AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

NiS2/FeS Heterostructured Nanoflowers for High-Performance Sodium Storage

Dong Yan1,2Shuhao Xiao2Xinyan Li2Jinxia Jiang3( )Qiyuan He4Hanchao Li2Jiaqian Qin5Rui Wu2Xiaobin Niu2Jun Song Chen1,2,6( )
Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
Chongqing Medical and Pharmaceutical College, Chongqing 401331, P. R. China
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
Center of Excellence on Advanced Materials for Energy Storage, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, P. R. China
Show Author Information

Abstract

Transition metal sulfides demonstrate attractive potential for sodium storage owing to their high theoretical specific capacity and high reserve. However, the low conductivity and volume expansion deteriorate their high-rate performance and cycling stability. In this work, we construct NiS2/FeS heterostructure by growing Ni-based layered double hydroxide nanosheets on Fe-based Prussian Blue nanocrystals followed by gaseous sulfurization, giving rise to flower-like NiS2/FeS nanoparticles. The as-prepared nanocomposite exhibits good rate performance of 156 mAh g−1 at 50 A g−1 and long cycle life of 606 mAh g−1 at 5 A g−1 after 1,000 cycles, which are superior to the heterostructure-free counterpart of NiS2 and FeS. Density functional theory calculation further verifies that the enhanced electrochemical performance of NiS2/FeS is due to the existence of interface derived from the heterostructure.

References

1

Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488(7411):294–303.

2

Gong D, Wei C, Liang Z, Tang Y. Recent advances on sodium-ion batteries and sodium dual-ion batteries: State-of-the-art Na+ host anode materials. Small Science. 2021;1(6):Article 2100014.

3

Liu XX, Chen C, He Q, Kong Q, Blackwood DJ, Li NW, Yu L, Chen JS. Self-supported transition metal-based nanoarrays for efficient energy storage. Chem Rec. 2022;22(10):Article e202100294.

4

Li J, Wang S, Chang J, Feng L. A review of Ni based powder catalyst for urea oxidation in assisting water splitting reaction. Adv Powder Mater. 2022;1(3):Article 100030.

5

Wang X, Wang H. Designing carbon anodes for advanced potassium-ion batteries: Materials, modifications, and mechanisms. Adv Powder Mater. 2022;1(4):Article 100057.

6

Xu XQ, Cheng XB, Jiang FN, Yang SJ, Ren D, Shi P, Hsu H, Yuan H, Huang JQ, Ouyang M, et al. Dendrite-accelerated thermal runaway mechanisms of lithium metal pouch batteries. SusMat. 2022;2(4):435–444.

7

Chen Y, Xu Y, Sun X, Zhang B, He S, Li L, Wang C. Preventing structural degradation from Na3V2(PO4)3 to V2(PO4)3: F-doped Na3V2(PO4)3/C cathode composite with stable lifetime for sodium ion batteries. J Power Sources. 2018;378:423–432.

8

Ba DL, Gui QY, Liu WY, Wang Z, Li YN, Liu JP. Robust cathode-ether electrolyte interphase on interfacial redox assembled fluorophosphate enabling high-rate and ultrastable sodium ion full cells. Nano Energy. 2022;94:Article 106918.

9

Li L, Zhang N, Su Y, Zhao J, Song Z, Qian D, Wu H, Tahir M, Saeed A, Ding S. Fluorine dissolution-induced capacity degradation for fluorophosphate-based cathode materials. ACS Appl Mater Interfaces. 2021;13(20):23787–23793.

10

Xiao SH, Li XY, Li TS, Xiang Y, Chen JS. Practical strategies for enhanced performance of anode materials in Na+/K+-ion batteries. J Mater Chem A. 2021;9(12):7317–7335.

11

Li Z, Fang Y, Zhang J, Lou XWD. Necklace-like structures composed of Fe3N@C yolk–shell particles as an advanced anode for sodium-ion batteries. Adv Mater. 2018;30(30):Article e1800525.

