AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (12.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

A Review of Energy Supply for Biomachine Hybrid Robots

Zhiyun Ma1Jieliang Zhao1( )Li Yu1Mengdan Yan1Lulu Liang1Xiangbing Wu1Mengdi Xu2Wenzhong Wang1( )Shaoze Yan3
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
Show Author Information

Abstract

Biomachine hybrid robots have been proposed for important scenarios, such as wilderness rescue, ecological monitoring, and hazardous area surveying. The energy supply unit used to power the control backpack carried by these robots determines their future development and practical application. Current energy supply devices for control backpacks are mainly chemical batteries. To achieve self-powered devices, researchers have developed solar energy, bioenergy, biothermal energy, and biovibration energy harvesters. This review provides an overview of research in the development of chemical batteries and self-powered devices for biomachine hybrid robots. Various batteries for different biocarriers and the entry points for the design of self-powered devices are outlined in detail. Finally, an overview of the future challenges and possible directions for the development of energy supply devices used to biomachine hybrid robots is provided.

References

1

Ando N, Kanzaki R. Insect-machine hybrid robot. Curr Opin Insect Sci. 2020;42: 61–69.

2

Webster-Wood VA, Guix M, Xu NW, Behkam B, Sato H, Sarkar D, Sanchez S, Shimizu M, Parker KK. Biohybrid robots: Recent progress, challenges, and perspectives. Bioinspir Biomim. 2022;18: 015001.

3

Latif T, Whitmire E, Novak T, Bozkurt A. Sound localization sensors for search and rescue biobots. IEEE Sensors J. 2015;16: 3444–3453.

4

Rasakatla S, Tenma W, Suzuki T, Indurkhya B, Mizuuchi I. CameraRoach: A WiFi-and camera-enabled cyborg cockroach for search and rescue. J Robot Mechatron. 2022;34: 149–158.

5
Nguyen HD, Dung VT, Sato H, Vo-Doan TT. Cyborg beetle achieves efficient autonomous navigation using feedback control. arXiv: 2204: 13281. 2022.
6
Shoji K, Morishima K, Akiyama Y, Nakamura N, Ohno H. Autonomous environmental monitoring by self-powered biohybrid robot. Paper presented at: Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation; Harbin, China; 2016 August 7–10. p. 629–634.
7

Shoji K, Akiyama Y, Suzuki M, Nakamura N, Ohno H, Morishima K. Biofuel cell backpacked insect and its application to wireless sensing. Biosens Bioelectron. 2016;78:390–395.

8

Yu Y, Wu Z, Xu K, Gong Y, Zheng N, Zheng X, Pan G. Automatic training of rat cyborgs for navigation. Comput Intell Neurosci. 2016;2016:6459251.

9

Dirafzoon A, Bozkurt A, Lobaton E. A framework for mapping with biobotic insect networks: From local to global maps. Robot Auton Syst. 2017;88:79–96.

10
Owaki D, Dürr V, Schmitz J. A hierarchical model for external electrical control of an insect, accounting for inter-individual variation of muscle force properties. bioRxiv. 2022;2022.12.19.521014.
11

Yu L, Zhao J, Ma Z, Wang W, Yan S, Jin Y, Fang Y. Experimental verification on steering flight of honeybee by electrical stimulation. CyborgBionic Syst.. 2022.

12

Siljak H, Nardelli PHJ, Moioli RC. Cyborg insects: Bug or a feature? IEEE Access. 2022;10:49398–49411.

13

Ariyanto M, Refat CMM, Hirao K, Morishima K. Movement optimization for a cyborg cockroach in a bounded space incorporating machine learning. Cyborg Bionic Syst. 2023;4:0012.

14

Li G, Zhang D. Brain-computer interface controlling cyborg: A functional brain-to-brain interface between human and cockroach. Brain Comput Interface Res. 2017;5:71–79.

15

Kosaka T, Gan JH, Umezu S, Sato H. Remote radio control of insect flight reveals why beetles lift their legs in flight while other insects tightly fold. Bioinspir Biomim. 2021;16:036001.

16

Iyer V, Najafi A, James J, Fuller S, Gollakota S. Wireless steerable vision for live insects and insect-scale robots. Sci Robot. 2020;5:eabb0839.

