PDF (5.1 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
References
Show full outline
Hide outline
Review Article | Open Access

Underwater Robots and Key Technologies for Operation Control

Linxiang Sun1Yu Wang2()Xiaolong Hui2Xibo Ma2,3Xuejian Bai4Min Tan5
School of Automation, Harbin University of Science and Technology, Harbin, China
State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
School of Electrical Engineering, Liaoning University of Technology, Jinzhou, China
Institute of Automation, Chinese Academy of Sciences, Beijing, China
Show Author Information

Abstract

Over time, the utilization of the Underwater Vehicle-Manipulator System (UVMS) has steadily increased in exploring and harnessing marine resources. However, the underwater environment poses big challenges for controlling, navigating, and communicating with UVMS. These challenges have not only spurred the continuous advancement of related technologies, but also made the development of the UVMS even more captivating. This article firstly provides a review of development status of the UVMS and discusses the current limitations and future directions, and then reviews in detail the dynamic and hydrodynamic modeling methods, and analyzes the principles, advantages, and disadvantages of various approaches. Then, we try to review 2 key technologies of operation control methods, including underwater positioning and navigation technologies and vehicle-manipulator coordinated control approaches. Finally, a reasonable prospect for the future development of UVMS is given.

References

1

Visbeck M. Ocean science research is key for a sustainable future. Nat Commun. 2018;9:690.

2

Melikoglu M. Current status and future of ocean energy sources: A global review. Ocean Eng. 2018;148:563–573.

3

O’Hara CC, Halpern BS. Anticipating the future of the world’s ocean. Annu Rev Environ Resour. 2022;47:291–315.

4

Wang YD, Wang P, Sun PF. Review on research of control technology of autonomous underwater vehicle. World Sci-Tech Res Develop. 2021;43:636.

5

He Y, Wang DB, Ali ZA. A review of different designs and control models of remotely operated underwater vehicle. Meas Control. 2020;53:1561–1570.

6

Kumar S, Rastogi V, Gupta P. Recent developments in modeling and control of underwater robot manipulator: A review. Indian J Sci Technol. 2016;9(48).

7

Salazar R, Campos A, Fuentes V, Abdelkefi A. A review on the modeling, materials, and actuators of aquatic unmanned vehicles. Ocean Eng. 2019;172:257–285.

8

Panda JP, Mitra A, Warrior HV. A review on the hydrodynamic characteristics of autonomous underwater vehicles. Proc Inst Mech Eng M J Eng Marit Environ. 2021;235:15–29.

9
Tang C. Research on the vision localization and autonomous control of the underwater vehicle-manipulator system propelled by undulatory fins [thesis]. University of Chinese Academy of Sciences; 2019.
10
Bai X. Modeling and autonomous control of a bionic propelling underwater vehicle-manipulator system [thesis]. University of Chinese Academy of Sciences; 2021.
11
S. Chutia, N. M. Kakoty, D. Deka, A review of underwater robotics, navigation, sensing techniques and applications. Paper presented at: Proceedings of the Advances in Robotics; 2017 Jun 28 to Jul 2; New Delhi, India.
12
Jing Q, Luo J, Li Y. A new modular intensive design solution for ROVs. In: International Conference on Applied Human Factors and Ergonomics. USA: Springer; 2021. p. 69–76.
13

Yoerger D, Newman J, Slotine J-J. Supervisory control system for the JASON ROV. IEEE J Ocean Eng. 1986;11(3):392–400.

14
Ballard R. The JASON remotely operated vehicle system. UK: Woods Hole Oceanographic Institution; 1993.
15

Bowen AD, Yoerger D, Taylor C, McCabe R, Howland J, Gomez-Ibanez D, Kinsey J, Heintz M, McDonald G, Peters D, et al. The NEREUS hybrid underwater robotic vehicle. Underw Technol. 2009;18(3):79–89.