12

Xu B, Qi S, Li F, Peng X, Cai J, Liang J, Ma J. Cotton-derived oxygen/sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries. Chin Chem Lett. 2020;31(1):217–222.

13

Tang B, Zhao Y, Wang Z, Chen S, Wu Y, Tseng Y, Li L, Guo Y, Zhou Z, Bo S-H. Ultrathin salt-free polymer-in-ceramic electrolyte for solid-state sodium batteries. eScience. 2021;1(2):194–202.

14

Tang J, Peng X, Lin T, Huang X, Luo B, Wang L. Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage. eScience. 2021;1(2):203–211.

15

Zhu Y-F, Xiao Y, Dou S-X, Kang Y-M, Chou S-L. Spinel/post-spinel engineering on layered oxide cathodes for sodium-ion batteries. eScience. 2021;1(1):13–27.

16

Dai Y, Chen Q, Hu C, Huang Y, Wu W, Yu M, Sun D, Luo W. Copper fluoride as a low-cost sodium-ion battery cathode with high capacity. Chin Chem Lett. 2022;33(3):1435–1438.

17

Shao W, Cao Q, Liu S, Zhang T, Song Z, Song C, Weng Z, Jian X, Hu F. Replacing “alkyl” with “aryl” for inducing accessible channels to closed pores as plateau-dominated sodium-ion battery anode. SusMat. 2022;2(3):319–334.

18

Zhang Q, Shen X, Zhou Q, Li K, Ding F, Lu Y, Zhao J, Chen L, Hu Y-S. Large scale one-pot synthesis of monodispersed Na3(VOPO4)2F cathode for Na-ion batteries. Energy Mater Adv. 2022;2022:1–11.

19

Dong R, Wu F, Bai Y, Li Q, Yu X, Li Y, Ni Q, Wu C. Tailoring defects in hard carbon anode towards enhanced Na storage performance. Energy Mater Adv. 2022;2022:1–11.

20

Voronina N, Myung S-T. Recent advances in electrode materials with anion redox chemistry for sodium-ion batteries. Energy Mater Adv. 2021;2021:1–22.

21

Zhou S, Tang Z, Pan Z, Huang Y, Zhao L, Zhang X, Sun D, Tang Y, Dhmees AS, Wang H. Regulating closed pore structure enables significantly improved sodium storage for hard carbon pyrolyzing at relatively low temperature. SusMat. 2022;2(3):357–367.

22

Liao J, Han J, Xu J, Du Y, Sun Y, Duan L, Zhou X. Scalable synthesis of Na2MVF7 (M = Mn, Fe, and co) as high-performance cathode materials for sodium-ion batteries. Chem Commun. 2021;57(87):11497–11500.

23

Zhang Z, Du Y, Wang QC, Xu J, Zhou YN, Bao J, Shen J, Zhou X. A yolk–shell-structured FePO4 cathode for high-rate and long-cycling sodium-ion batteries. Angew Chem Int Ed. 2020;59(40):17504–17510.

24

Wang L, Wang J, Ng DHL, Li S, Zou B, Cui Y, Liu X, El-Khodary SA, Qiu J, Lian J. Operando mechanistic and dynamic studies of N/P co-doped hard carbon nanofibers for efficient sodium storage. Chem Commun. 2021;57(75):9610–9613.

25

Chen Y, Dong H, Li Y, Liu J. Recent advances in 3D Array anode materials for sodium-ion batteries. Acta Phys Chim Sin. 2020;37(12):2007075.

26

Chen Q, Sun S, Zhai T, Yang M, Zhao X, Xia H. Yolk–shell NiS2 nanoparticle-embedded carbon fibers for flexible fiber-shaped sodium battery. Adv Energy Mater. 2018;8(19):Article 1800054.

27

Yang C, Ou X, Xiong X, Zheng F, Hu R, Chen Y, Liu M, Huang K. V5S8–graphite hybrid nanosheets as a high rate-capacity and stable anode material for sodium-ion batteries. Energy Environ Sci. 2017;10(1):107–113.

