PDF (8.3 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
References
Show full outline
Hide outline
Research Article | Open Access

Real-time Trajectory Planning and Tracking Control of Bionic Underwater Robot in Dynamic Environment

Feng Ding1,2Rui Wang1,2()Tiandong Zhang1Gang Zheng3Zhengxing Wu1Shuo Wang1,2,4
State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
Centrale Lille, CRIStAL-Centre de Recherche en Informatique Signal et Automatique de Lille, University of Lille, 59000 Lille, France
Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
Show Author Information

Abstract

In this article, we study the trajectory planning and tracking control of a bionic underwater robot under multiple dynamic obstacles. We first introduce the design of the bionic leopard cabinet underwater robot developed in our lab. Then, we model the trajectory planning problem of the bionic underwater robot by combining its dynamics and physical constraints. Furthermore, we conduct global trajectory planning for bionic underwater robots based on the temporal-spatial Bezier curves. In addition, based on the improved proximal policy optimization, local dynamic obstacle avoidance trajectory replanning is carried out. In addition, we design the fuzzy proportional-integral-derivative controller for tracking control of the planned trajectory. Finally, the effectiveness of the real-time trajectory planning and tracking control method is verified by comparative simulation in dynamic environment and semiphysical simulation of UWSim. Among them, the real-time trajectory planning method has advantages in trajectory length, trajectory smoothness, and planning time. The error of trajectory tracking control method is controlled around 0.2 m.

References

1

Cong Y, Fan B, Hou D, Fan H, Liu K, Luo J. Novel event analysis for human-machine collaborative underwater exploration. Pattern Recogn. 2019;96(S2):Article 106967.

2

An R, Guo S, Yu Y, Li C, Awa T. Multiple bio-inspired father–son underwater robot for underwater target object acquisition and identification. Micromachines. 2021;13(1):25.

3
Li J, Ma J, Liu Z, Li X, Ji Y, Li S. Design of an underwater autonomous Inspection robot. In: 2022 Global Conference on Robotics, Artificial Intelligence and Information Technology (GCRAIT); 2022. p. 27–31.
4

Xu P, Zheng J, Liu J, Liu X, Wang X, Wang S, Guan T, Fu X, Xu M, Xie G, et al. Deep-learning-assisted underwater 3D tactile tensegrity. Research. 2023;6:0062.

5

Sfakiotakis M, Lane DM, Davies JBC. Review of fish swimming modes for aquatic locomotion. IEEE J Ocean Eng. 1999;24(1):237–252.

6

Cao Q, Wang R, Zhang T, Wang Y, Wang S. Hydrodynamic modeling and parameter identification of a bionic underwater vehicle: RobDact. Cyborg Bionic Syst. 2022;2022:Article 9806328.

7
Simons DG, Bergers MMC, Henrion S, Hulzenga JIJ, Jutte RW, Pas WMG. A highly versatile autonomous underwater vehicle with biomechanical propulsion. In: OCEANS 2009-EUROPE; 2009. p. 1–6.
8

Zhang S, Qian Y, Liao P, Qin F, Yang J. Design and control of an agile robotic fish with integrative biomimetic mechanisms. IEEE/ASME Trans Mech. 2016;21(4):1846–1857.

9

Wang S, Wang Y, Wei Q, Tan M, Yu J. A bio-inspired robot with undulatory fins and its control methods. IEEE/ASME Trans Mech. 2017;22(1):206–216.

10

Wang R, Wang S, Wang Y, Cai M, Tan M. Vision-based autonomous hovering for the biomimetic underwater robot–RobCutt-Ⅱ. IEEE Trans Ind Electron. 2019;66(11):8578–8588.

11

Cai M, Wang S, Wang Y, Wang R, Tan M. Coordinated control of underwater biomimetic vehicle–manipulator system for free floating autonomous manipulation. IEEE Trans Syst Man Cybern Syst. 2021;51(8):4793–4803.

12

Sani M, Wang J. Research onpath and trajectory planning of underwater robot based on PID algorithm. Intell Comput Appl. 2020;10(8):206–211.

13
Filaretov VF, Yukhimets DA, Mursalimov ES, Scherbatyuk AF, Tuphanov IE. Some marine trial results of a new method for AUV trajectory motion control. In: 2014 Oceans - St. John’s; 2014. p. 1–6.
14

Wang Y, Wang S, Tan M, Zhou C, Wei Q. Real-time dynamic Dubins-helix method for 3-D trajectory smoothing. IEEE Trans Control Syst Technol. 2015;23(2):730–736.

15
Murthy K, Rock S. Spline-based trajectory planning techniques for benthic AUV operations. In: 2010 IEEE/OES Autonomous Underwater Vehicles; 2010. p. 1–9.
16
Zeng Z, Sammut K, He F, Lammas A. Efficient path evaluation for AUVs using adaptive B-spline approximation. In: 2012 Oceans; 2012. p. 1–8.
17

Li Y, Jiang Y, Zhang G, Chen P. AUV recovery path planning method considering geometrical constraints. Robot. 2015;37:478–485.