17

Doan TTV, Sato H. Insect-machine hybrid system: Remote radio control of a freely flying beetle (Mercynorrhina torquata). J Vis Exp. 2016.

18

Li Y, Sato H, Li B. Feedback altitude control of a flying insect–computer hybrid robot. IEEE Trans Robot. 2021;37:2041–2051.

19

Yang X, Jiang X-L, Su Z-L, Wang B. Cyborg moth flight control based on fuzzy deep learning. Micromachines. 2022;13:611.

20

Bozkurt A, Gilmour RF, Sinha A, Stern D, Lal A. Insect–machine interface based neurocybernetics. IEEE Trans Biomed Eng. 2009;56:1727–1733.

21

Liu P, Ma S, Liu S, Li Y, Li B. Omnidirectional jump control of a locust-computer hybrid robot. Soft Robot. 2023;10:40–51.

22

Zhou Z, Liu D, Sun H, Xu W, Tian X, Li X, Cheng H, Wang Z. Pigeon robot for navigation guided by remote control: System construction and functional verification. J Bionic Eng. 2021;18:184–196.

23

Huai R-t, Yang J-q, Wang H. The robo-pigeon based on the multiple brain regions synchronization implanted microelectrodes. Bioengineered. 2016;7:213–218.

24

Feng Z-y, Chen W-d, Ye X-s, Zhang S-m, Zheng X-j, Wang P, Jiang J, Jin L, Xu ZJ, Liu CQ, et al. A remote control training system for rat navigation in complicated environment. J Zhejiang Univ Sci A. 2007;8:323–330.

25

Wang Y, Lu M, Wu Z, Zheng X, Pan G. Visual cue-guided rat cyborg. Brain Comput Interface Res. 2017;6:65–78.

26

Kobayashi N, Yoshida M, Matsumoto N, Uematsu K. Artificial control of swimming in goldfish by brain stimulation: Confirmation of the midbrain nuclei as the swimming center. Neurosci Lett. 2009;452:42–46.

27
Peng Y, Wu Y, Yang Y, Huang R, Wu C, Qi X, Liu Y. Study on the control of biological behavior on carp induced by electrophysiological stimulation in the corpus cerebelli. Paper presented at: Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology; Harbin, China; 2011 August 12–14. p. 502–505.
28

Fu F, Li Y, Wang H, Li B, Sato H. The function of pitching in Beetle's flight revealed by insect-wearable backpack. Biosens Bioelectron. 2022;198:Article 113818.

29

Hong J-W, Yoon C, Jo K, Won JH, Park S. Recent advances in recording and modulation technologies for next-generation neural interfaces. Iscience. 2021;24:Article 103550.

30

Ben Amar A, Kouki AB, Cao H. Power approaches for implantable medical devices. Sensors. 2015;15:28889–28914.

31

Kakei Y, Katayama S, Lee S, Takakuwa M, Furusawa K, Umezu S, Sato H, Fukuda K, Someya T. Integration of body-mounted ultrasoft organic solar cell on cyborg insects with intact mobility. Npj Flex Electron. 2022;6:78.

32

Bozkurt A, Lobaton E, Sichitiu M. A biobotic distributed sensor network for under-rubble search and rescue. Computer. 2016;49:38–46.

33

Lee D, Jeong SH, Yun S, Kim S, Sung J, Seo J, Son S, Kim JT, Susanti L, Jeong Y, et al. Totally implantable enzymatic biofuel cell and brain stimulator operating in bird through wireless communication. Biosens Bioelectron. 2021;171:Article 112746.

34
Ghafouri N, Kim H, Atashbar MZ, Najafi K. A micro thermoelectric energy scavenger for a hybrid insect. Paper presented at: Proceedings of the 2008 IEEE SENSORS; Lecce, Italy; 2008 October 26–29. p. 1249–1252.
35

Woias P, Schule F, Bäumke E, Mehne P, Kroener M. Thermal energy harvesting from wildlife. J Phys Conf Ser. 2014;557:012084.

36

Zhang H, Wu X, Pan Y, Azam A, Zhang Z. A novel vibration energy harvester based on eccentric semicircular rotor for self-powered applications in wildlife monitoring. Energy Convers Manag. 2021;247:Article 114674.

