AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Protecting lithium metal anodes in lithium–sulfur batteries: A review

Chen-Xi Bi1,2Li-Peng Hou3Zheng Li3Meng Zhao1,2Xue-Qiang Zhang1,2Bo-Quan Li1,2 ( )Qiang Zhang3Jia-Qi Huang1,2( )
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Show Author Information

Abstract

Lithium–sulfur (Li–S) batteries are considered as one of the most promising next-generation energy storage devices because of their ultrahigh theoretical energy density beyond lithium-ion batteries. The cycling stability of Li metal anode largely determines the prospect of practical applications of Li–S batteries. This review systematically summarizes the current advances of Li anode protection in Li–S batteries regarding both fundamental understanding and regulation methodology. First, the main challenges of Li metal anode instability are introduced with emphasis on the influence from lithium polysulfides. Then, a timeline with 4 stages is presented to afford an overview of the developing history of this field. Following that, 3 Li anode protection strategies are discussed in detail in aspects of guiding uniform Li plating/stripping, reducing polysulfide concentration in anolyte, and reducing polysulfide reaction activity with Li metal. Finally, 3 viewpoints are proposed to inspire future research and development of advanced Li metal anode for practical Li–S batteries.

References

1

Gür TM. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy Environ Sci. 2018;11(10):2696–2767.

2

Zhao M, Li BQ, Peng HJ, Yuan H, Wei JY, Huang JQ. Lithium–sulfur batteries under lean electrolyte conditions: Challenges and opportunities. Angew Chem Int Ed. 2019;59(31):12636–12652.

3

Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li−O2 and Li−S batteries with high energy storage. Nat Mater. 2011;11(1):19–29.

4

Cuisinier M, Cabelguen PE, Evers S, He G, Kolbeck M, Garsuch A, Bolin T, Balasubramanian M, Nazar LF. Sulfur speciation in Li–S batteries determined by operando X-ray absorption spectroscopy. J Phys Chem Lett. 2013;4(19):3227–3232.

5

Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon–sulphur cathode for lithium−sulphur batteries. Nat Mater. 2009;8(6):500–506.

6

Yuan Z, Peng HJ, Hou TZ, Huang JQ, Chen CM, Wang DW, Cheng XB, Wei F, Zhang Q. Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016;16(1):519–527.

7

Wang JL, Yang J, Xie JY, Xu NX, Li Y. Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. Electrochem Commun. 2002;4(6):499–502.

8

Zhang ZW, Peng HJ, Zhao M, Huang JQ. Heterogeneous/homogeneous mediators for high-energy-density lithium–sulfur batteries: Progress and prospects. Adv Funct Mater. 2018;28(38):1707536.

9

Ma YW, Zhang H, Wu B, Wang M, Li X, Zhang H. Lithium sulfur primary battery with super high energy density: Based on the cauliflower-like structured C/S cathode. Sci Rep. 2015;5(1):14949.

10

Cheng XB, Yan C, Huang JQ, Li P, Zhu L, Zhao L, Zhang Y, Zhu W, Yang ST, Zhang Q. The gap between long lifespan Li−S coin and pouch cells: The importance of lithium metal anode protection. Energy Stor Mater. 2017;6:18–25.

11

Suo LM, Hu YS, Li H, Armand M, Chen L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun. 2013;4:1481.

12

Sun K, Wu Q, Tong X, Gan H. Electrolyte with low polysulfide solubility for Li–S batteries. ACS Appl Energy Mater. 2018;1(6):2608–2618.

13

Li XG, Gao Y, He X, Huang Q, Chen S, Kim SH, Wang D. Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium–sulfur batteries. Nat Commun. 2017;8(1):850.

14

Wei JY, Zhang XQ, Hou LP, Shi P, Li BQ, Xiao Y, Yan C, Yuan H, Huang JQ. Shielding polysulfide intermediates by an organosulfur-containing solid electrolyte interphase on the lithium anode in lithium–sulfur batteries. Adv Mater. 2020;32(37):2003012.

15

Wang WW, Yue X, Meng J, Wang J, Wang X, Chen H, Shi D, Fu J, Zhou Y, Chen J, et al. Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium–sulfur batteries. Energy Stor Mater. 2019;18:414–422.

16

Peled E, Golodnitsky D, Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc. 1997;144(8):L208.

17

Zhou MY, Ding XQ, Ding JF, Hou LP, Shi P, Xie J, Li BQ, Huang JQ, Zhang XQ, Zhang Q. Quantifying the apparent electron transfer number of electrolyte decomposition reactions in anode-free batteries. Joule. 2022;6(9):2122–2137.

18

Wood KN, Kazyak E, Chadwick AF, Chen KH, Zhang JG, Thornton K, Dasgupta NP. Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent Sci. 2016;2(11):790–801.

19

Boyle DT, Huang W, Wang H, Li Y, Chen H, Yu Z, Zhang W, Bao Z, Cui Y. Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nat Energy. 2021;6:487–494.

20

Lin DC, Liu Y, Li Y, Li Y, Pei A, Xie J, Huang W, Cui Y. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism. Nat Chem. 2019;11(4):382–389.

21

Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem Rev. 2017;117(15):10403–10473.