16
Bowen AD, Yoerger DR, German CC, Kinsey JC, Jakuba MV, Gomez-Ibanez D, Taylor CL, Machado C, Howland JC, Kaiser CL, et al. Design of Nereid-UI: A remotely operated underwater vehicle for oceanographic access under ice. Paper presented at: Oceans-St. John’s; 2014 Sep 14–19; St. John, NL, Canada.
17

Choi SK, Yuh J, Takashige GY. Development of the OMNI directional intelligent navigator. IEEE Robot Autom Mag. 1995;2(1):44–53.

18
Choi SK, G. Takashige, J. Yuh, Experimental study on an underwater robotic vehicle: ODIN. Paper presented at: Proceedings of IEEE Symposium on Autonomous Underwater Vehicle Technology; 1994 Jul 19–20; Cambridge, MA.
19
Choi HT, Hanai A, Choi SK, Yuh J, Development of an underwater robot, ODIN-III. Paper presented at: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (cat. No 03CH37453); 2003 Oct 27–31; Las Vegas, NV.
20
Aldhaheri S, De Masi G, Pairet È, Ardón P, Underwater robot manipulation: Advances, challenges and prospective ventures. Paper presented at: OCEANS 2022-Chennai; 2022 Feb 21–24; Chennai, India.
21
J. Yuh, S. Choi, C. Ikehara, G. Kim, G. McMurty, M. Ghasemi-Nejhad, N. Sarkar, K. Sugihara, Design of a semi-autonomous underwater vehicle for intervention missions (SAUVIM). Paper presented at: Proceedings of 1998 International Symposium on Underwater Technology; 1998 Apr 17–17; Tokyo, Japan.
22

Marani G, Choi SK, Yuh J. Underwater autonomous manipulation for intervention missions AUVs. Ocean Eng. 2009;36(1):15–23.

23

Marani G, Choi SK. Underwater target localization. IEEE Robot Autom Mag. 2010;17(1):64–70.

24

Khatib O, Yeh X, Brantner G, Soe B, Kim B, Ganguly S, Stuart H, Wang S, Cutkosky M, Edsinger A, et al. Ocean one: A robotic avatar for oceanic discovery. IEEE Robot Autom Mag. 2016;23:20–29.

25

Brantner G, Khatib O. Controlling Ocean one: Human–robot collaboration for deep-sea manipulation. J Field Robot. 2021;38(1):28–51.

26

Stuart H, Wang S, Khatib O, Cutkosky MR. The ocean one hands: An adaptive design for robust marine manipulation. Int J Robot Res. 2017;36(2):150–166.

27
J. E. Manley, S. Halpin, N. Radford, M. Ondler, Aquanaut: A new tool for subsea inspection and intervention. Paper presented at: OCEANS 2018 MTS/IEEE Charleston; 2018 Oct 22–25; Charleston, SC.
28

Fujii T, Ura T. Development of an autonomous underwater robot “twin-burger for testing intelligent behaviors in realistic environments”. Auton Robot. 1996;3:285–296.

29
Nakajoh H, Takashi M, Noriyasu Y, Hideki S. Development of Deep Sea ROV “KAIKO7000II”. Paper presented at: 2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies; 2007 Apr 17–20; Tokyo, Japan
30

Sezoko H, Murashima T, Nakajyoh H, Yoshida H, Yamauchi N, Enterprises NM. Development of 7000m class ROV Kaiko7000. Theor Appl Genet. 2011;122:677–686.

31
Kawaguchi K, Kaneko S, Nishida T, Komine T. Cable laying ROV for Real-time seafloor observatory network construction. Paper presented at: OCEANS 2009-EUROPE; 2009 May 11; Bremen, Germany.
32
Nakajoh H, Miyazaki T, Sawa T, Sugimoto F, Murashima T. Development of 7000m work class ROV “KAIKO Mk-IV”. Paper presented at: OCEANS 2016 MTS/IEEE Monterey; 2016 Sep 19–23; Monterey, CA.
33
Nishida Y, Sonoda T, Yasukawa S, Ahn J, Nagano K, Ishii K, Ura T. Development of an autonomous underwater vehicle with human-aware robot navigation. Paper presented at: OCEANS 2016 MTS/IEEE Monterey; 2016 Sep 16–23; Monterey, CA.
34

Nishida Y, Sonoda T, Yasukawa S, Nagano K, Minami M, Ishii K, Ura T. Underwater platform for intelligent robotics and its application in two visual tracking systems. J Robot Mechatron. 2018;30(2):238–247.