37

Shafer MW, MacCurdy R, Shipley JR, Winkler D, Guglielmo CG, Garcia E. The case for energy harvesting on wildlife in flight. Smart Mater Struct. 2015;24:025031.

38

Aktakka EE, Kim H, Najafi K. Energy scavenging from insect flight. J Micromech Microeng. 2011;21:095016.

39

Whittingham MS. Ultimate limits to intercalation reactions for lithium batteries. Chem Rev. 2014;114:11414–11443.

40

Dudley R. The biomechanics of insect flight: Form, function, evolution. Princeton (NJ): Princeton University Press; 2002.

41
Holzer R, Shimoyama I. Locomotion control of a bio-robotic system via electric stimulation. Paper presented at: Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems Innovative Robotics for Real-World Applications IROS'97; Grenoble, France; 1997 September 11. p. 1514–1519.
42
Tran-Ngoc PT, Le D, Chong BS, Nguyen HD, Dung V, Cao F, Li Y, Kai K, Gan JH, Vo-Doan TT, et al. Insect-computer hybrid system for autonomous search and rescue mission. arXiv: 2105: 10869. 2021.
43

Tran-Ngoc PT, Le DL, Chong BS, Nguyen HD, Dung VT, Cao F, Li Y, Kai K, Gan JH, Vo-Doan TT, et al. Intelligent insect–computer hybrid robot: Installing innate obstacle negotiation and onboard human detection onto cyborg insect. Adv Intell Syst. 2023;5:2200319.

44

Li G, Zhang D. Brain-computer interface controlled cyborg: Establishing a functional information transfer pathway from human brain to cockroach brain. PLOS ONE. 2016;11:Article e0150667.

45
Cole J, Mohammadzadeh F, Bollinger C, Latif T, Bozkurt A, Lobaton E. A study on motion mode identification for cyborg roaches. Paper presented at: Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); New Orleans, LA, USA; 2017 March 5–9. p. 2652–2656.
46

Dirafzoon A, Bozkurt A, Lobaton E. Geometric learning and topological inference with biobotic networks. IEEE Trans Signal Inf Process Netw. 2016;3:200–215.

47

Ma S, Liu P, Liu S, Li Y, Li B. Launching of a cyborg locust via co-contraction control of hindleg muscles. IEEE Trans Robot. 2022;38:2208–2219.

48
Bozkurt A, Paul A, Pulla S, Ramkumar A, Blossey B, Ewer J, Gilmour R; Lal A. Microprobe microsystem platform inserted during early metamorphosis to actuate insect flight muscle. Paper presented at: Proceedings of the 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS); Hyogo, Japan; 2007 January 21–25. p. 405–408.
49
Bozkurt A, Lal A, Gilmour R. Radio control of insects for biobotic domestication. Paper presented at: Proceedings of the 2009 4th International IEEE/EMBS Conference on Neural Engineering; Antalya, Turkey; 2009 April 29–May 2. p. 215–218.
50

Sato H, Berry CW, Peeri Y, Baghoomian E, Casey BE, Lavella G, VandenBrooks JM, Harrison JF, Maharbiz MM. Remote radio control of insect flight. Front Integr Neurosci. 2009;3:24.

51

Sato H, Doan TTV, Kolev S, Huynh NA, Zhang C, Massey TL, van Kleef J, Ikeda K, Abbeel P, Maharbiz MM. Deciphering the role of a coleopteran steering muscle via free flight stimulation. Curr Biol. 2015;25:798–803.

52

Vo-Doan TT, Dung VT, Sato H. A cyborg insect reveals a function of a muscle in free flight. Cyborg Bionic Syst. 2022;2022:9780504.

53

Li Y, Cao F, Doan TTV, Sato H. Controlled banked turns in coleopteran flight measured by a miniature wireless inertial measurement unit. Bioinspir Biomim. 2016;11:Article 056018.

54

Nguyen HD, Dung VT, Sato H, Vo-Doan TT. Efficient autonomous navigation for terrestrial insect-machine hybrid systems. Sensors Actuators B Chem. 2023;376:Article 132988.

55

Nguyen HD, Tan PZ, Sato H, Vo-Doan TT. Sideways walking control of a cyborg beetle. IEEE Trans Med Robot Bionics. 2020;2:331–337.