22

Fang C, Li J, Zhang M, Zhang Y, Yang F, Lee JZ, Lee MH, Alvarado J, Schroeder MA, Yang Y, et al. Quantifying inactive lithium in lithium metal batteries. Nature. 2019;572(7770):511–515.

23

Lu DP, Shao Y, Lozano T, Bennett WD, Graff GL, Polzin B, Zhang J, Engelhard MH, Saenz NT, Henderson WA, et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv Energy Mater. 2015;5(3):1400993.

24

Liu H, Cheng XB, Xu R, Zhang XQ, Yan C, Huang JQ, Zhang Q. Plating/stripping behavior of actual lithium metal anode. Adv Energy Mater. 2019;9(44):1902254.

25

Nanda S, Manthiram A. Lithium degradation in lithium–sulfur batteries: Insights into inventory depletion and interphasial evolution with cycling. Energy Environ Sci. 2020;13(8):2501–2514.

26

Qie L, Zu C, Manthiram A. A high energy lithium–sulfur battery with ultrahigh-loading lithium polysulfide cathode and its failure mechanism. Adv Energy Mater. 2016;6(7):1502459.

27

Talian SD, Vizintin A, Moškon J, Dominko R, Gaberšček M. Electrochemical kinetics study of interaction between Li metal and polysulfides. J Electrochem Soc. 2020;167(8):Article 080526.

28

Yan C, Zhang XQ, Huang JQ, Liu Q, Zhang Q. Lithium-anode protection in lithium–sulfur batteries. Trends Chem. 2019;1(7):693–704.

29

Rauh RD, Abraham KM, Pearson GF, Surprenant JK, Brummer SB. A lithium/dissolved sulfur battery with an organic electrolyte. J Electrochem Soc. 1979;126(4):523.

30

Yamin H, Peled E. Electrochemistry of a nonaqueous lithium/sulfur cell. J Power Sources. 1983;9(3):281–287.

31

Wang JL, Yang J, Xie J, Xu N. A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries. Adv Mater. 2002;14(13–14):963–965.

32

Peled E, Sternberg Y, Gorenshtein A, Lavi Y. Lithium–sulfur battery—Evaluation of dioxolane-based electrolytes. J Electrochem Soc. 1989;136(6):1621–1625.

33

Mikhaylik YV, Akridge JR. Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc. 2004;151(11):A1969–A1976.

34

Lee YM, Choi NS, Park JH, Park JK. Electrochemical performance of lithium/sulfur batteries with protected Li anodes. J Power Sources. 2003;119–121:964–972.

35
Mikhaylik YM. Electrochemical cell useful for battery comprises cathode of electroactive sulfur-containing material, anode of lithium, and nonaqueous electrolyte having nonaqueous solvents e.g. acyclic ethers, lithium salts and nitrogen-oxygen additives. MIKHAYLIK Y V (MIKH-Individual) SION POWER CORP (SIPO-C).
36

Moy D, Manivannan A, Narayanan SR. Direct measurement of polysulfide shuttle current: A window into understanding the performance of lithium–sulfur cells. J Electrochem Soc. 2015;162(1):A1–A7.

37

Zhang SS. Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim Acta. 2012;70:344–348.

38

Sun ML, Wang XF, Wang J, Yang H, Wang LN, Liu TX. Assessment on the self-discharge behavior of lithium–sulfur batteries with LiNO3-possessing electrolytes. ACS Appl Mater Interfaces. 2018;10(41):35175–35183.

39

Liu N, Hu L, McDowell MT, Jackson A, Cui Y. Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano. 2011;5(8):6487–6493.

40

Duan BC, Wang WK, Zhao HL, Wang AB, Wang MJ, Yuan KG, Yu ZB, Yang YS. Li–B alloy as anode material for lithium/sulfur battery. ECS Electrochem Lett. 2013;2(6):A47.

41

Yoshida K, Nakamura M, Kazue Y, Tachikawa N, Tsuzuki S, Seki S, Dokko K, Watanabe M. Oxidative-stability enhancement and charge transport mechanism in glyme–lithium salt equimolar complexes. J Am Chem Soc. 2011;133(33):13121–13129.

42

Hagen M, Quiroga Gonzalez E, Dorfler S, Fahrer G, Tubke J, Hoffmann MJ, Althues H, Speck R, Krampfert M, Kaskel S, et al. Studies on preventing Li dendrite formation in Li–S batteries by using pre-lithiated Si microwire anodes. J Power Sources. 2014;248:1058–1066.

43

Hagen M, Fanz P, Tübke J. Cell energy density and electrolyte/sulfur ratio in Li–S cells. J Power Sources. 2014;264:30–34.

44

Kang HS, Park EJ, Hwang JY, Kim HS, Aurbach D, Rosenman A, Sun YK. A scaled-up lithium (ion)–sulfur battery: Newly faced problems and solutions. Adv Mater Technol. 2016;1(6):1600052.

45

Su CC, He M, Amine R, Chen Z, Amine K. The relationship between the relative solvating power of electrolytes and shuttling effect of lithium polysulfides in lithium–sulfur batteries. Angew Chem Int Ed. 2018;57(37):12033–12036.

