Over time, the utilization of the Underwater Vehicle-Manipulator System (UVMS) has steadily increased in exploring and harnessing marine resources. However, the underwater environment poses big challenges for controlling, navigating, and communicating with UVMS. These challenges have not only spurred the continuous advancement of related technologies, but also made the development of the UVMS even more captivating. This article firstly provides a review of development status of the UVMS and discusses the current limitations and future directions, and then reviews in detail the dynamic and hydrodynamic modeling methods, and analyzes the principles, advantages, and disadvantages of various approaches. Then, we try to review 2 key technologies of operation control methods, including underwater positioning and navigation technologies and vehicle-manipulator coordinated control approaches. Finally, a reasonable prospect for the future development of UVMS is given.
Visbeck M. Ocean science research is key for a sustainable future. Nat Commun. 2018;9:690.
Melikoglu M. Current status and future of ocean energy sources: A global review. Ocean Eng. 2018;148:563–573.
O’Hara CC, Halpern BS. Anticipating the future of the world’s ocean. Annu Rev Environ Resour. 2022;47:291–315.
Wang YD, Wang P, Sun PF. Review on research of control technology of autonomous underwater vehicle. World Sci-Tech Res Develop. 2021;43:636.
He Y, Wang DB, Ali ZA. A review of different designs and control models of remotely operated underwater vehicle. Meas Control. 2020;53:1561–1570.
Kumar S, Rastogi V, Gupta P. Recent developments in modeling and control of underwater robot manipulator: A review. Indian J Sci Technol. 2016;9(48).
Salazar R, Campos A, Fuentes V, Abdelkefi A. A review on the modeling, materials, and actuators of aquatic unmanned vehicles. Ocean Eng. 2019;172:257–285.
Panda JP, Mitra A, Warrior HV. A review on the hydrodynamic characteristics of autonomous underwater vehicles. Proc Inst Mech Eng M J Eng Marit Environ. 2021;235:15–29.
Yoerger D, Newman J, Slotine J-J. Supervisory control system for the JASON ROV. IEEE J Ocean Eng. 1986;11(3):392–400.
Bowen AD, Yoerger D, Taylor C, McCabe R, Howland J, Gomez-Ibanez D, Kinsey J, Heintz M, McDonald G, Peters D, et al. The NEREUS hybrid underwater robotic vehicle. Underw Technol. 2009;18(3):79–89.
Choi SK, Yuh J, Takashige GY. Development of the OMNI directional intelligent navigator. IEEE Robot Autom Mag. 1995;2(1):44–53.
Marani G, Choi SK, Yuh J. Underwater autonomous manipulation for intervention missions AUVs. Ocean Eng. 2009;36(1):15–23.
Marani G, Choi SK. Underwater target localization. IEEE Robot Autom Mag. 2010;17(1):64–70.
Khatib O, Yeh X, Brantner G, Soe B, Kim B, Ganguly S, Stuart H, Wang S, Cutkosky M, Edsinger A, et al. Ocean one: A robotic avatar for oceanic discovery. IEEE Robot Autom Mag. 2016;23:20–29.
Brantner G, Khatib O. Controlling Ocean one: Human–robot collaboration for deep-sea manipulation. J Field Robot. 2021;38(1):28–51.
Stuart H, Wang S, Khatib O, Cutkosky MR. The ocean one hands: An adaptive design for robust marine manipulation. Int J Robot Res. 2017;36(2):150–166.
Fujii T, Ura T. Development of an autonomous underwater robot “twin-burger for testing intelligent behaviors in realistic environments”. Auton Robot. 1996;3:285–296.
Sezoko H, Murashima T, Nakajyoh H, Yoshida H, Yamauchi N, Enterprises NM. Development of 7000m class ROV Kaiko7000. Theor Appl Genet. 2011;122:677–686.
Nishida Y, Sonoda T, Yasukawa S, Nagano K, Minami M, Ishii K, Ura T. Underwater platform for intelligent robotics and its application in two visual tracking systems. J Robot Mechatron. 2018;30(2):238–247.
Yasukawa S, Ahn J, Nishida Y, Sonoda T, Ishii K, Ura T. Vision system for an autonomous underwater vehicle with a benthos sampling function. J Robot Mechatron. 2018;30(2):248–256.