35

Yasukawa S, Ahn J, Nishida Y, Sonoda T, Ishii K, Ura T. Vision system for an autonomous underwater vehicle with a benthos sampling function. J Robot Mechatron. 2018;30(2):248–256.

36
Nishida Y, Sonoda T, Yasukawa S, Ahn J, Watanabe K, Ishii K, Ura T. Benthos sampling by autonomous underwater vehicle equipped a manipulator with suction device. Paper presented at: IEEE Underwater Technology (UT); 2019 Jun 16–19; Kaohsiung, Taiwan.
37
Yeu T, Lee Y, Lee Y, Yoon S. Preliminary study on identification of ROV for autonomous manipulation. OCEANS 2019-Marseille; 2019 Jun 1; Marseille, France.
38

Odetti A, Bibuli M, Bruzzone G, Caccia M, Spirandelli E, Bruzzone G. E-URoPe: A reconfigurable AUV/ROV for man-robot underwater cooperation. IFAC-PapersOnLine. 2017;50(1):11203–11208.

39

Christensen L, de Gea Fernández J, Hildebrandt M, Koch CES, Wehbe B. Recent advances in AI for navigation and control of underwater robots. Curr Robot Rep. 2022;3:165–175.

40

Ribas D, Ridao P, Turetta A, Melchiorri C, Palli G, Fernández JJ, Sanz PJ. I-AUV mechatronics integration for the TRIDENT FP7 project. IEEE/ASME Trans Mechatron. 2015;20(5):2583–2592.

41

Ribas D, Palomeras N, Ridao P, Carreras M, Mallios A. Girona 500 AUV: From survey to intervention. IEEE/ASME Trans Mechatron. 2011;17(1):46–53.

42

Di Lillo PA, Simetti E, De Palma D, Cataldi E, Indiveri G, Antonelli G, Casalino G. Advanced ROV autonomy for efficient remote control in the DexROV project. Mar Technol Soc J. 2016;50(4):67–80.

43
Simetti E, Wanderlingh F, Casalino G, Indiveri G, Antonelli G. DexROV project: Control framework for underwater interaction tasks. Paper presented at: OCEANS 2017-Aberdeen; 2017 Jun 19–22; Aberdeen, UK.
44

Cui W. Review of hot spots of deep-sea submersibles in 2020. Sci Technol Rev. 2021;39:126–136.

45

Li S, Zen J, Wang C. Navigation under the arctic ice by autonomous and remotely operated underwater vehicle. Robotics. 2011;33(4):509–512.

46

Wang R, Wang S, Wang Y, Cheng L, Tan M. Development and motion control of biomimetic underwater robots: A survey. IEEE Trans Syst Man Cybern. 2020;52(2):833–844.

47

Triantafyllou MS, Triantafyllou GS. An efficient swimming machine. Sci Am. 1995;272(3):64–70.

48
Liljebäck P, Mills R. A flexible and subsea resident IMR vehicle. Paper presented at: Oceans 2017-Aberdeen; 2017 Jun 19–22; Aberdeen, UK.
49

Wei Q, Wang S, Wang Y, Zhou C, Tan M. Course and depth control for a biomimetic underwater vehicle-robcutt-i. Int J Offshore Polar Eng. 2015;25(2):81–87.

50

Wang R, Wang S, Wang Y, Tan M, Yu J. A paradigm for path following control of a ribbon-fin propelled biomimetic underwater vehicle. IEEE Trans Syst Man Cybern. 2017;49(3):482–493.