56

Xu NW, Townsend JP, Costello JH, Colin SP, Gemmell BJ, Dabiri JO. Developing biohybrid robotic jellyfish (Aurelia aurita) for free-swimming tests in the laboratory and in the field. Bio Protoc.. 2021;11:e3974.

57

Xu NW, Townsend JP, Costello JH, Colin SP, Gemmell BJ, Dabiri JO. Field testing of biohybrid robotic jellyfish to demonstrate enhanced swimming speeds. Biomimetics. 2020;5:64.

58

Xu NW, Dabiri JO. Low-power microelectronics embedded in live jellyfish enhance propulsion. Sci Adv. 2020;6:eaaz3194.

59

Wang Y, Lu M, Wu Z, Tian L, Xu K, Zheng X, Pan G. Visual cue-guided rat cyborg for automatic navigation research frontier. IEEE Comput Intell Mag. 2015;10:42–52.

60

Yang J, Huai R, Wang H, Lv C, Su X. A robo-pigeon based on an innovative multi-mode telestimulation system. Biomed Mater Eng. 2015;26:S357–S363.

61

Wang H, Yang J, Lv C, Huai R, Li Y. Intercollicular nucleus electric stimulation encoded “walk forward” commands in pigeons. Anim Biol. 2018;68:213–225.

62

Kim C-H, Choi B, Kim D-G, Lee S, Jo S, Lee P-S. Remote navigation of turtle by controlling instinct behavior via human brain-computer interface. J Bionic Eng. 2016;13:491–503.

63

Reissman T, Garcia E. Cyborg MAVs using power harvesting and behavioral control schemes. Adv Sci Technol. 2008;58:159–164.

64
Duffie JA, Beckman WA, Blair N. Solar engineering of thermal processes, photovoltaics and wind. Hoboken (NJ): John Wiley & Sons; 2020.
65

Ren H, Tang M, Guan B, Wang K, Yang J, Wang F, Wang M, Shan J, Chen Z, Wei D, et al. Hierarchical graphene foam for efficient omnidirectional solar–thermal energy conversion. Adv Mater. 2017;29:1702590.

66

Zhang H, Lu Y, Han W, Zhu J, Zhang Y, Huang W. Solar energy conversion and utilization: Towards the emerging photo-electrochemical devices based on perovskite photovoltaics. Chem Eng J. 2020;393:Article 124766.

67

Pilon L, Berberoğlu H, Kandilian R. Radiation transfer in photobiological carbon dioxide fixation and fuel production by microalgae. J Quant Spectrosc Radiat Transf. 2011;112:2639–2660.

68

Yan J, Yang Y, Elia Campana P, He J. City-level analysis of subsidy-free solar photovoltaic electricity price, profits and grid parity in China. Nat Energy. 2019;4:709–717.

69

Liu Y, Pharr M, Salvatore GA. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano. 2017;11:9614–9635.

70

Guo M, Brewster JT II, Zhang H, Zhao Y, Zhao Y. Challenges and opportunities of chemiresistors based on microelectromechanical systems for chemical olfaction. ACS Nano. 2022;16:17778–17801.

71

Mahmud MP, Bazaz SR, Dabiri S, Mehrizi AA, Asadnia M, Warkiani ME, Wang ZL. Advances in mems and microfluidics-based energy harvesting technologies. Adv Mater Technol. 2022;7:2101347.

72

Park S, Heo SW, Lee W, Inoue D, Jiang Z, Yu K, Jinno H, Hashizume D, Sekino M, Yokota T, et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature. 2018;561:516–521.

73

Kaltenbrunner M, Adam G, Głowacki ED, Drack M, Schwödiauer R, Leonat L, Apaydin DH, Groiss H, Scharber MC, White MS, et al. Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nat Mater. 2015;14:1032–1039.

74

Zhang X, Öberg VA, Du J, Liu J, Johansson EM. Extremely lightweight and ultra-flexible infrared light-converting quantum dot solar cells with high power-per-weight output using a solution-processed bending durable silver nanowire-based electrode. Energy Environ Sci. 2018;11:354–364.

75

Reissman T, Garcia E. An ultra-lightweight multi-source power harvesting system for insect cyborg sentinels. Smart Mater Adapt Struct Intell Syst. 2008;711–718.