28

Zhang N, Li X, Hou T, Guo J, Fan A, Jin S, Sun X, Cai S, Zheng C. MnS hollow microspheres combined with carbon nanotubes for enhanced performance sodium-ion battery anode. Chin Chem Lett. 2020;31(5):1221–1225.

29

Zhou S, Jin X, Zhu S, Luo Q, Qiu Z, Wu A, Huang H. S-O bond chemically constrained NiS2/rGO nanocomposite with enhanced Na-ion storage capacity. Chin Chem Lett. 2020;31(9):2353–2357.

30

Li Q, Yang D, Chen H, Lv X, Jiang Y, Feng Y, Rui X, Yu Y. Advances in metal phosphides for sodium-ion batteries. SusMat. 2021;1(3):359–392.

31

Liu Y, Li J, Shen Q, Zhang J, He P, Qu X, Liu Y. Advanced characterizations and measurements for sodium-ion batteries with NASICON-type cathode materials. eScience. 2022;2(1):10–31.

32

Zhang R, Raveendran V, He Y, Yau A, Chang A, Chi C, Bong S, Cheng F, Ma W, Chen J. A poriferous nanoflake-assembled flower-like Ni5P4 anode for high-performance sodium-ion batteries. Energy Mater Adv. 2021;2021:Article 2124862.

33

Sun N, Guan Z, Liu Y, Cao Y, Zhu Q, Liu H, Wang Z, Zhang P, Xu B. Extended “adsorption–insertion” model: A new insight into the sodium storage mechanism of hard carbons. Adv Energy Mater. 2019;9(32):Article 1901351.

34

Yan Z, Yang Q-W, Wang Q, Ma J. Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chin Chem Lett. 2020;31(2):583–588.

35

Zhao L, Gao M, Yue W, Jiang Y, Wang Y, Ren Y, Hu F. Sandwich-structured graphene-Fe3O4@carbon nanocomposites for high-performance lithium-ion batteries. ACS Appl Mater Interfaces. 2015;7(18):9709–9715.

36

Kumar PR, Jung YH, Bharathi KK, Lim CH, Kim DK. High capacity and low cost spinel Fe3O4 for the Na-ion battery negative electrode materials. Electrochim Acta. 2014;146:503–510.

37

Luo H, Wang B, Li Y, Liu T, You W, Wang D. Core-shell structured Fe3O4@NiS nanocomposite as high-performance anode material for alkaline nickel-iron rechargeable batteries. Electrochim Acta. 2017;231:479–486.

38

Tao X, Li Y, Wang HG, Lv X, Li Y, Xu D, Jiang Y, Meng Y. Multi-heteroatom-doped dual carbon-confined Fe3O4 nanospheres as high-capacity and long-life anode materials for lithium/sodium ion batteries. J Colloid Interface Sci. 2020;565:494–502.

39

Xiao S, Li Z, Liu J, Song Y, Li T, Xiang Y, Chen JS, Yan Q. Se─C bonding promoting fast and durable Na+ storage in yolk-shell SnSe2@Se─C. Small. 2020;16(41):Article 2002486.

40

Liu J, Xiao S, Li X, Li Z, Li X, Zhang W, Xiang Y, Niu X, Chen JS. Interface engineering of Fe3Se4/FeSe heterostructure encapsulated in electrospun carbon nanofibers for fast and robust sodium storage. Chem Eng J. 2021;417:Article 129279.

41

Zhao X, Wang W, Hou Z, Fan X, Wei G, Yu Y, Di Q, Liu Y, Quan Z, Zhang J. Yolk–shell structured SnSe as a high-performance anode for Na-ion batteries. Inorg Chem Front. 2019;6(2):562–565.

42

Sun R, Liu S, Wei Q, Sheng J, Zhu S, An Q, Mai L. Mesoporous NiS2 nanospheres anode with pseudocapacitance for high-rate and long-life sodium-ion battery. Small. 2017;13(39):Article 1701744.