Odetti A, Bibuli M, Bruzzone G, Caccia M, Spirandelli E, Bruzzone G. E-URoPe: A reconfigurable AUV/ROV for man-robot underwater cooperation. IFAC-PapersOnLine. 2017;50(1):11203–11208.
Christensen L, de Gea Fernández J, Hildebrandt M, Koch CES, Wehbe B. Recent advances in AI for navigation and control of underwater robots. Curr Robot Rep. 2022;3:165–175.
Ribas D, Ridao P, Turetta A, Melchiorri C, Palli G, Fernández JJ, Sanz PJ. I-AUV mechatronics integration for the TRIDENT FP7 project. IEEE/ASME Trans Mechatron. 2015;20(5):2583–2592.
Ribas D, Palomeras N, Ridao P, Carreras M, Mallios A. Girona 500 AUV: From survey to intervention. IEEE/ASME Trans Mechatron. 2011;17(1):46–53.
Di Lillo PA, Simetti E, De Palma D, Cataldi E, Indiveri G, Antonelli G, Casalino G. Advanced ROV autonomy for efficient remote control in the DexROV project. Mar Technol Soc J. 2016;50(4):67–80.
Cui W. Review of hot spots of deep-sea submersibles in 2020. Sci Technol Rev. 2021;39:126–136.
Li S, Zen J, Wang C. Navigation under the arctic ice by autonomous and remotely operated underwater vehicle. Robotics. 2011;33(4):509–512.
Wang R, Wang S, Wang Y, Cheng L, Tan M. Development and motion control of biomimetic underwater robots: A survey. IEEE Trans Syst Man Cybern. 2020;52(2):833–844.
Triantafyllou MS, Triantafyllou GS. An efficient swimming machine. Sci Am. 1995;272(3):64–70.
Wei Q, Wang S, Wang Y, Zhou C, Tan M. Course and depth control for a biomimetic underwater vehicle-robcutt-i. Int J Offshore Polar Eng. 2015;25(2):81–87.
Wang R, Wang S, Wang Y, Tan M, Yu J. A paradigm for path following control of a ribbon-fin propelled biomimetic underwater vehicle. IEEE Trans Syst Man Cybern. 2017;49(3):482–493.
Liu K, Song T, Xu X, Wang H, Meng Q. Dynamics modeling and typical motion performance analysis for a multi-joint autonomous underwater vehicle. Ocean Eng. 2023;281:Article 114999.
Shah UH, Karkoub M, Kerimoglu D, Wang H-D. Dynamic analysis of the UVMs: Effect of disturbances, coupling, and joint-flexibility on end-effector positioning. Robotica. 2021;39:1952–1980.
Tarn TJ, Shoults GA, Yang SP. A dynamic model of an underwater vehicle with a robotic manipulator using Kane’s method. Auton Robot. 1996;3:269–283.
Duan K, Fong S, Chen CP. Multilayer neural networks-based control of underwater vehicles with uncertain dynamics and disturbances. Nonlinear Dyn. 2020;100:3555–3573.
Lei L, Xin-Wang L, Gang Y. Incremental residual learning-based dynamic modeling and stability analysis for multipower underwater vehicles. Mech Mach Theory. 2022;178:Article 105088.
Ahmed F, Xiang X, Jiang C, Xiang G, Yang S. Survey on traditional and AI based estimation techniques for hydrodynamic coefficients of autonomous underwater vehicle. Ocean Eng. 2023;268:Article 113300.
Lin YH, Chiu YC. The estimation of hydrodynamic coefficients of an autonomous underwater vehicle by comparing a dynamic mesh model with a horizontal planar motion mechanism experiment. Ocean Eng. 2022;249:Article 110847.
Mai TL, Jeon M, Vo AK, Yoon HK, Kim S, Lee J. Establishment of empirical formulae for hydrodynamic derivatives of submarine considering design parameters. Int J Nav Archit Ocean Eng. 2023;15:Article 100537.
Jagadeesh P, Murali K, Idichandy V. Experimental investigation of hydrodynamic force coefficients over AUV hull form. Ocean Eng. 2009;36(1):113–118.