76
Tiwari R, Schlichting A, Harris JH, Reissman T, Garcia E. Multi-Source Power Harvester for Cyborg Micro Air Vehicle. Paper presented at: Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; 2010 August 15-18; Montreal, Quebec, Canada. p. 669–676.
77

Latif T, Whitmire E, Novak T, Bozkurt A. Towards fenceless boundaries for solar powered insect biobots. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:1670–1673.

78

Bullen RA, Arnot T, Lakeman J, Walsh F. Biofuel cells and their development. Biosens Bioelectron. 2006;21:2015–2045.

79

Zebda A, Alcaraz J-P, Vadgama P, Shleev S, Minteer SD, Boucher F, Cinquin P, Martin DK. Challenges for successful implantation of biofuel cells. Bioelectrochemistry. 2018;124:57–72.

80

Henry C. Basal metabolic rate studies in humans: Measurement and development of new equations. Public Health Nutr. 2005;8:1133–1152.

81

Schröder U. From in vitro to in vivo-biofuel cells are maturing. Angew Chem Int Ed. 2012;51:7370–7372.

82

Majewski MB, Howarth AJ, Li P, Wasielewski MR, Hupp JT, Farha OK. Enzyme encapsulation in metal–organic frameworks for applications in catalysis. CrystEngComm. 2017;19:4082–4091.

83

Castorena-Gonzalez JA, Foote C, MacVittie K, Halámek J, Halámková L, Martinez-Lemus LA, Katz E. Biofuel cell operating in vivo in rat. Electroanalysis. 2013;25:1579–1584.

84

Cinquin P, Gondran C, Giroud F, Mazabrard S, Pellissier A, Boucher F, Alcaraz JP, Gorgy K, Lenouvel F, Mathé S, et al. A glucose biofuel cell implanted in rats. PLOS ONE. 2010;5:Article e10476.

85

Zebda A, Cosnier S, Alcaraz J-P, Holzinger M, Le Goff A, Gondran C, Boucher F, Giroud F, Gorgy K, Lamraoui H. Single glucose biofuel cells implanted in rats power electronic devices. Sci Rep. 2013;3:1516.

86

El Ichi-Ribault S, Alcaraz J-P, Boucher F, Boutaud B, Dalmolin R, Boutonnat J, Dalmolin R, Boutonnat J, Cinquin P, Zebda A, et al. Remote wireless control of an enzymatic biofuel cell implanted in a rabbit for 2 months. Electrochim Acta. 2018;269:360–366.

87

Miyake T, Haneda K, Nagai N, Yatagawa Y, Onami H, Yoshino S, Abe T, Nishizawa M. Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms. Energy Environ Sci. 2011;4:5008–5012.

88

MacVittie K, Halámek J, Halámková L, Southcott M, Jemison WD, Lobel R, Katz E. From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells. Energy Environ Sci. 2013;6:81–86.

89

Huang S-H, Chen W-H, Lin Y-C. A self-powered glucose biosensor operated underwater to monitor physiological status of free-swimming fish. Energies. 2019;12:1827.

90

Halámková L, Halámek J, Bocharova V, Szczupak A, Alfonta L, Katz E. Implanted biofuel cell operating in a living snail. J Am Chem Soc. 2012;134:5040–5043.

91

Szczupak A, Halámek J, Halámková L, Bocharova V, Alfonta L, Katz E. Living battery–biofuel cells operating in vivo in clams. Energy Environ Sci. 2012;5:8891–8895.

92

Schwefel J, Ritzmann RE, Lee IN, Pollack A, Weeman W, Garverick S, Willis M, Rasmussen M, Scherson D. Wireless communication by an autonomous self-powered cyborg insect. J Electrochem Soc. 2014;161:H3113.

93

Rasmussen M, Ritzmann RE, Lee I, Pollack AJ, Scherson D. An implantable biofuel cell for a live insect. J Am Chem Soc. 2012;134:1458–1460.

94

Mishra A, Bhatt R, Bajpai J, Bajpai A. Nanomaterials based biofuel cells: A review. Int J Hydrog Energy. 2021;46:19085–19105.

95

Assad H, Kaya S, Kumar PS, Vo D-VN, Sharma A, Kumar A. Insights into the role of nanotechnology on the performance of biofuel cells and the production of viable biofuels: A review. Fuel. 2022;323:Article 124277.