46

Hou LP, Zhang XQ, Yao N, Chen X, Li BQ, Shi P, Jin CB, Huang JQ, Zhang Q. An encapsulating lithium-polysulfide electrolyte for practical lithium–sulfur batteries. Chem. 2022;8:1–16.

47

Shi P, Zhang XQ, Shen X, Zhang R, Liu H, Zhang Q. A review of composite lithium metal anode for practical applications. Adv Mater Technol. 2020;5(1):1900806.

48

Zhang CY, Wang AX, Zhang JH, Guan XZ, Tang WJ, Luo JY. 2D materials for lithium/sodium metal anodes. Adv Energy Mater. 2018;8(34):1802833.

49

Bai P, Li J, Brushett FR, Bazant MZ. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ Sci. 2016;9(10):3221–3229.

50

Zhan YX, Shi P, Zhang XQ, Ding F, Huang JQ, Jin Z, Xiang R, Liu X, Zhang Q. The insights of lithium metal plating/stripping in porous hosts: Progress and perspectives. Energy Technol. 2021;9(2):2000700.

51

Bai MH, Xie KY, Yuan K, Zhang K, Li N, Shen C, Lai YQ, Vajtai R, Ajayan P, Wei BQ. A scalable approach to dendrite-free lithium anodes via spontaneous reduction of spray-coated graphene oxide layers. Adv Mater. 2018;30(29):1801213.

52

Han JW, Kong DB, Lv W, Tang DM, Han DL, Zhang C, Liu DH, Xiao ZC, Zhang XH, Xiao J. Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage. Nat Commun. 2018;9(1):402.

53

Zhang H, Huang ML, Song J, Sun DM, Qiao YJ, Zhou XM, Ye CY, Liu WP, Liu WJ, Wei ZK, et al. Effect of the defect densities of reduced graphene oxide network on the stability of lithium metal anodes. Mater Today Commun. 2021;27:Article 102276.

54

Zhang M, Guo Y, Wei YH, Wang BY, Zhang Y, Wu H, Zhou XG, Zhang Y, Wang Q. Integrating conductivity and active sites: Fe/Fe3C@GNC as an trapping-catalyst interlayer and dendrite-free lithium host for the lithium–sulfur cell with outstanding rate performance. J Mater Chem A. 2020;8(36):18987–19000.

55

Gao XJ, Yang XF, Adair K, Li XN, Liang JW, Sun Q, Zhao Y, Li R, Sham TK, Sun XL. 3D vertically aligned Li metal anodes with ultrahigh cycling currents and capacities of 10 mA cm−2/20 mAh cm−2 realized by selective nucleation within microchannel walls. Adv Energy Mater. 2020;10(7):2903753.

56

Wang AX, Tang S, Kong DB, Liu S, Chiou K, Zhi LJ, Huang JX, Xia YY, Luo JY. Bending-tolerant anodes for lithium-metal batteries. Adv Mater. 2018;30(1):1703891.

57

Jin S, Xin S, Wang LJ, Du ZZ, Cao L, Chen JF, Kong XH, Gong M, Lu JL, Zhu YW. Covalently connected carbon nanostructures for current collectors in both the cathode and anode of Li–S batteries. Adv Mater. 2016;28(41):9094–9102.

58

Lin DC, Liu YY, Liang Z, Lee HW, Sun J, Wang HT, Yan K, Xie J, Cui Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotechnol. 2016;11(7):626–632.

59

Lin DC, Liu YY, Chen W, Zhou GM, Liu K, Dunn B, Cui Y. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon. Nano Lett. 2017;17(6):3731–3737.

60

Chang J, Shang J, Sun YM, Ono LK, Wang DR, Ma ZJ, Huang QY, Chen DD, Liu GQ, Cui Y, et al. Flexible and stable high-energy lithium–sulfur full batteries with only 100% oversized lithium. Nat Commun. 2018;9(1):4480.

61

Lin SX, Yan Y, Cai ZH, Liu L, Hu XB. A host-configured lithium–sulfur cell built on 3D nickel photonic crystal with superior electrochemical performances. Small. 2018;14(21):1800616.

62

Zhan YX, Shi P, Ma XX, Jin CB, Zhang QK, Yang SJ, Li BQ, Zhang XQ, Huang JQ. Failure mechanism of lithiophilic sites in composite lithium metal anode under practical conditions. Adv Energy Mater. 2022;12(2):2103291.

63

Yan K, Lu ZD, Lee HW, Xiong F, Hsu PC, Li YZ, Zhao J, Chu S, Cui Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat Energy. 2016;1(3):1–8.

64

Zhang R, Chen X, Shen X, Zhang XQ, Chen XR, Cheng XB, Yan C, Zhao CZ, Zhang Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule. 2018;2(4):764–777.

65

He JR, Manthiram A. 3D CoSe@C aerogel as a host for dendrite-free lithium-metal anode and efficient sulfur cathode in Li–S full cells. Adv Energy Mater. 2020;10(41):2002654.

66

Kang N, Lin Y, Yang L, Lu D, Xiao J, Qi Y, Cai M. Cathode porosity is a missing key parameter to optimize lithium−sulfur battery energy density. Nat Commun. 2019;10(1):4597.