18

Wang R, Jiang T, Bai G, Wang Y, Wang S, Tan M. Stepwise cooperative trajectory planning for multiple BUVs based on temporal–spatial Bezier curves. IEEE Trans Instrum Meas. 2023;72:1–14.

19
Gan W, Cai C, Li C, Wang H. A Trajectory planning method of autonomous underwater vehicles based on repulsive field model prediction. In: 2022 34th Chinese Control and Decision Conference (CCDC); 2022. p. 4671–4676.
20

Wang C, Wei L, Wang Z, Song M, Mahmoudian N. Reinforcement learning-based multi-AUV adaptive trajectory planning for under-ice field estimation. Sensors. 2018;18(11):3859–3859.

21
Yang J, Xi M, Wen J, Li Y, Song HH. A digital twins enabled underwater intelligent internet vehicle path planning system via reinforcement learning and edge computing. Digit Commun Netw. 2022;In Press, Corrected Proof;S2352864822000967.
22

Hadi B, Khosravi A, Sarhadi P. Deep reinforcement learning for adaptive path planning and control of an autonomous underwater vehicle. Appl Ocean Res. 2022;129(17):Article 103326.

23
Wang R, Wang S, Wang Y, Wei Q. Way-point tracking control for a biomimetic underwater vehicle based on backstepping. In: 2016 35th Chinese Control Conference (CCC); 2016. p. 5970–5975.
24

Oh SR, Sun J. Path following of underactuated marine surface vessels using line-of-sight based model predictive control. Ocean Eng. 2010;37(2):289–295.

25
Wang R, Wang S, Wang Y, Tang C. Path following for a biomimetic underwater vehicle based on ADRC. In: 2017 IEEE International Conference on Robotics and Automation (ICRA); 2017. p. 3519–3524.
26

Chen J, Zhu H, Zhang L, Sun Y. Research on fuzzy control of path tracking for underwater vehicle based on genetic algorithm optimization. Ocean Eng. 2018;156:217–223.

27

Zhang C, Cheng P, Du B, Dong B, Zhang W. AUV path tracking with real-time obstacle avoidance via reinforcement learning under adaptive constraints. Ocean Eng. 2022;256(7):Article 111453.

28

Wang N, Gao Y, Zhang X. Data-driven performance-prescribed reinforcement learning control of an unmanned surface vehicle. IEEE Trans NeurNetw Learn Syst. 2021;32(12):5456–5467.

29

Wang N, Zhang Y, Ahn CK, Xu Q. Autonomous pilot of unmanned surface vehicles: Bridging path planning and tracking. IEEE Trans Veh Technol. 2022;71(3):2358–2374.

30

Cui R, Yang C, Li Y, Sharma S. Adaptive neural network control of AUVs with control input nonlinearities using reinforcement learning. IEEE Trans Syst Man Cybern Syst. 2017;47(6):1019–1029.

31

Wang N, Gao Y, Zhao H, Ahn CK. Reinforcement learning-based optimal tracking control of an unknown unmanned surface vehicle. IEEE Trans NeurNetw Learn Syst. 2021;32(7):3034–3045.

32

Zhang T, Wang R, Wang Y, Cheng L, Wang S, Tan M. Design and locomotion control of a Dactylopteridae-inspired biomimetic underwater vehicle with hybrid propulsion. IEEE Trans Autom Sci Eng. 2022;19(3):2054–2066.

33
Fossen TI. Guidance and control of ocean vehicles [dissertation]. [Trondheim (Norway)]: University of Trondheim; 1994.
34

Wang R, Wang S, Wang Y, Tan M, Yu J. A paradigm for path following control of a ribbon-fin propelled biomimetic underwater vehicle. IEEE Trans Syst Man Cybern Syst. 2019;49(3):482–493.

35
Ma R, Wang Y, Wang R, Wang S. Development of a propeller with undulating fins and its characteristics. In: 2019 IEEE International Conference on Real-time Computing and Robotics (RCAR); 2019. p. 737–742.
36

Zhi Q, Mizumoto M. PID type fuzzy controller and parameters adaptive method. Fuzzy Sets Syst. 1996;78(1):23–35.

37
Prats M, Pérez J, Fernández JJ, Sanz PJ. An open source tool for simulation and supervision of underwater intervention missions. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2012. p. 2577–2582.
Cyborg and Bionic Systems
Article number: 0112
Cite this article:
Ding F, Wang R, Zhang T, et al. Real-time Trajectory Planning and Tracking Control of Bionic Underwater Robot in Dynamic Environment. Cyborg and Bionic Systems, 2024, 5: 0112. https://doi.org/10.34133/cbsystems.0112
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return