96

Tawalbeh M, Javed RMN, Al-Othman A, Almomani F. The novel advancements of nanomaterials in biofuel cells with a focus on electrodes’ applications. Fuel. 2022;322:Article 124237.

97

Menassol G, Dubois L, Nadolska M, Vadgama P, Martin D, Zebda A. A biocompatible iron doped graphene based cathode for an implantable glucose biofuel cell. Electrochim Acta. 2023;439:Article 141627.

98

Li Z, Kang Z, Wu B, Zhu Z. A MXene-based slurry bioanode with potential application in implantable enzymatic biofuel cells. J Power Sources. 2021;506:Article 230206.

99

Vullers R, van Schaijk R, Doms I, Van Hoof C, Mertens R. Micropower energy harvesting. Solid State Electron. 2009;53:684–693.

100

Kim M-K, Kim M-S, Lee S, Kim C, Kim Y-J. Wearable thermoelectric generator for harvesting human body heat energy. Smart Mater Struct. 2014;23:Article 105002.

101

Nozariasbmarz A, Collins H, Dsouza K, Polash MH, Hosseini M, Hyland M, Liu J, Malhotra A, Ortiz FM, Mohaddes F, et al. Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Appl Energy. 2020;258:Article 114069.

102

Siddique ARM, Mahmud S, Van Heyst B. A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renew Sust Energ Rev. 2017;73:730–744.

103

Su J, Vullers RJ, Goedbloed M, van Andel Y, Leonov V, Wang Z. Thermoelectric energy harvester fabricated by stepper. Microelectron Eng. 2010;87:1242–1244.

104

Lee HJ, Jung D-H, Kil T-H, Kim SH, Lee K-S, Baek S-H, Choi WJ, Baik JM. Mechanically robust, stretchable solar absorbers with submicron-thick multilayer sheets for wearable and energy applications. ACS Appl Mater Interfaces. 2017;9:18061–18068.

105

Khan S, Kim J, Roh K, Park G, Kim W. High power density of radiative-cooled compact thermoelectric generator based on body heat harvesting. Nano Energy. 2021;87:Article 106180.

106

Yang Y, Hu H, Chen Z, Wang Z, Jiang L, Lu G, Li X, Chen R, Jin J, Kang H, et al. Stretchable nanolayered thermoelectric energy harvester on complex and dynamic surfaces. Nano Lett. 2020;20:4445–4453.

107

Lee D, Park H, Park G, Kim J, Kim H, Cho H, Han S, Kim W. Liquid-metal-electrode-based compact, flexible, and high-power thermoelectric device. Energy. 2019;188:Article 116019.

108

Sun T, Wang L, Jiang W. Pushing thermoelectric generators toward energy harvesting from the human body: Challenges and strategies. Mater Today. 2022;57:121–145.

109

Sargolzaeiaval Y, Ramesh VP, Neumann TV, Misra V, Vashaee D, Dickey MD, Öztürk MC. Flexible thermoelectric generators for body heat harvesting–enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects. Appl Energy. 2020;262:Article 114370.

110

Zhou D, Zhang H, Zheng H, Xu Z, Xu H, Guo H, Li P, Tong Y, Hu B, Chen L. Recent advances and prospects of small molecular organic thermoelectric materials. Small. 2022;18:2200679.

111

Sanad MF, Shalan AE, Abdellatif SO, Serea ESA, Adly MS, Ahsan MA. Thermoelectric energy harvesters: A review of recent developments in materials and devices for different potential applications. Top Curr Chem. 2020;378:48.

112

Safaei M, Sodano HA, Anton SR. A review of energy harvesting using piezoelectric materials: State-of-the-art a decade later (2008–2018). Smart Mater Struct. 2019;28:113001.

113

Beeby SP, Tudor MJ, White N. Energy harvesting vibration sources for microsystems applications. Meas Sci Technol. 2006;17:R175.

114

Xie F, Qian X, Li N, Cui D, Zhang H, Xu Z. An experimental study on a piezoelectric vibration energy harvester for self-powered cardiac pacemakers. Ann Transl Med. 2021;9:880.

115

Ouyang H, Liu Z, Li N, Shi B, Zou Y, Xie F, Ma Y, Li Z, Li H, Zheng Q, et al. Symbiotic cardiac pacemaker. Nat Commun. 2019;10:1821.