43

Yan Z, Xiao J, Lai W, Wang L, Gebert F, Wang Y, Gu Q, Liu H, Chou SL, Liu H, et al. Nickel sulfide nanocrystals on nitrogen-doped porous carbon nanotubes with high-efficiency electrocatalysis for room-temperature sodium-sulfur batteries. Nat Commun. 2019;10(1):4793.

44

Pi W, Mei T, Li J, Wang J, Li J, Wang X. Durian-like NiS2@rGO nanocomposites and their enhanced rate performance. Chem Eng J. 2018;335:275–281.

45

Li T, Li H, Qin A, Wu H, Zhang D, Xu F. Assembled NiS nanoneedles anode for Na-ion batteries: Enhanced the performance by organic hyperbranched polymer electrode additives. J Power Sources. 2020;451:Article 227796.

46

Wang L, Zhao Y, Ma C, Han G. Gas-phase construction of holey exfoliated graphite supported NiS nanoparticles with superior electrochemical performance for sodium-ion batteries. Mater Lett. 2021;302:Article 130396.

47

Li X, Xiao S, Niu X, Chen J, Yu Y. Efficient stress dissipation in well-aligned pyramidal SbSn alloy Nanoarrays for robust sodium storage. Adv Funct Mater. 2021;31(37):Article 2104798.

48

Wang Q, Zhang W, Guo C, Liu Y, Wang C, Guo Z. In situ construction of 3D interconnected FeS@Fe3C@graphitic carbon networks for high-performance sodium-ion batteries. Adv Funct Mater. 2017;27(41):Article 1703390.

49

Zhao G, Zhang Y, Yang L, Jiang Y, Zhang Y, Hong W, Tian Y, Zhao H, Hu J, Zhou L, et al. Nickel chelate derived NiS2 decorated with bifunctional carbon: An efficient strategy to promote sodium storage performance. Adv Funct Mater. 2018;28(41):Article 1803690.

50

Bi R, Zeng C, Huang H, Wang X, Zhang L. Metal–organic frameworks derived hollow NiS2 spheres encased in graphene layers for enhanced sodium-ion storage. J Mater Chem A. 2018;6(29):14077–14082.

51

Liu Y, Zhong W, Yang C, Pan Q, Li Y, Wang G, Zheng F, Xiong X, Liu M, Zhang Q. Direct synthesis of FeS/N-doped carbon composite for high-performance sodium-ion batteries. J Mater Chem A. 2018;6(48):24702–24708.

52

Zhang C, Han F, Wang F, Liu Q, Zhou D, Zhang F, Xu S, Fan C, Li X, Liu J. Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 core for superior volumetric sodium/potassium storage. Energy Storage Mater. 2020;24:208–219.

53

Li Y, Qian J, Zhang M, Wang S, Wang Z, Li M, Bai Y, An Q, Xu H, Wu F, et al. Co-construction of sulfur vacancies and heterojunctions in tungsten disulfide to induce fast electronic/ionic diffusion kinetics for sodium-ion batteries. Adv Mater. 2020;32(47):Article e2005802.

54

Li Y, Wu F, Qian J, Zhang M, Yuan Y, Bai Y, Wu C. Metal chalcogenides with Heterostructures for high-performance rechargeable batteries. Small Sci. 2021;1(9):Article 2100012.

55

Li L, Xia Y, Zeng M, Fu L. Facet engineering of ultrathin two-dimensional materials. Chem Soc Rev. 2022;51(17):7327–7343.

56

Qu J, Wang Y, Mu X, Hu J, Zeng B, Lu Y, Sui M, Li R, Li C. Determination of crystallographic orientation and exposed facets of titanium oxide nanocrystals. Adv Mater. 2022;34(37):Article e2203320.