67

Bi CX, Zhao M, Hou LP, Chen ZX, Zhang XQ, Li BQ, Yuan H, Huang JQ. Anode material options toward 500 Wh kg−1 lithium–sulfur batteries. Adv Sci. 2022;9(2):2103910.

68

Xu R, Cheng XB, Yan C, Zhang XQ, Xiao Y, Zhao CZ, Huang JQ, Zhang Q. Artificial interphases for highly stable lithium metal anode. Matter. 2019;1(2):317–344.

69

Liu YY, Xu XY, Kapitanova OO, Evdokimov PV, Song ZX, Matic A, Xiong SZ. Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Adv Energy Mater. 2022;12(9):2103589.

70

Chen XR, Yao YX, Yan C, Zhang R, Cheng XB, Zhang Q. A diffusion-reaction competition mechanism to tailor lithium deposition for lithium-metal batteries. Angew Chem Int Ed. 2020;59(20):7743–7747.

71

Shen X, Zhang R, Chen X, Cheng XB, Li XY, Zhang Q. The failure of solid electrolyte interphase on Li metal anode: Structural uniformity or mechanical strength? Adv Energy Mater. 2020;10(10):1903645.

72

Cha E, Patel MD, Park J, Hwang J, Prasad V, Cho K, Choi W. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries. Nat Nanotechnol. 2018;13(4):337–344.

73

Ma GQ, Wen ZY, Wu MF, Shen C, Wang QS, Jin J, Wu XW. A lithium anode protection guided highly-stable lithium–sulfur battery. Chem Commun. 2014;50(91):14209–14212.

74

Fan L, Zhuang HL, Gao L, Lu Y, Archer LA. Regulating Li deposition at artificial solid electrolyte interphases. J Mater Chem A. 2017;5(7):3483–3492.

75

Yuan Y, Wu F, Bai Y, Li Y, Chen G, Wang Z, Wu C. Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode. Energy Stor Mater. 2019;16:411–418.

76

Yuan Y, Wu F, Chen G, Bai Y, Wu C. Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode. J Energy Chem. 2019;37:197–203.

77

Zhao W, Zhang K, Wu F, Wang X, Guo R, Zhang K, Yuan Y, Bai Y, Wu C. Moisture-assistant chlorinated separator with dual-protective interface for ultralong-life and high-rate lithium metal batteries. Chem Eng J. 2023;453:Article 139348.

78

Cheng XB, Yan C, Chen X, Guan C, Huang JQ, Peng HJ, Zhang R, Yang ST, Zhang Q. Implantable solid electrolyte interphase in lithium-metal batteries. Chem. 2017;2(2):258–270.

79

Zhao J, Liao L, Shi FF, Lei T, Chen GX, Pei A, Sun J, Yan K, Zhou GM, Xie J, et al. Surface fluorination of reactive battery anode materials for enhanced stability. J Am Chem Soc. 2017;139(33):11550–11558.

80

Herbert EG, Tenhaeff WE, Dudney NJ, Pharr GM. Mechanical characterization of LiPON films using nanoindentation. Thin Solid Films. 2011;520(1):413–418.

81

Lacey MJ, Yalamanchili A, Maibach J, Tengstedt C, Edström K, Brandell D. The Li–S battery: An investigation of redox shuttle and self-discharge behaviour with LiNO3-containing electrolytes. RSC Adv. 2016;6(5):3632–3641.

82

Zhang L, Ling M, Feng J, Mai LQ, Liu G, Guo JH. The synergetic interaction between LiNO3 and lithium polysulfides for suppressing shuttle effect of lithium–sulfur batteries. Energy Stor Mater. 2018;11:24–29.

83

Li WY, Yao HB, Yan K, Zheng GY, Liang Z, Chiang YM, Cui Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat Commun. 2015;6(1):7436.

84

Hou LP, Yao LY, Bi CX, Xie J, Li BQ, Huang JQ, Zhang XQ. High-valence sulfur-containing species in solid electrolyte interphase stabilizes lithium metal anodes in lithium–sulfur batteries. J Energy Chem. 2022;68:300–305.

85

Zhang SS. Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte. J Electrochem Soc. 2012;159(7):A920–A923.

86

Hou LP, Yao N, Xie J, Shi P, Sun SY, Jin CB, Chen CM, Liu QB, Li BQ, Zhang XQ, et al. Modification of nitrate ion enables stable solid electrolyte interphase in lithium metal batteries. Angew Chem Int Ed. 2022;61(20):Article e202201406.

87

Zhang XQ, Cheng XB, Chen X, Yan C, Zhang Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater. 2017;27(10):8.

88

Xie J, Sun SY, Chen X, Hou LP, Li BQ, Peng HJ, Huang JQ, Zhang XQ, Zhang Q. Fluorinating the solid electrolyte interphase by rational molecular design for practical lithium-metal batteries. Angew Chem Int Ed. 2022;61(29):Article e202204776.

89

Xiao YL, Han B, Zeng Y, Chi SS, Zeng XZ, Zheng ZJ, Xu K, Deng YH. New lithium salt forms interphases suppressing both Li dendrite and polysulfide shuttling. Adv Energy Mater. 2020;10(14):1903937.