51
Wang R, Wang S, Wang Y, A hybrid heading control scheme for a biomimetic underwater vehicle. Paper presented at: The 26th International Ocean and Polar Engineering Conference; 2016 Jun 26; Rhodes, Greece.
52

Liu K, Song T, Xu X, Wang H, Meng Q. Dynamics modeling and typical motion performance analysis for a multi-joint autonomous underwater vehicle. Ocean Eng. 2023;281:Article 114999.

53
T. I. Fossen, Guidance and control of ocean vehicles [thesis]. [Trondheim (Norway)]: University of Trondheim; 1999.
54
Gonçalves F, Ribeiro T, Ribeiro AF, Lopes G, Flores P. Dynamic modeling of a human inspired robot based on a Newton-Euler approach,. In: Symposium on Robot Design, Dynamics and Control. Springer; 2022. p. 79–90.
55

Shah UH, Karkoub M, Kerimoglu D, Wang H-D. Dynamic analysis of the UVMs: Effect of disturbances, coupling, and joint-flexibility on end-effector positioning. Robotica. 2021;39:1952–1980.

56
Yang S-P. Dynamic modelling and control of underwater vehicle with multi-manipulator system. St. Louis: Washington University; 1997.
57

Tarn TJ, Shoults GA, Yang SP. A dynamic model of an underwater vehicle with a robotic manipulator using Kane’s method. Auton Robot. 1996;3:269–283.

58

Duan K, Fong S, Chen CP. Multilayer neural networks-based control of underwater vehicles with uncertain dynamics and disturbances. Nonlinear Dyn. 2020;100:3555–3573.

59

Lei L, Xin-Wang L, Gang Y. Incremental residual learning-based dynamic modeling and stability analysis for multipower underwater vehicles. Mech Mach Theory. 2022;178:Article 105088.

60

Ahmed F, Xiang X, Jiang C, Xiang G, Yang S. Survey on traditional and AI based estimation techniques for hydrodynamic coefficients of autonomous underwater vehicle. Ocean Eng. 2023;268:Article 113300.

61

Lin YH, Chiu YC. The estimation of hydrodynamic coefficients of an autonomous underwater vehicle by comparing a dynamic mesh model with a horizontal planar motion mechanism experiment. Ocean Eng. 2022;249:Article 110847.

62

Mai TL, Jeon M, Vo AK, Yoon HK, Kim S, Lee J. Establishment of empirical formulae for hydrodynamic derivatives of submarine considering design parameters. Int J Nav Archit Ocean Eng. 2023;15:Article 100537.

63

Jagadeesh P, Murali K, Idichandy V. Experimental investigation of hydrodynamic force coefficients over AUV hull form. Ocean Eng. 2009;36(1):113–118.

64

Zhang M, Liu X, Tian Y. Modeling analysis and simulation of viscous hydrodynamic model of single-dof manipulator. J Mar Sci Eng. 2019;7(8):261.

65
Xu H, Hong L, Wang X, Zhao M. Numerical investigation on turbulence models and the hydrodynamics of a UVMS. Int J Intell Robot Appl. 2022;299–310.
66

Xue Y, Liu Y, Ji C, Xue G. Hydrodynamic parameter identification for ship manoeuvring mathematical models using a Bayesian approach. Ocean Eng. 2020;195:Article 106612.

67

Cao Q, Wang R, Zhang T, Wang Y, Wang S. Hydrodynamic modeling and parameter identification of a bionic underwater vehicle: Robdact. Cyborg Bionic Syst. 2022;2022:9806328.

68

Zhang S, Zhao S, An D, Liu J, Wang H, Feng Y, Li D, Zhao R. Visual SLAM for underwater vehicles: A survey. Comput Sci Rev. 2022;46:Article 100510.

69

Billings G, Camilli R, Johnson-Roberson M. Hybrid visual SLAM for underwater vehicle manipulator systems. IEEE Robot Autom Lett. 2022;7(3):6798–6805.