57

Fu S, Yu X, Wu Q, Yang X, Liu Z, Li X, He S, Wang D, Li Y, Tong S, et al. Ultrathin [110]-confined Li4Ti5O12 nanoflakes for high rate lithium storage. Adv Energy Mater. 2021;11(22):Article 2003270.

58

Oh SC, Xu J, Tran DT, Liu B, Liu D. Effects of controlled crystalline surface of hydroxyapatite on methane oxidation reactions. ACS Catal. 2018;8(5):4493–4507.

59

Zhong M, Song N, Li C, Wang C, Chen W, Lu X. Controllable growth of Fe-doped NiS2 on NiFe-carbon nanofibers for boosting oxygen evolution reaction. J Colloid Interface Sci. 2022;614:556–565.

60

Yang L, Hong W, Zhang Y, Tian Y, Gao X, Zhu Y, Zou G, Hou H, Ji X. Hierarchical NiS2 modified with bifunctional carbon for enhanced potassium-ion storage. Adv Funct Mater. 2019;29(50):Article 1903454.

61

Lin L, Wang K, Sarkar A, Njel C, Karkera G, Wang Q, Azmi R, Fichtner M, Hahn H, Schweidler S, et al. High-entropy sulfides as electrode materials for Li-ion batteries. Adv Energy Mater. 2022;12(8):Article 2103090.

62

Liu P, Han J, Zhu K, Dong Z, Jiao L. Heterostructure SnSe2/ZnSe@PDA nanobox for stable and highly efficient sodium-ion storage. Adv Energy Mater. 2020;10(24):Article 2000741.

63

Huang B, Yuan J, Lu Y, Zhao Y, Qian X, Xu H, He G, Chen H. Hollow nanospheres comprising amorphous NiMoS4 and crystalline NiS2 for all-solid-state supercapacitors. Chem Eng J. 2022;436:Article 135231.

64

Zhang M, Liu H, Wang Y, Ma T. A novel synthesis of Fe7S8@Fe5Ni4S8 flower center/petal hierarchical nanostructure: Application as advance cathode material for high-performance supercapacitors. J Colloid Interface Sci. 2019;536:609–617.

65

Zhao J, Hu Z, Sun D, Jia H, Liu X. MOF-derived FeS/C nanosheets for high performance lithium ion batteries. Nano. 2019;9(4):Article 9040492.

66

Wang T, Hu P, Zhang C, Du H, Zhang Z, Wang X, Chen S, Xiong J, Cui G. Nickel disulfide-graphene nanosheets composites with improved electrochemical performance for sodium ion battery. ACS Appl Mater Interfaces. 2016;8(12):7811–7817.

67

Huang S, Li Z, Wang B, Zhang J, Peng Z, Qi R, Wang J, Zhao Y. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv Funct Mater. 2018;28(10):Article 1706294.

68

Xiao S, Li X, Zhang W, Xiang Y, Li T, Niu X, Chen JS, Yan Q. Bilateral interfaces in In2Se3-CoIn2-CoSe2 heterostructures for high-rate reversible sodium storage. ACS Nano. 2021;15(8):13307–13318.

69

Gao M, Zhou W-Y, Mo Y-X, Sheng T, Deng Y, Chen L, Wang K, Tan Y, Zhou H. Outstanding long-cycling lithium−sulfur batteries by core-shell structure of S@Pt composite with ultrahigh sulfur content. Adv Powder Mater. 2022;1(1):Article 100006.

70

Kong X, Zhang J, Huang J, Li J, Qin Y, Zhao T, Feng Q. Microwave assisted hydrothermal synthesis of tin niobates nanosheets with high cycle stability as lithium-ion battery anodes. Chin Chem Lett. 2019;30(3):771–774.

71

Wang X, Chen D, Yang Z, Zhang X, Wang C, Chen J, Zhang X, Xue M. Novel metal chalcogenide SnSSe as a high-capacity anode for sodium-ion batteries. Adv Mater. 2016;28(39):8645–8650.