90

Azimi N, Xue Z, Bloom I, Gordin ML, Wang DH, Daniel T, Takoudis C, Zhang ZC. Understanding the effect of a fluorinated ether on the performance of lithium–sulfur batteries. ACS Appl Mater Interfaces. 2015;7(17):9169–9177.

91

Tokranov A, Sheldon BW, Lu P, Xiao X, Mukhopadhyay A. The origin of stress in the solid electrolyte interphase on carbon electrodes for Li ion batteries. J Electrochem Soc. 2013;161(1):A58.

92

Luo D, Zheng L, Zhang Z, Li M, Chen ZW, Cui RG, Shen YB, Li GR, Feng RF, Zhang SJ, et al. Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries. Nat Commun. 2021;12(1):186.

93

Hu Y, Chen W, Lei TY, Jiao Y, Wang HB, Wang XP, Rao GF, Wang XF, Chen B, Xiong J. Graphene quantum dots as the nucleation sites and interfacial regulator to suppress lithium dendrites for high-loading lithium–sulfur battery. Nano Energy. 2020;68:Article 104373.

94

Li YY, Liu YP, Xue LX, Chen W, Lei TY, Hu AJ, Huang JW, Wang XP, Wang XF, Chen B, et al. Eliminating anion depletion region and promoting Li+ solvation via anionphilic metal organic framework for dendrite-free lithium deposition. Nano Energy. 2022;92:Article 206708.

95

Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, Shao Y, Engelhard MH, Nie Z, Xiao J, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc. 2013;135(11):4450–4456.

96

Jia WS, Fan C, Wang LP, Wang QJ, Zhao MJ, Zhou AJ, Li JZ. Extremely accessible potassium nitrate (KNO3) as the highly efficient electrolyte additive in lithium battery. ACS Appl Mater Interfaces. 2016;8(24):15399–15405.

97

Nandasiri MI, Camacho Forero LE, Schwarz AM, Shutthanandan V, Thevuthasan S, Balbuena PB, Mueller KT, Murugesan V. In situ chemical imaging of solid-electrolyte interphase layer evolution in Li–S batteries. Chem Mater. 2017;29(11):4728–4737.

98

Xu H, Jiang Q, Zhang B, Chen C, Lin Z. Integrating conductivity, immobility, and catalytic ability into high-N carbon/graphene sheets as an effective sulfur host. Adv Mater. 2020;32(7):Article e1906357.

99

Chen H, Zhou GM, Boyle D, Wan JY, Wang HX, Lin DC, Mackanic D, Zhang ZW, Kim SC, Lee HR, et al. Electrode design with integration of high tortuosity and sulfur-philicity for high-performance lithium–sulfur battery. Matter. 2020;2(6):1605–1620.

100

Agostini M, Matic A. Designing highly conductive functional groups improving guest-host interactions in Li/S batteries. Small. 2020;16(2):Article e1905585.

101

Peng HJ, Huang JQ, Zhao MQ, Zhang Q, Cheng XB, Liu XY, Qian WZ, Wei F. Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium–sulfur batteries. Adv Funct Mater. 2014;24(19):2772–2781.

102

Zhao MQ, Liu XF, Zhang Q, Tian GL, Huang JQ, Zhu W, Wei F. Graphene/single-walled carbon nanotube hybrids: One-step catalytic growth and applications for high-rate Li–S batteries. ACS Nano. 2012;6(12):10759–10769.

103

Hou TZ, Chen X, Peng HJ, Huang JQ, Li BQ, Zhang Q, Li B. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium–sulfur batteries. Small. 2016;12(24):3283–3291.

104

Chen X, Peng HJ, Zhang R, Hou TZ, Huang JQ, Li B, Zhang Q. An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S– Or Li–binding on first-row transition-metal sulfides? ACS Energy Lett. 2017;2(4):795–801.

105

Liang X, Kwok CY, Lodi Marzano F, Pang Q, Cuisinier M, Huang H, Hart CJ, Houtarde D, Kaup K, Sommer H, et al. Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: The goldilocks principle. Adv Energy Mater. 2016;6(6):1501636.

106

Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF. A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat Commun. 2015;6:5682.

107

Zhang LL, Liu DB, Muhammad Z, Wan F, Xie W, Wang YJ, Song L, Niu ZQ, Chen J. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium–sulfur batteries. Adv Mater. 2019;31(40):1903955.

108

Babu G, Ababtain K, Ng K, Arava LMR. Electrocatalysis of lithium polysulfides: Current collectors as electrodes in Li/S battery configuration. Sci Rep. 2015;5(1):1–7.

109

Zhou TH, Lv W, Li J, Zhou GM, Zhao Y, Fan SX, Liu BL, Li BH, Kang FY, Yang QH. Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy Environ Sci. 2017;10(7):1694–1703.

110

Zhao M, Peng HJ, Li BQ, Chen X, Xie J, Liu X, Zhang Q, Huang JQ. Electrochemical phase evolution of metal-based pre-catalysts for high-rate polysulfide conversion. Angew Chem Int Ed. 2020;59(23):9011–9017.