Zhang M, Liu X, Tian Y. Modeling analysis and simulation of viscous hydrodynamic model of single-dof manipulator. J Mar Sci Eng. 2019;7(8):261.
Xue Y, Liu Y, Ji C, Xue G. Hydrodynamic parameter identification for ship manoeuvring mathematical models using a Bayesian approach. Ocean Eng. 2020;195:Article 106612.
Cao Q, Wang R, Zhang T, Wang Y, Wang S. Hydrodynamic modeling and parameter identification of a bionic underwater vehicle: Robdact. Cyborg Bionic Syst. 2022;2022:9806328.
Zhang S, Zhao S, An D, Liu J, Wang H, Feng Y, Li D, Zhao R. Visual SLAM for underwater vehicles: A survey. Comput Sci Rev. 2022;46:Article 100510.
Billings G, Camilli R, Johnson-Roberson M. Hybrid visual SLAM for underwater vehicle manipulator systems. IEEE Robot Autom Lett. 2022;7(3):6798–6805.
Ma T, Ding S, Li Y, Fan J. A review of terrain aided navigation for underwater vehicles. Ocean Eng. 2023;281:Article 114779.
Zhao DD, Mao WB, Chen P, Dang YJ, Liang RH. FPGA-based real-time synchronous parallel system for underwater acoustic positioning and navigation. IEEE Trans Ind Electron. 2023;71(3):3199–3207.
Rahman S, Quattrini Li A, Rekleitis I. Svin2: A multi-sensor fusion-based underwater SLAM system. Int J Robot Res. 2022;41(11–12):1022–1042.
Xing H, Liu Y, Guo S, Shi L, Hou X, Liu W, Zhao Y. A multi-sensor fusion self-localization system of a miniature underwater robot in structured and GPS-denied environments. IEEE Sensors J. 2021;21(23):27136–27146.
Wu Y, Ta X, Xiao R, Wei Y, An D, Li D. Survey of underwater robot positioning navigation. Appl Ocean Res. 2019;90:Article 101845.
Mur-Artal R, Montiel JMM, Tardos JD. Orb-SLAM: A versatile and accurate monocular SLAM system. IEEE Trans Robot. 2015;31(5):1147–1163.
Hong S, Kim J, Pyo J, Yu S-C. A robust loop-closure method for visual SLAM in unstructured seafloor environments. Auton Robot. 2016;40:1095–1109.
Wu R, Gao Y. Research on underwater complex scene SLAM algorithm based on image enhancement. Sensors. 2022;22(21):8517.
Qin T, Li P, Shen S. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans Robot. 2018;34(4):1004–1020.
Hong S, Kim J. Three-dimensional visual mapping of underwater ship hull surface using image stitching geometry. Ocean Eng. 2023;269:Article 113575.
Silveira L, Guth F, Drews-Jr P, Ballester P, Machado M, Codevilla F, Duarte-Filho N, Botelho S. An open-source bio-inspired solution to underwater SLAM. IFAC-PapersOnLine. 2015;48(2):212–217.
Miao R, Qian J, Song Y, Ying R, Liu P. Univio: Unified direct and feature-based underwater stereo visual-inertial odometry. IEEE Trans Instrum Meas. 2022;71:1–14.
Wang Y, Hu R, Huang SH, Wang Z, Du P, Yang W, Chen Y. Passive inverted ultra-short baseline positioning for a disc-shaped autonomous underwater vehicle: Design and field experiments. IEEE Robot Autom Lett. 2022;7(3):6942–6949.
Luo J, Ko HL. UKF-based inverted ultra-short baseline SLAM with current compensation. IEEE Access. 2022;10:67329–67337.
Cheng C, Wang C, Yang D, Liu W, Zhang F. Underwater localization and mapping based on multi-beam forward looking sonar. Front Neurorobot. 2022;15:Article 801956.
Li P, Sheng G, Zhang X, Wu J, Xu B, Liu X, Zhang Y. Underwater terrain-aided navigation system based on combination matching algorithm. ISA Trans. 2018;78:80–87.
Chen P, Chang J, Han Y, Yuan M. Underwater terrain-aided navigation method based on improved Gaussian sum particle filtering. Int J Adv Robot Syst. 2018;16:1729881418821576.
