci, 2020(14):335.

101

Ibrahim GM, Wong SM, Anderson RA, Singh-Cadieux G, Akiyama T, Ochi A, Otsubo H, Okanishi T, Valiante TA, Donner E, et al. Dynamic modulation of epileptic high frequency oscillations by the phase of slower cortical rhythms. Exp Neurol, 2014(251):30–38.

102

Ma H, Wang Z, Li C, Chen J, Wang Y. Phase–amplitude coupling and epileptogenic zone localization of frontal epilepsy based on intracranial EEG. Front Neurol, 2021(12):718683.

103

Yeh C-H, Hsin Y-L. Frequency-frequency coupling of brain oscillations in studying ictal EEG activity. Brain Stimul, 2015,8(2):345.

104

Guirgis M, Chinvarun Y, Del Campo M, Carlen PL, Bardakjian BL. Defining regions of interest using cross-frequency coupling in extratemporal lobe epilepsy patients. J Neural Eng, 2015,12(2):026011.

105

Gooneratne IK, Green AL, Dugan P, Sen A, Franzini A, Aziz T, Cheeran B. Comparing neurostimulation technologies in refractory focal-onset epilepsy. J Neurol Neurosurg Psychiatry, 2016,87(11):1174–1182.

106

Bergey GK, Morrell MJ, Mizrahi EM, Goldman A, King-Stephens D, Nair D, Srinivasan S, Jobst B, Gross RE, Shields DC, et al. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology, 2015,84(8):810–817.

107

Toffa DH, Touma L, El Meskine T, Bouthillier A, Nguyen DK. Learnings from 30 years of reported efficacy and safety of vagus nerve stimulation (VNS) for epilepsy treatment: A critical review. Seizure, 2020(83):104–123.

108

Ryvlin P, Rheims S, Hirsch LJ, Sokolov A, Jehi L. Neuromodulation in epilepsy: State-of-the-art approved therapies. Lancet Neurol, 2021,20(12):1038–1047.

109

Kokkinos V, Sisterson ND, Wozny TA, Richardson RM. Association of closed-loop brain stimulation neurophysiological features with seizure control among patients with focal epilepsy. JAMA Neurol, 2019,76(7):800–808.

110

Skarpaas TL, Jarosiewicz B, Morrell MJ. Brain-responsive neurostimulation for epilepsy (RNS® System). Epilepsy Res, 2019(153):68–70.

111

Fisher B, DesMarteau JA, Koontz EH, Wilks SJ, Melamed SE. Responsive vagus nerve stimulation for drug resistant epilepsy: A review of new features and practical guidance for advanced practice providers. Front Neurol, 2021(11):610379.

112

Englot DJ, Rolston JD, Wright CW, Hassnain KH, Chang EF. Rates and predictors of seizure freedom with vagus nerve stimulation for intractable epilepsy. Neurosurgery, 2016,79(3):345–353.

113

Batson S, Shankar R, Conry J, Boggs J, Radtke R, Mitchell S, Barion F, Murphy J, Danielson V. Efficacy and safety of VNS therapy or continued medication management for treatment of adults with drug-resistant epilepsy: Systematic review and meta-analysis. J Neurol, 2022,269(6):2874–2891.

114

Nair DR, Laxer KD, Weber PB, Murro AM, Park YD, Barkley GL, Smith BJ, Gwinn RP, Doherty MJ, Noe KH, et al. Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy. Neurology, 2020,95(9):e1244–e1256.

115

Smith Y, Wichmann T, Factor SA, Delong MR. Parkinson's disease therapeutics: New developments and challenges since the introduction of levodopa. Neuropsychopharmacology, 2012,37(1):213–246.

116

Pötter-Nerger M, Volkmann J. Deep brain stimulation for gait and postural symptoms in Parkinson's disease. Mov Disord, 2013,28(11):1609–1615.

117

Kühn AA, Kempf F, Brücke C, Doyle LG, Martinez-Torres I, Pogosyan A, Trottenberg T, Kupsch A, Schneider G-H, Hariz MI, et al. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson's disease in parallel with improvement in motor performance. J Neurosci, 2008,28(24):6165–6173.

118

Little S, Brown P. The functional role of beta oscillations in Parkinson's disease. Parkinsonism Relat Disord, 2014,20(Suppl. 1):S44–S48.