111

Barchasz C, Molton F, Duboc C, Lepretre JC, Patoux S, Alloin F. Lithium/sulfur cell discharge mechanism: An original approach for intermediate species identification. Anal Chem. 2012;84(9):3973–3980.

112

Ye H, Sun J, Zhang S, Lin H, Zhang T, Yao Q, Lee JY. Stepwise electrocatalysis as a strategy against polysulfide shuttling in Li–S batteries. ACS Nano. 2019;13(12):14208–14216.

113

Yang H, Chen J, Yang J, Wang J. Prospect of sulfurized pyrolyzed poly(acrylonitrile) (S@pPAN) cathode materials for rechargeable lithium batteries. Angew Chem Int Ed. 2020;59(19):7306–7318.

 

Zheng S, Chen Y, Xu Y, Yi F, Zhu Y, Liu Y, Yang J, Wang C. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries. ACS Nano. 2013;7(12):10995–11003.

115

Duan BC, Wang WK, Wang AB, Yuan KG, Yu ZB, Zhao HL, Qiu JY, Yang YS. Carbyne polysulfide as a novel cathode material for lithium/sulfur batteries. J Mater Chem A. 2013;1(42):13261–13267.

116

Xin S, Gu L, Zhao NH, Yin YX, Zhou LJ, Guo YG, Wan LJ. Smaller sulfur molecules promise better lithium–sulfur batteries. J Am Chem Soc. 2012;134(45):18510–18513.

117

Helen M, Reddy MA, Diemant T, Golla Schindler U, Behm RJ, Kaiser U, Fichtner M. Single step transformation of Sulphur to Li2S2/Li2S in Li–S batteries. Sci Rep. 2015;5:12146.

118

Chen WJ, Li BQ, Zhao CX, Zhao M, Yuan TQ, Sun RC, Huang JQ, Zhang Q. Electrolyte regulation towards stable lithium-metal anodes in lithium–sulfur batteries with sulfurized polyacrylonitrile cathodes. Angew Chem Int Ed. 2020;59(27):10732–10745.

119

Wang JL, He YS, Yang J. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries. Adv Mater. 2015;27(3):569–575.

120

Huang JQ, Zhang Q, Wei F. Multi-functional separator/interlayer system for high-stable lithium–sulfur batteries: Progress and prospects. Energy Stor Mater. 2015;1:127–145.

121

Chung SH, Manthiram A. Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium–sulfur batteries. Adv Funct Mater. 2014;24(33):5299–5306.

122

Li W, Hicks Garner J, Wang J, Liu J, Gross AF, Sherman E, Graetz J, Vajo JJ, Liu P. V2O5 polysulfide anion barrier for long-lived Li–S batteries. Chem Mater. 2014;26(11):3403–3410.

123

Huang JQ, Zhuang TZ, Zhang Q, Peng HJ, Chen CM, Wei F. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium–sulfur batteries. ACS Nano. 2015;9(3):3002–3011.

124

Jin ZQ, Xie K, Hong XB, Hu ZQ, Liu X. Application of lithiated Nafion ionomer film as functional separator for lithium–sulfur cells. J Power Sources. 2012;218:163–167.

125

Liu M, Li Q, Qin XY, Liang GM, Han WJ, Zhou D, He YB, Li BH, Kang FY. Suppressing self-discharge and shuttle effect of lithium–sulfur batteries with V2O5-decorated carbon nanofiber interlayer. Small. 2017;13(12):1602539.

126

Jin ZQ, Xie K, Hong XB. Electrochemical performance of lithium/sulfur batteries using perfluorinated ionomer electrolyte with lithium sulfonyl dicyanomethide functional groups as functional separator. RSC Adv. 2013;3(23):8889–8898.

127

Li S, Zhang W, Zheng J, Lv M, Song H, Du L. Inhibition of polysulfide shuttles in Li–S batteries: Modified separators and solid-state electrolytes. Adv Energy Mater. 2021;11(2):2000779.

128

Wu F, Yuan YX, Cheng XB, Bai Y, Li Y, Wu C, Zhang Q. Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes. Energy Stor Mater. 2018;15:148–170.

129

Zhang K, Wu F, Wang XR, Zheng LM, Yang XY, Zhao HC, Sun YH, Zhao WB, Bai Y, Wu C. An ion-dipole-reinforced polyether electrolyte with ion-solvation cages enabling high–voltage-tolerant and ion-conductive solid-state lithium metal batteries. Adv Funct Mater. 2022;32(5):2107764.

130

Bonnick P, Niitani K, Nose M, Suto K, Arthur TS, Muldoon J. A high performance all solid state lithium sulfur battery with lithium thiophosphate solid electrolyte. J Mater Chem A. 2019;7(42):24173–24179.

131

Wu F, Zhang K, Liu YR, Gao HC, Bai Y, Wang XR, Wu C. Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects. Energy Stor Mater. 2020;33:26–54.

132

Yu XW, Bi ZH, Zhao F, Manthiram A. Polysulfide-shuttle control in lithium-sulfur batteries with a chemically/electrochemically compatible NaSICON-type solid electrolyte. Adv Energy Mater. 2016;6(24):1601392.

133

Hou LP, Zhang XQ, Li BQ, Zhang Q. Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium–sulfur batteries. Mater Today. 2021;45:62–76.