70
Huang Z, Wan L, Sheng M, Zou J, Song J. An underwater image enhancement method for simultaneous localization and mapping of autonomous underwater vehicle. Paper presented at: 3rd International Conference on Robotics and Automation Sciences (ICRAS); 2019 Jun 1–3; Wuhan, China.
71

Ma T, Ding S, Li Y, Fan J. A review of terrain aided navigation for underwater vehicles. Ocean Eng. 2023;281:Article 114779.

72

Zhao DD, Mao WB, Chen P, Dang YJ, Liang RH. FPGA-based real-time synchronous parallel system for underwater acoustic positioning and navigation. IEEE Trans Ind Electron. 2023;71(3):3199–3207.

73
Rodionov A, Unru P, Golov A. long-range underwater acoustic navigation and communication system. Paper presented at: IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE); 2020 Oct 23–25; Yunlin, Vietnam.
74
Guo L, Shi Y, Wang S. Design of inertial/acoustic integrated navigation system of underwater vehicle. Paper presented at: IEEE International Conference on Signal, Information and Data Processing (ICSIDP); 2019 Dec 11–13; Chongqin, China.
75

Rahman S, Quattrini Li A, Rekleitis I. Svin2: A multi-sensor fusion-based underwater SLAM system. Int J Robot Res. 2022;41(11–12):1022–1042.

76

Xing H, Liu Y, Guo S, Shi L, Hou X, Liu W, Zhao Y. A multi-sensor fusion self-localization system of a miniature underwater robot in structured and GPS-denied environments. IEEE Sensors J. 2021;21(23):27136–27146.

77
Chi W, Zhang W, Gu J, Ren H. A vision-based mobile robot localization method. Paper presented at: IEEE International Conference on Robotics and Biomimetics (ROBIO); 2013 Dec 12–14; Shenzhen, China.
78

Wu Y, Ta X, Xiao R, Wei Y, An D, Li D. Survey of underwater robot positioning navigation. Appl Ocean Res. 2019;90:Article 101845.

79
Hidalgo F, Kahlefendt C, Bräunl T. Monocular ORB-SLAM application in underwater scenarios. Paper presented at: OCEANS-MTS/IEEE Kobe techno-Oceans (OTO); 2018 May 28–31, Kobe, Japan.
80

Mur-Artal R, Montiel JMM, Tardos JD. Orb-SLAM: A versatile and accurate monocular SLAM system. IEEE Trans Robot. 2015;31(5):1147–1163.

81
Burguera AB, Bonin-Font F. Towards multi session visual SLAM in underwater environments colonized with Posidonia oceanica. Paper presented at: IEEE/OES Autonomous Underwater Vehicle Workshop (AUV); 2018 Nov 6–9; Porto, Portugal.
82

Hong S, Kim J, Pyo J, Yu S-C. A robust loop-closure method for visual SLAM in unstructured seafloor environments. Auton Robot. 2016;40:1095–1109.

83
Chen W, Rahmati M, Sadhu V, Pompili D, Real-time image enhancement for vision based autonomous underwater vehicle navigation in murky waters . Paper presented at: Proceedings of the 14th International Conference on Underwater Networks & Systems; 2019 Oct 23–25; Atlanta, GA.
84

Wu R, Gao Y. Research on underwater complex scene SLAM algorithm based on image enhancement. Sensors. 2022;22(21):8517.

85

Qin T, Li P, Shen S. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans Robot. 2018;34(4):1004–1020.

86
Westman E, Kaess M. Underwater apriltag SLAM and calibration for high precision robot localization. Pittsburgh (PA): Carnegie Mellon University; 2018.
87

Hong S, Kim J. Three-dimensional visual mapping of underwater ship hull surface using image stitching geometry. Ocean Eng. 2023;269:Article 113575.

88

Silveira L, Guth F, Drews-Jr P, Ballester P, Machado M, Codevilla F, Duarte-Filho N, Botelho S. An open-source bio-inspired solution to underwater SLAM. IFAC-PapersOnLine. 2015;48(2):212–217.