119

López-Azcárate J, Tainta M, Rodríguez-Oroz MC, Valencia M, González R, Guridi J, Iriarte J, Obeso JA, Artieda J, Alegre M. Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson's disease. J Neurosci, 2010,30(19):6667–6677.

120

AuYong N, Malekmohammadi M, Ricks-Oddie J, Pouratian N. Movement-modulation of local power and phase amplitude coupling in bilateral globus pallidus interna in Parkinson disease. Front Hum Neurosci, 2018(12):270.

121

Fischer P, Chen CC, Chang YJ, Yeh CH, Pogosyan A, Herz DM, Cheeran B, Green AL, Aziz TZ, Hyam J, et al. Alternating modulation of subthalamic nucleus beta oscillations during stepping. J Neurosci, 2018,38(22):5111–5121.

122

Jin L, Shi W, Zhang C, Yeh C-H. Frequency nesting interactions in the subthalamic nucleus correlate with the step phases for Parkinson's disease. Front Physiol, 2022(13):890753.

123

Brücke C, Huebl J, Schönecker T, Neumann WJ, Yarrow K, Kupsch A, Blahak C, Lütjens G, Brown P, Krauss JK, et al. Scaling of movement is related to pallidal γ oscillations in patients with dystonia. J Neurosci, 2012,32(3):1008–1019.

124

Jenkinson N, Kühn AA, Brown P. Gamma oscillations in the human basal ganglia. Exp Neurol, 2013(245):72–76.

125

Buzśaki G, Wang XJ. Mechanisms of gamma oscillations. Annu Rev Neurosci, 2012(35):203–225.

126

Fries P, Nikolić D, Singer W. The gamma cycle. Trends Neurosci, 2007,30(7):309–316.

127

Wiest C, Torrecillos F, Tinkhauser G, Pogosyan A, Morgante F, Pereira EA, Tan H. Finely-tuned gamma oscillations: Spectral characteristics and links to dyskinesia. Exp Neurol, 2022(351):113999.

128

de Hemptinne C, Ryapolova-Webb ES, Air EL, Garcia PA, Miller KJ, Ojemann JG, Ostrem JL, Galifianakis NB, Starr PA. Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl Acad Sci USA, 2013,110(12):4780–4785.

129

de Hemptinne C, Swann NC, Ostrem JL, Ryapolova-Webb ES, San Luciano M, Galifianakis NB, Starr PA. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson's disease. Nat Neurosci, 2015,18(5):779–786.

130

Damborská A, Lamoš M, Brunet D, Vulliemoz S, Bočková M, Deutschová B, Baláž M, Rektor I. Resting-state phase-amplitude coupling between the human subthalamic nucleus and cortical activity: A simultaneous intracranial and scalp EEG study. Brain Topogr, 2021,34(3):272–282.

131

Wang DD, de Hemptinne C, Miocinovic S, Qasim SE, Miller AM, Ostrem JL, Galifianakis NB, San Luciano M, Starr PA. Subthalamic local field potentials in Parkinson's disease and isolated dystonia: An evaluation of potential biomarkers. Neurobiol Dis, 2016(89):213–222.

132

van Wijk BCM, Beudel M, Jha A, Oswal A, Foltynie T, Hariz MI, Limousin P, Zrinzo L, Aziz TZ, Green AL, et al. Subthalamic nucleus phase-amplitude coupling correlates with motor impairment in Parkinson's disease. Clin Neurophysiol, 2016,127(4):2010–2019.

133

Yang AI, Vanegas N, Lungu C, Zaghloul KA. Beta-coupled high-frequency activity and beta-locked neuronal spiking in the subthalamic nucleus of Parkinson's disease. J Neurosci, 2014,34(38):12816–12827.

134

Seeber M, Scherer R, Wagner J, Solis-Escalante T, Müller-Putz GR. EEG beta suppression and low gamma modulation are different elements of human upright walking. Front Hum Neurosci, 2014(8):485.

135

Wagner J, Solis-Escalante T, Grieshofer P, Neuper C, Müller-Putz G, Scherer R. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects. NeuroImage, 2012,63(3):1203–1211.

136

He S, Deli A, Fischer P, Wiest C, Huang Y, Martin S, Khawaldeh S, Aziz TZ, Green AL, Brown P, et al. Gait-phase modulates alpha and beta oscillations in the pedunculopontine nucleus. J Neurosci, 2021,41(41):8390–8402.