134

Su CC, He M, Amine R, Amine K. A selection rule for hydrofluoroether electrolyte cosolvent: Establishing a linear free-energy relationship in lithium–sulfur batteries. Angew Chem Int Ed. 2019;58(31):10591–10595.

135

Drvarič Talian S, Jeschke S, Vizintin A, Pirnat K, Arčon I, Aquilanti G, Johansson P, Dominko R. Fluorinated ether based electrolyte for high-energy lithium–sulfur batteries: Li+ solvation role behind reduced polysulfide solubility. Chem Mater. 2017;29(23):10037–10044.

136

Zheng J, Ji GB, Fan XL, Chen J, Li Q, Wang HY, Yang Y, DeMella KC, Raghavan SR, Wang C. High-fluorinated electrolytes for Li–S batteries. Adv Energy Mater. 2019;9(16):1803774.

137

Shin ES, Kim K, Oh SH, Cho WI. Polysulfide dissolution control: The common ion effect. Chem Commun. 2013;49(20):2004–2006.

138

Qian JF, Henderson WA, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang JG. High rate and stable cycling of lithium metal anode. Nat Commun. 2015;6(1):1–9.

139

Pang Q, Shyamsunder A, Narayanan B, Kwok CY, Curtiss LA, Nazar LF. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nat Energy. 2018;3(9):783–791.

140

Cuisinier M, Cabelguen PE, Adams BD, Garsuch A, Balasubramanian M, Nazar LF. Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteries. Energy Environ Sci. 2014;7(8):2697–2705.

141

Watanabe M, Thomas ML, Zhang S, Ueno K, Yasuda T, Dokko K. Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev. 2017;117(10):7190–7239.

142

Park JW, Yamauchi K, Takashima E, Tachikawa N, Ueno K, Dokko K, Watanabe M. Solvent effect of room temperature ionic liquids on electrochemical reactions in lithium–sulfur batteries. J Phys Chem C. 2013;117(9):4431–4440.

143

Park JW, Ueno K, Tachikawa N, Dokko K, Watanabe M. Ionic liquid electrolytes for lithium–sulfur batteries. J Phys Chem C. 2013;117(40):20531–20541.

144

Ueno K, Park JW, Yamazaki A, Mandai T, Tachikawa N, Dokko K, Watanabe M. Anionic effects on solvate ionic liquid electrolytes in rechargeable lithium–sulfur batteries. J Phys Chem C. 2013;117(40):20509–20516.

145

Mandai T, Yoshida K, Ueno K, Dokko K, Watanabe M. Criteria for solvate ionic liquids. Phys Chem Chem Phys. 2014;16(19):8761–8772.

146

Dokko K, Tachikawa N, Yamauchi K, Tsuchiya M, Yamazaki A, Takashima E, Park J, Ueno K, Seki S, Serizawa N. Solvate ionic liquid electrolyte for Li–S batteries. J Electrochem Soc. 2013;160(8):A1304.

147

Zhang XQ, Jin Q, Nan YL, Hou LP, Li BQ, Chen X, Jin ZH, Zhang XT, Huang JQ, Zhang Q. Electrolyte structure of lithium polysulfides with anti-reductive solvent shells for practical lithium–sulfur batteries. Angew Chem Int Ed. 2021;60(28):15503–15509.

148

Hou LP, Li Z, Yao N, Bi CX, Li BQ, Chen X, Zhang XQ, Zhang Q. Weakening the solvating power of solvents to encapsulate lithium polysulfides enables long-cycling lithium–sulfur batteries. Adv Mater. 2022;34(45):2205284.

149

Feng K, Li M, Liu W, Kashkooli AG, Xiao X, Cai M, Chen Z. Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications. Small. 2018;14(8):1702737.

150

Dey AN. Electrochemical alloying of lithium in organic electrolytes. J Electrochem Soc. 1971;118(10):1547–1549.

151

Park CM, Kim JH, Kim H, Sohn HJ. Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev. 2010;39(8):3115–3141.

152

Zhang WJ. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources. 2011;196(1):13–24.

153

Shi P, Fu ZH, Zhou MY, Chen X, Yao N, Hou LP, Zhao CZ, Li BQ, Huang JQ, Zhang XQ, et al. Inhibiting intercrystalline reactions of anode with electrolytes for long-cycling lithium batteries. Sci Adv. 2022;8(33):eabq3445.

154

Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D. A review of advanced and practical lithium battery materials. J Mater Chem. 2011;21(27):9938–9954.

155

Loaiza LC, Monconduit L, Seznec V. Si and Ge-based anode materials for Li-, Na-, and K-ion batteries: A perspective from structure to electrochemical mechanism. Small. 2020;16(5):Article e1905260.

156

Zhao J, Zhou G, Yan K, Xie J, Li Y, Liao L, Jin Y, Liu K, Hsu PC, Wang J, et al. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat Nanotechnol. 2017;12(10):993–999.

157

Jagannathan M, Chandran KSR. Electrochemical charge/discharge behavior and phase transitions during cell cycling of Li(Mg) alloy anodes for high capacity Li ion batteries. J Electrochem Soc. 2013;160(10):A1922–A1926.