116

Yang Z, Yang Y, Liu F, Wang Z, Li Y, Qiu J, Xiao X, Li Z, Lu Y, Ji L, et al. Power backpack for energy harvesting and reduced load impact. ACS Nano. 2021;15:2611–2623.

117

Hamid R, Yuce MR. A wearable energy harvester unit using piezoelectric–electromagnetic hybrid technique. Sensors Actuators A Phys. 2017;257:198–207.

118

Blažević D, Philipp S, Ruuskanen J, Dizdarević J, Niiranen R, Rasilo P, Jukan A. A farm animal kinetic energy harvesting device for IoT applications. Proc SPIE. 2022;12090:1209005.

119

Kong L, Tang M, Zhang Z, Pan Y, Cao H, Wang X, Ahmed A. A near-zero energy system based on a kinetic energy harvester for smart ranch. Iscience. 2022;25:Article 105448.

120

Chamanyeta HN, El-Bab AMRF, Ikua B, Murimi E. Modeling and analysis of a multi-cantilever beam frequency up-converted energy harvester for powering animal wearable devices. Ferroelectrics. 2023;603:289–307.

121

Li H, Lu J, Myjak MJ, Liss SA, Brown RS, Tian C, Deng ZD. An implantable biomechanical energy harvester for animal monitoring devices. Nano Energy. 2022;98:Article 107290.

122

Qian F, Liu M, Huang J, Zhang J, Jung H, Deng ZD, Hajj MR, Zuo L. Bio-inspired bistable piezoelectric energy harvester for powering animal telemetry tags: Conceptual design and preliminary experimental validation. Renew Energy. 2022;187:34–43.

123

Cha Y, Chae W, Kim H, Walcott H, Peterson SD, Porfiri M. Energy harvesting from a piezoelectric biomimetic fish tail. Renew Energy. 2016;86:449–458.

124

Wang X, Shi Y, Yang P, Tao X, Li S, Lei R, Liu Z, Wang ZL, Chen X. Fish-wearable data snooping platform for underwater energy harvesting and fish behavior monitoring. Small. 2022;18:Article e2107232.

125

Noda T, Okuyama J, Kawabata Y, Mitamura H, Arai N. Harvesting energy from the oscillation of aquatic animals: Testing a vibration-powered generator for bio-logging data logger systems. J Adv Mar Sci Technol Soc. 2014;20:37–43.

126

Wu Y, Zuo L, Zhou W, Liang C, McCabe M. Multi-source energy harvester for wildlife tracking. Act Passiv Smart Struct Integr Syst. 2014;SPIE2014:24–35.

127

Shafer MW, MacCurdy R, Garcia E. Testing of vibrational energy harvesting on flying birds. Am Soc Mech Eng. 2013;V002T07A4.

128

Bm B, Delaney K, Dechev N. Design of a low frequency piezoelectric energy harvester for rodent telemetry. Ferroelectrics. 2015;481:98–118.

129

Nakada K, Nakajima I, Hata J-i, Ta M. Study on vibration energy harvesting with small coil for embedded avian multimedia application. J Multimed Inform Syst. 2018;5:47–52.

130
Chang SC. A 1-mW vibration energy harvesting system for moth flight-control applications [thesis]. [Cambridge (MA)]: Massachusetts Institute of Technology; 2010.
131

Ghasemi-Nejhad MN, Reissman T, MacCurdy RB, Garcia E. Electrical power generation from insect flight. Act Passiv Smart Struct Integr Syst. 2011;17–25.

132

MacCurdy R, Reissman T, Garcia E, Winkler D. A methodology for applying energy harvesting to extend wildlife tag lifetime. ASME Int Mech Eng Congress Expo. 2008;121–130.

133
Shearwood J, Hung DMY, Cross P, Preston S, Palego C. Honey-bee localization using an energy harvesting device and power based angle of arrival estimation. Paper presented at: Proceedings of the 2018 IEEE/MTT-S International Microwave Symposium-IMS; Philadelphia, PA, USA; 2018 June 10–15. p. 957–960.
134

Shearwood J, Aldabashi N, Eltokhy A, Franklin EL, Raine NE, Zhang C, Palmer E, Cross P, Palego C. C-band telemetry of insect pollinators using a miniature transmitter and a self-piloted drone. IEEE Trans Microw Theory Tech. 2021;69:938–946.