Song Z, Bian H, Zielinski A. Underwater terrain-aided navigation based on multibeam bathymetric sonar images. J Mar Sci Appl. 2015;14:425–433.
Liu Y, Zhang G, Huang Z. Study on the arctic underwater terrain-aided navigation based on fuzzy-particle filter. Int J Fuzzy Syst. 2021;23:1017–1026.
Liao S, Leng Y. An underwater terrain matching navigation method based on improved particle filter. Opt Optoelectronic Technol. 2020;18:98–102.
Wang D, Xu X, Yao Y, Zhang T, Zhu Y. A novel SINS/DVL tightly integrated navigation method for complex environment. IEEE Trans Instrum Meas. 2020;69(7):5183–5196.
Guo Y, Xu B, Wang L. A robust SINS/USBL integrated navigation algorithm based on earth frame and right group error definition. IEEE Trans Instrum Meas. 2022;71:Article 8504716.
Vadapalli S, Mahapatra S. 3D path following control of an autonomous underwater robotic vehicle using backstepping approach based robust state feedback optimal control law. J Mar Sci Eng. 2023;11:277.
Heshmati-Alamdari S, Karras GC, Marantos P, Kyriakopoulos KJ. A robust predictive control approach for underwater robotic vehicles. IEEE Trans Control Syst Technol. 2019;28(5):2352–2363.
Ma R, Bai X, Wang Y, Wang R, Wang S. Hovering control of an underwater vehicle-manipulator system propelled by undulatory fins via reinforcement learning. Control Theory Appl. 2022;39(11):2029–2099.
Ma S, Chen Y, Yang S, Liu S, Tang L, Li B, Li Y. The autonomous pipeline navigation of a cockroach bio-robot with enhanced walking stimuli. Cyborg Bionic Syst. 2023;4:0067.
Tang Q, Liang L, Xie J, Li Y, Deng Z. Task-priority redundancy resolution on acceleration level for underwater vehicle-manipulator system. Int J Adv Robot Syst. 2017;14:1729881417719825.
Zhang MJ, Peng SQ, Chu ZZ, Wang YJ. Motion planning of underwater vehicle-manipulator system with joint limit. Appl Mech Mater. 2012;220:1767–1771.
Simetti E, Casalino G, Torelli S, Sperindeé A, Turetta A. Floating underwater manipulation: Developed control methodology and experimental validation within the trident project. J Field Robot. 2014;31(3):364–385.
Youakim D, Ridao P, Palomeras N, Spadafora F, Ribas D, Muzzupappa M. Moveit!: Autonomous underwater free-floating manipulation. IEEE Robot Autom Mag. 2017;24(3):41–51.
Pi R, Cieślak P, Ridao P, Sanz PJ. Twinbot: Autonomous underwater cooperative transportation. IEEE Access. 2021;9:37668–37684.
Gao Q, Deng Z, Ju Z, Zhang T. Dual-hand motion capture by using biological inspiration for bionic bimanual robot teleoperation. Cyborg Bionic Syst. 2023;4:0052.
Chen Z, Liang Q, Wei Z, Chen X, Shi Q, Yu Z, Sun T. An overview of in vitro biological neural networks for robot intelligence. Cyborg Bionic Syst. 2023;4:0001.
Yang K, Wang XY, Ge T, Wu C. A dynamic model of an underwater quadruped walking robot using Kane’s method. J Shanghai Jiaotong Univ (Sci). 2014;19:160–168.
Lei L, Zhou Y, Yang G. Multisource information fusion-based environment perception and dynamic model of underwater vehicle in irregular ocean environment. Inf Fusion. 2023;94:257–271.
Joe H, Cho H, Sung M, Kim J, Yu S-C. Sensor fusion of two sonar devices for underwater 3D mapping with an AUV. Auton Robot. 2021;45:543–560.
Alves S, Babcinschi M, Silva A, Neto D, Fonseca D, Neto P. Integrated design fabrication and control of a bioinspired multimaterial soft robotic hand. Cyborg Bionic Syst. 2023;4:0051.
Zhang Y, Zhang H, Liu J, Zhang S, Liu Z, Lyu E, Chen W. Submarine pipeline tracking technology based on AUVs with forward looking sonar. Appl Ocean Res. 2022;122:Article 103128.