137

Yin Z, Zhu G, Liu Y, Zhao B, Liu D, Bai Y, Zhang Q, Shi L, Feng T, Yang A, et al. Cortical phase–amplitude coupling is key to the occurrence and treatment of freezing of gait. Brain, 2022,145(7):2407–2421.

138

Ammann C, Dileone M, Pagge C, Catanzaro V, Mata-Marín D, Hernández-Fernández F, Monje MHG, Sánchez-Ferro Á, Fernández-Rodríguez B, Gasca-Salas C, et al. Cortical disinhibition in Parkinson's disease. Brain, 2020,143(11):3408–3421.

139

Pezzopane V, D'Acunto A, Casula EP, Spampinato D, Koch G, Fadiga L. Neuromodulation using cross-frequency coupling tACS: Preliminary data. Brain Stimul, 2023,16(1):329.

140

Chen KHS, Chen R. Invasive and noninvasive brain stimulation in Parkinson's disease: Clinical effects and future perspectives. Clin Pharmacol Ther, 2019,106(4):763–775.

141

Farokhniaee A, Lowery MM. Cortical network effects of subthalamic deep brain stimulation in a thalamo-cortical microcircuit model. J Neural Eng, 2021,18(5).

142

Gilron R, Little S, Perrone R, Wilt R, de Hemptinne C, Yaroshinsky MS, Racine CA, Wang SS, Ostrem JL, Larson PS, et al. Long-term wireless streaming of neural recordings for circuit discovery and adaptive stimulation in individuals with Parkinson's disease. Nat Biotechnol, 2021,39(9):1078–1085.

143

Muthuraman M, Bange M, Koirala N, Ciolac D, Pintea B, Glaser M, Tinkhauser G, Brown P, Deuschl G, Groppa S. Cross-frequency coupling between gamma oscillations and deep brain stimulation frequency in Parkinson's disease. Brain, 2021,143(11):3393–3407.

144

Potel SR, Marceglia S, Meoni S, Kalia SK, Cury RG, Moro E. Advances in DBS technology and novel applications: Focus on movement disorders. Curr Neurol Neurosci Rep, 2022,22(9):577–588.

145

Thenaisie Y, Lee K, Moerman C, Scafa S, Gálvez A, Pirondini E, Burri M, Ravier J, Puiatti A, Accolla E, et al. Principles of gait encoding in the subthalamic nucleus of people with Parkinson's disease. Sci Transl Med, 2022,14(661):eabo1800.

146

Abbruzzese G, Marchese R, Avanzino L, Pelosin E. Rehabilitation for Parkinson's disease: Current outlook and future challenges. Parkinsonism Relat Disord, 2016,22(Suppl. 1):S60–S64.

147

Bevilacqua R, Maranesi E, di Rosa M, Luzi R, Casoni E, Rinaldi N, Baldoni R, Lattanzio F, di Donna V, Pelliccioni G, et al. Rehabilitation of older people with Parkinson's disease: An innovative protocol for RCT study to evaluate the potential of robotic-based technologies. BMC Neurol, 2020,20(1):186.

148

Alhasan HS, Wheeler PC, Fong DTP. Application of interactive video games as rehabilitation tools to improve postural control and risk of falls in prefrail older adults. Cyborg Bionic Syst, 2021:9841342.

149

Bouthour W, Mégevand P, Donoghue J, Lüscher C, Birbaumer N, Krack P. Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond. Nat Rev Neurol, 2019,15(6):343–352.

150

Kent AR, Swan BD, Brocker DT, Turner DA, Gross RE, Grill WM. Measurement of evoked potentials during thalamic deep brain stimulation. Brain Stimul, 2015,8(1):42–56.

151

Hoang KB, Cassar IR, Grill WM, Turner DA. Biomarkers and stimulation algorithms for adaptive brain stimulation. Front Neurosci, 2017(11):564.

Cyborg and Bionic Systems
Article number: 0034
Cite this article:
Yeh C-H, Zhang C, Shi W, et al. Cross-Frequency Coupling and Intelligent Neuromodulation. Cyborg and Bionic Systems, 2023, 4: 0034. https://doi.org/10.34133/cbsystems.0034
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return