89
Milford MJ, Wyeth GF, Prasser D, RatSLAM: A hippocampal model for simultaneous localization and mapping. Paper presented at: IEEE International Conference on Robotics and Automation Proceedings ICRA’04 2004; 2004 Apr–May 26–01; New Orleans, LA.
90
Pi S, He B, Zhang S, Nian R, Shen Y, Yan T. Stereo visual SLAM system in underwater environment. Paper presented at: OCEANS 2014 – TAIPEI; 2014 Apr 7–10; Taipei, Taiwan.
91
Nagappa S, Palomeras N, Lee CS, Gracias N, Clark DE, Salvi J. Single cluster PHD SLAM: Application to autonomous underwater vehicles using stereo vision. Paper presented at: 2013 MTS/IEEE OCEANS; 2013 Jun 10–14; Bergen, Norway.
92

Miao R, Qian J, Song Y, Ying R, Liu P. Univio: Unified direct and feature-based underwater stereo visual-inertial odometry. IEEE Trans Instrum Meas. 2022;71:1–14.

93
Negre PL, Bonin-Font F, Oliver G. Cluster-based loop closing detection for underwater SLAM in feature-poor regions. Paper presented at: IEEE International Conference on Robotics and Automation (ICRA); 2016 May 16–21; Stockholm, Sweden.
94

Wang Y, Hu R, Huang SH, Wang Z, Du P, Yang W, Chen Y. Passive inverted ultra-short baseline positioning for a disc-shaped autonomous underwater vehicle: Design and field experiments. IEEE Robot Autom Lett. 2022;7(3):6942–6949.

95

Luo J, Ko HL. UKF-based inverted ultra-short baseline SLAM with current compensation. IEEE Access. 2022;10:67329–67337.

96
Zhang K, Zhang S, Huang J, Shen C. Research on trajectory smoothing optimization algorithm of underwater long baseline positioning system. Paper presented at: 2022 IEEE 22nd International Conference on Communication Technology (ICCT); 2023 Nov 11–14; Nanjing, China.
97
Lee H, Kim K, Chung T, Ko H. Deep learning-based ultra short baseline underwater positioning. Paper presented at: International Conference on Artificial Intelligence in Information and communication (ICAIIC); 2023 Feb 20–23; Bali, Indonesia.
98
Nhat HB, Vu Hai L, Quang GT, Van Nguyen D, Le HV, Trinh Xuan T, Optimizing baseline in USBL using Costas hopping to increase navigation precision in shallow water. Paper presented at: 2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM); 2022 Jan 3–5; Seoul, Republic of Korea.
99
Wang Y, Ji Y, Woo H, Tamura Y, Yamashita A, Asama H. Three-dimensional underwater environment reconstruction with graph optimization using acoustic camera. Paper presented at: IEEE/SICE International Symposium on System Integration (SII); 2019 Jan 14–16; Paris, France.
100

Cheng C, Wang C, Yang D, Liu W, Zhang F. Underwater localization and mapping based on multi-beam forward looking sonar. Front Neurorobot. 2022;15:Article 801956.

101
Hwang A. Autonomous navigation of unmanned underwater vehicles using Ukf-SLAM with range sonar sensor; Koje College (Korea): 2023.
102
Yang P, Liu H, Roznere M, Li AQ. Monocular camera and single-beam sonar-based underwater collision-free navigation with domain randomization. In: The International Symposium of Robotics Research. Springer; 2022. p. 85–101.
103
Anderson J, Smith RN. Predicting water properties with Markov random fields for augmented terrain-based navigation in autonomous underwater vehicles. Paper presented at: OCEANS-MTS/IEEE Kobe techno-Oceans (OTO); 2018 May 28–31; Kobe, Japan.
104

Li P, Sheng G, Zhang X, Wu J, Xu B, Liu X, Zhang Y. Underwater terrain-aided navigation system based on combination matching algorithm. ISA Trans. 2018;78:80–87.