135

Mohanty A, Parida S, Behera RK, Roy T. Vibration energy harvesting: A review. J Adv Dielectr. 2019;9:1930001.

136

Ahmad MM, Khan FU. Review of vibration-based electromagnetic–piezoelectric hybrid energy harvesters. Int J Energy Res. 2021;45:5058–5097.

137

Zhou S, Lallart M, Erturk A. Multistable vibration energy harvesters: Principle, progress, and perspectives. J Sound Vib. 2022;528:116886.

138

Li X, Hu G, Guo Z, Wang J, Yang Y, Liang J. Frequency up-conversion for vibration energy harvesting: A review. Symmetry. 2022;14:631.

139

Toshiyoshi H, Ju S, Honma H, Ji C-H, Fujita H. MEMS vibrational energy harvesters. Sci Technol Adv Mater. 2019;20:124–143.

140

Todaro MT, Guido F, Mastronardi V, Desmaele D, Epifani G, Algieri L, de Vittorio M. Piezoelectric MEMS vibrational energy harvesters: Advances and outlook. Microelectron Eng. 2017;183:23–36.

141

Li M, Liu T, Shi Z, Xue W, Ys H, Li H, Huang X, Li J, Suo L, Chen L. Dense all-electrochem-active electrodes for all-solid-state lithium batteries. Adv Mater. 2021;33:2008723.

142

Li Y, Zhu M, Bandari VK, Karnaushenko DD, Karnaushenko D, Zhu F, Schmidt OG. On-chip batteries for dust-sized computers. Adv Energy Mater. 2022;12:2103641.

143

Ji Q, Chen X, Liang J, Laude V, Guenneau S, Fang G, Kadic M. Designing thermal energy harvesting devices with natural materials through optimized microstructures. Int J Heat Mass Transf. 2021;169:Article 120948.

144

Hamzat AK, Omisanya MI, Sahin AZ, Oyetunji OR, Olaitan NA. Application of nanofluid in solar energy harvesting devices: A comprehensive review. Energy Convers Manag. 2022;266:Article 115790.

145

Gu L, Liu J, Cui N, Xu Q, Du T, Zhang L, Wang Z, Long C, Qin Y. Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode. Nat Commun. 2020;11:1030.

146

Kim MH, Cho CH, Kim JS, Nam TU, Kim W-S, Lee TI, Oh JY. Thermoelectric energy harvesting electronic skin (e-skin) patch with reconfigurable carbon nanotube clays. Nano Energy. 2021;87:Article 106156.

147

Panda S, Hajra S, Mistewicz K, In-na P, Sahu M, Rajaitha PM, Kim HJ. Piezoelectric energy harvesting systems for biomedical applications. Nano Energy. 2022;100:Article 107514.

148

Liu H, Fu H, Sun L, Lee C, Yeatman EM. Hybrid energy harvesting technology: From materials, structural design, system integration to applications. Renew Sust Energ Rev. 2021;137:Article 110473.

149

Newell D, Duffy M. Review of power conversion and energy management for low-power, low-voltage energy harvesting powered wireless sensors. IEEE Trans Power Electron. 2019;34:9794–9805.

150

Vo Doan TT, Tan MY, Bui XH, Sato H. An ultralightweight and living legged robot. Soft Robot. 2018;5:17–23.

151

Li Y, Wu J, Sato H. Feedback control-based navigation of a flying insect-machine hybrid robot. Soft Robot. 2018;5:365–374.

152

Jiang Y, Yang B, Jiang Y, Zhao W, Guo X. Flight cessation and modulation control of coleopteran employing wireless miniature muscular stimulators. Meas Control. 2022;55:821–829.

Cyborg and Bionic Systems
Article number: 0053
Cite this article:
Ma Z, Zhao J, Yu L, et al. A Review of Energy Supply for Biomachine Hybrid Robots. Cyborg and Bionic Systems, 2023, 4: 0053. https://doi.org/10.34133/cbsystems.0053

86

Views

0

Downloads

32

Crossref

33

Web of Science

34

Scopus

Altmetrics

Received: 28 July 2023
Accepted: 02 September 2023
Published: 26 September 2023
© 2023 Zhiyun Ma et al. Exclusive licensee Beijing Institute of Technology Press. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return