158

Ji B, Zhang F, Sheng M, Tong X, Tang Y. A novel and generalized lithium-ion-battery configuration utilizing al foil as both anode and current collector for enhanced energy density. Adv Mater. 2017;29(7):1604219.

159

Rao BML, Francis RW, Christopher HA. Lithium–aluminum electrode. J Electrochem Soc. 1977;124(10):1490–1492.

160

Kong LL, Wang L, Ni ZC, Liu S, Li GR, Gao XP. Lithium–magnesium alloy as a stable anode for lithium–sulfur battery. Adv Funct Mater. 2019;29(13):1808756.

161

Huang C, Xiao J, Shao YY, Zheng JM, Bennett WD, Lu DP, Saraf LV, Engelhard M, Ji LW, Zhang J, et al. Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures. Nat Commun. 2014;5:3015.

162

Lu ZY, Li WT, Long Y, Liang JC, Liang QH, Wu SC, Tao Y, Weng Z, Lv W, Yang QH. Constructing a high-strength solid electrolyte layer by in vivo alloying with aluminum for an ultrahigh-rate lithium metal anode. Adv Funct Mater. 2020;30(7):1907343.

163

Xia SX, Zhang X, Liang C, Yu Y, Liu W. Stabilized lithium metal anode by an efficient coating for high-performance Li–S batteries. Energy Stor Mater. 2020;24:329–335.

164

Chen PY, Yan C, Chen PY, Zhang R, Yao YX, Peng HJ, Yan LT, Kaskel S, Zhang Q. Selective permeable lithium-ion channels on lithium metal for practical lithium–sulfur pouch cells. Angew Chem Int Ed. 2021;60(33):18031–18036.

165

Dörfler S, Althues H, Härtel P, Abendroth T, Schumm B, Kaskel S. Challenges and key parameters of lithium–sulfur batteries on pouch cell level. Joule. 2020;4(3):539–554.

166

Lv DP, Zheng JM, Li QY, Xie X, Ferrara S, Nie ZM, Mehdi LB, Browning ND, Zhang JG, Graff GL, et al. High energy density lithium–sulfur batteries: Challenges of thick sulfur cathodes. Adv Energy Mater. 2015;5(16):1402290.

167

Zhao M, Li BQ, Zhang XQ, Huang JQ, Zhang Q. A perspective toward practical lithium–sulfur batteries. ACS Cent Sci. 2020;6(7):1095–1104.

168

Chen ZX, Zhao M, Hou LP, Zhang XQ, Li BQ, Huang JQ. Toward practical high-energy-density lithium–sulfur pouch cells: A review. Adv Mater. 2022;34(35):2201555.

169

Chen XR, Zhao BC, Yan C, Zhang Q. Review on Li deposition in working batteries: From nucleation to early growth. Adv Mater. 2021;33(8):2004128.

170

Peled E, Menkin S. Review-SEI: Past, present and future. J Electrochem Soc. 2017;164(7):A1703–A1719.

171

Qiao RM, Lucas IT, Karim A, Syzdek J, Liu XS, Chen W, Persson K, Kostecki R, Yang WL. Distinct solid-electrolyte-interphases on Sn (100) and (001) electrodes studied by soft X-ray spectroscopy. Adv Mater Interfaces. 2014;1(3):1300115.

172

Nanda S, Manthiram A. Delineating the lithium–electrolyte interfacial chemistry and the dynamics of lithium deposition in lithium–sulfur batteries. Adv Energy Mater. 2021;11(11):2003293.

173

Li YZ, Li YB, Pei A, Yan K, Sun YM, Wu CL, Joubert LM, Chin R, Koh AL, Yu Y, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science. 2017;358(6362):506–510.

174

Han B, Zhang Z, Zou YC, Xu K, Xu GY, Wang H, Meng H, Deng YH, Li J, Gu M. Poor stability of Li2CO3 in the solid electrolyte interphase of a lithium-metal anode revealed by cryo-electron microscopy. Adv Mater. 2021;33(22):2100404.

175

Tan J, Matz J, Dong P, Ye MX, Shen JF. Appreciating the role of polysulfides in lithium–sulfur batteries and regulation strategies by electrolytes engineering. Energy Stor Mater. 2021;42:645–678.

176

Lee CW, Pang Q, Ha S, Cheng L, Han SD, Zavadil KR, Gallagher KG, Nazar LF, Balasubramanian M. Directing the lithium–sulfur reaction pathway via sparingly solvating electrolytes for high energy density batteries. ACS Cent Sci. 2017;3(6):605–613.

Energy Material Advances
Article number: 0010
Cite this article:
Bi C-X, Hou L-P, Li Z, et al. Protecting lithium metal anodes in lithium–sulfur batteries: A review. Energy Material Advances, 2023, 4: 0010. https://doi.org/10.34133/energymatadv.0010

84

Views

1

Downloads

94

Crossref

85

Web of Science

88

Scopus

0

CSCD

Altmetrics

Received: 02 October 2022
Accepted: 21 November 2022
Published: 10 January 2023
© 2023 Chen-Xi Bi et al. Exclusive Licensee Beijing Institute of Technology Press. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License (CC BY 4.0).

Return