72

Cai Z, Peng Z, Liu X, Sun R, Qin Z, Fan H, Zhang Y. Improving Na+ transport kinetics and Na+ storage of hierarchical rhenium-nickel sulfide (ReS2@NiS2) hollow architecture by assembling layered 2D-3D heterostructures. Chin Chem Lett. 2021;32(11):3607–3612.

73

Wu H, Lu S, Xu S, Zhao J, Wang Y, Huang C, Abdelkader A, Wang WA, Xi K, Guo Y, et al. Blowing iron chalcogenides into two-dimensional flaky hybrids with superior cyclability and rate capability for potassium-ion batteries. ACS Nano. 2021;15(2):2506–2519.

74

Gou WW, Zhou S, Cao XX, Luo YL, Kong XZ, Chen J, Xie XF, Pan AQ. Agitation drying synthesis of porous carbon supported Li3VO4 as advanced anode material for lithium-ion batteries. Rare Metals. 2021;40(12):3466–3476.

75

Zhang D, Liu L, Zhang Y, Wu H, Zheng Y, Gao G, Ding S. 3D ordered mesoporous TiO2@CMK-3 nanostructure for sodium-ion batteries with long-term and high-rate performance. Nanotechnology. 2019;30(23):Article 235401.

76

Lu S, Zhu T, Wu H, Wang Y, Li J, Abdelkader A, Xi K, Wang W, Li Y, Ding S, et al. Construction of ultrafine ZnSe nanoparticles on/in amorphous carbon hollow nanospheres with high-power-density sodium storage. Nano Energy. 2019;59:762–772.

77

Wu B, Qi S, Wu X, Wang H, Zhuang Q, Yi H, Xu P, Xiong Z, Shi G, Chen S, et al. FeBO3 as a low cost and high-performance anode material for sodium-ion batteries. Chin Chem Lett. 2021;32(10):3113–3117.

78

Ando Y, Okubo M, Yamada A, Otani M. Capacitive versus pseudocapacitive storage in MXene. Adv Funct Mater. 2020;30(47):2000820.

79

Yang M, Sun Z, Nie P, Yu H, Zhao C, Yu M, Luo Z, Geng H, Wu X. SbPS4: A novel anode for high-performance sodium-ion batteries. Chin Chem Lett. 2022;33(1):470–474.

80

Yan D, Li XY, Xiao SH, Li ZZ, Jiang JY, Wu R, Chen JS. Butanol promoting high graphitization in carbon-supported Na3V2(PO4)(3) for high-power sodium-ion battery with long life cycle. ChemElectroChem. 2021;8(18):3538–3543.

81

Wu T, Zhu K, Qin C, Huang K. Unraveling the role of structural water in bilayer V2O5 during Zn2+-intercalation: Insights from DFT calculations. J Mater Chem A. 2019;7(10):5612–5620.

82

Zeng L, Sun K, Wang X, Liu Y, Pan Y, Liu Z, Cao D, Song Y, Liu S, Liu C. Three-dimensional-networked Ni2P/Ni3S2 heteronanoflake arrays for highly enhanced electrochemical overall-water-splitting activity. Nano Energy. 2018;51:26–36.

83

Kulish VV, Malyi OI, Persson C, Wu P. Phosphorene as an anode material for Na-ion batteries: A first-principles study. Phys Chem Chem Phys. 2015;17(21):13921–13928.

Energy Material Advances
Article number: 0012
Cite this article:
Yan D, Xiao S, Li X, et al. NiS2/FeS Heterostructured Nanoflowers for High-Performance Sodium Storage. Energy Material Advances, 2023, 4: 0012. https://doi.org/10.34133/energymatadv.0012

44

Views

0

Downloads

26

Crossref

28

Web of Science

27

Scopus

0

CSCD

Altmetrics

Received: 16 September 2022
Accepted: 14 December 2022
Published: 31 January 2023
© 2023 Dong Yan et al. Exclusive Licensee Beijing Institute of Technology Press. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License (CC BY 4.0).

Return