105

Chen P, Chang J, Han Y, Yuan M. Underwater terrain-aided navigation method based on improved Gaussian sum particle filtering. Int J Adv Robot Syst. 2018;16:1729881418821576.

106

Song Z, Bian H, Zielinski A. Underwater terrain-aided navigation based on multibeam bathymetric sonar images. J Mar Sci Appl. 2015;14:425–433.

107

Liu Y, Zhang G, Huang Z. Study on the arctic underwater terrain-aided navigation based on fuzzy-particle filter. Int J Fuzzy Syst. 2021;23:1017–1026.

108

Liao S, Leng Y. An underwater terrain matching navigation method based on improved particle filter. Opt Optoelectronic Technol. 2020;18:98–102.

109

Wang D, Xu X, Yao Y, Zhang T, Zhu Y. A novel SINS/DVL tightly integrated navigation method for complex environment. IEEE Trans Instrum Meas. 2020;69(7):5183–5196.

110

Guo Y, Xu B, Wang L. A robust SINS/USBL integrated navigation algorithm based on earth frame and right group error definition. IEEE Trans Instrum Meas. 2022;71:Article 8504716.

111
Zhang L, Gao Y. Integrated navigation of SINS DVL SSS based on FGO. Paper presented at: 2023 IEEE International Conference on Mechatronics and Automation (ICMA); 2023 Aug 6–9; Harbin, Heilongjiang, China.
112
Kurt D, Horner D. Undersea Active Terrain-Aided Navigation (ATAN). Paper presented at: IEEE/OES Autonomous Underwater Vehicles Symposium (AUV); 2020 Sep–Oct 30–02; St. Johns, NL, Canada.
113
Cai M. Research on autonomous manipulation control of a flippers-propelled underwater vehicle-manipulator system [thesis]. Chinese Academy of Sciences: Institute of Automation; 2020.
114

Vadapalli S, Mahapatra S. 3D path following control of an autonomous underwater robotic vehicle using backstepping approach based robust state feedback optimal control law. J Mar Sci Eng. 2023;11:277.

115

Heshmati-Alamdari S, Karras GC, Marantos P, Kyriakopoulos KJ. A robust predictive control approach for underwater robotic vehicles. IEEE Trans Control Syst Technol. 2019;28(5):2352–2363.

116

Ma R, Bai X, Wang Y, Wang R, Wang S. Hovering control of an underwater vehicle-manipulator system propelled by undulatory fins via reinforcement learning. Control Theory Appl. 2022;39(11):2029–2099.

117

Ma S, Chen Y, Yang S, Liu S, Tang L, Li B, Li Y. The autonomous pipeline navigation of a cockroach bio-robot with enhanced walking stimuli. Cyborg Bionic Syst. 2023;4:0067.

118

Tang Q, Liang L, Xie J, Li Y, Deng Z. Task-priority redundancy resolution on acceleration level for underwater vehicle-manipulator system. Int J Adv Robot Syst. 2017;14:1729881417719825.

119
Wen Y, Gao J, Song Y, Chen Y. Motion planning for image-based visual servoing of an underwater vehicle-manipulator system in task-priority frameworks. Paper presented at: 2022 IEEE 9th International Conference on Underwater System Technology: Theory and Applications (USYS); 2022 Dec 5–6; Kuala Lumpur, Malaysia.
120
Saebo BK, Pettersen Y, Gravdahl JT, Robust task-priority impedance control for vehicle-manipulator systems. In: 2022 IEEE Conference on Control Technology and Applications (CCTA). IEEE; 2022. p. 363–370.
121
Carrera A, Palomeras N, Hurtós N, Kormushev P, Carreras M. Learning multiple strategies to perform a valve turning with underwater currents using an I-AUV. Paper presented at: OCEANS 2015-Genova; 2015 May 18–21; Genova, Italy.
122

Zhang MJ, Peng SQ, Chu ZZ, Wang YJ. Motion planning of underwater vehicle-manipulator system with joint limit. Appl Mech Mater. 2012;220:1767–1771.

123
Simetti E, Casalino G, Torelli S, Sperinde A, Turetta A. Experimental results on task priority and dynamic programming based approach to underwater floating manipulation. Paper presented at: MTS/IEEE OCEANS-Bergen; 2013 Jun 10–13; Bergen, Norway.
124

Simetti E, Casalino G, Torelli S, Sperindeé A, Turetta A. Floating underwater manipulation: Developed control methodology and experimental validation within the trident project. J Field Robot. 2014;31(3):364–385.

125
Cieslak P, Ridao P, Giergiel M. Autonomous underwater panel operation by GIRONA500 UVMS: A practical approach to autonomous underwater manipulation. In: IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2015. p. 529–536.
126

Youakim D, Ridao P, Palomeras N, Spadafora F, Ribas D, Muzzupappa M. Moveit!: Autonomous underwater free-floating manipulation. IEEE Robot Autom Mag. 2017;24(3):41–51.

127
Yong Z, Wei-gang Z. Briefly description of underwater robots and their development directions. Intelligent Robot. 2019;41–44.
128

Pi R, Cieślak P, Ridao P, Sanz PJ. Twinbot: Autonomous underwater cooperative transportation. IEEE Access. 2021;9:37668–37684.

129

Gao Q, Deng Z, Ju Z, Zhang T. Dual-hand motion capture by using biological inspiration for bionic bimanual robot teleoperation. Cyborg Bionic Syst. 2023;4:0052.

130

Chen Z, Liang Q, Wei Z, Chen X, Shi Q, Yu Z, Sun T. An overview of in vitro biological neural networks for robot intelligence. Cyborg Bionic Syst. 2023;4:0001.

131
Al-khafaji AM, Ali M, Darus ZI. Finite element method to dynamic modelling of an underwater flexible single-link manipulator. J Vibroengineering. 2014.
132

Yang K, Wang XY, Ge T, Wu C. A dynamic model of an underwater quadruped walking robot using Kane’s method. J Shanghai Jiaotong Univ (Sci). 2014;19:160–168.

133

Lei L, Zhou Y, Yang G. Multisource information fusion-based environment perception and dynamic model of underwater vehicle in irregular ocean environment. Inf Fusion. 2023;94:257–271.

134

Joe H, Cho H, Sung M, Kim J, Yu S-C. Sensor fusion of two sonar devices for underwater 3D mapping with an AUV. Auton Robot. 2021;45:543–560.

135
Rahman S, Li AQ, Rekleitis I. SVIn2: An underwater SLAM system using sonar, visual, inertial, and depth sensor. Paper presented at: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2019 Nov 3–8; Macau, China.
136

Alves S, Babcinschi M, Silva A, Neto D, Fonseca D, Neto P. Integrated design fabrication and control of a bioinspired multimaterial soft robotic hand. Cyborg Bionic Syst. 2023;4:0051.

137
Gao L, Song Y, Gao J, Chen Y. Dynamic modeling and simulation an underwater vehicle manipulator system. Paper presented at: 2022 IEEE 9th International Conference on Underwater System Technology: Theory and Applications (USYS); 2022 Dec 5–6; Kuala Lumpur, Malaysia.
138
Sartore C, Simetti E, Wanderlingh F, Casalino G. Autonomous Deep Sea Mining Exploration: The EU ROBUST Project Control Framework. Paper presented at: OCEANS 2019-Marseille; 2019 Jun 17–20; Marseille, France.
139

Zhang Y, Zhang H, Liu J, Zhang S, Liu Z, Lyu E, Chen W. Submarine pipeline tracking technology based on AUVs with forward looking sonar. Appl Ocean Res. 2022;122:Article 103128.

Cyborg and Bionic Systems
Article number: 0089
Cite this article:
Sun L, Wang Y, Hui X, et al. Underwater Robots and Key Technologies for Operation Control. Cyborg and Bionic Systems, 2024, 5: 0089. https://doi.org/10.34133/cbsystems.0089
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return