PDF (29.4 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
References
Show full outline
Hide outline
Review | Open Access

Design of Solid Electrolytes with Fast Ion Transport: Computation-Driven and Practical Approaches

Muhammad Khurram Tufail1,2Pengbo Zhai1Mengyang Jia1Ning Zhao1()Xiangxin Guo1 ()
College of Physics, Qingdao University, 266071 Qingdao, China
College of Materials Science and Engineering, Qingdao University, 266071 Qingdao, China
Show Author Information

Abstract

For next-generation all-solid-state metal batteries, the computation can lead to the discovery of new solid electrolytes with increased ionic conductivity and excellent safety. Based on computational predictions, a new proposed solid electrolyte with a flat energy landscape and fast ion migration is synthesized using traditional synthesis methods. Despite the promise of the predicted solid electrolyte candidates, conventional synthetic methods are frequently hampered by extensive optimization procedures and overpriced raw materials. It is impossible to rationally develop novel superionic conductors without a comprehensive understanding of ion migration mechanisms. In this review, we cover ion migration mechanisms and all emerging computational approaches that can be applied to explore ion conduction in inorganic materials. The general illustrations of sulfide and oxide electrolyte structures as well as their fundamental features, including ion migration paths, dimensionalities, defects, and ion occupancies, are systematically discussed. The major challenges to designing the solid electrolyte and their solving strategies are highlighted, such as lattice softness, polarizability, and structural disorder. In addition to an overview of recent findings, we propose a computational and experimental approach for designing high-performance solid electrolytes. This review article will contribute to a practical understanding of ion conduction, designing, rapid optimization, and screening of advanced solid electrolytes in order to eliminate liquid electrolytes.

References

1

Feng X, Fang H, Wu N, Liu P, Jena P, Nanda J, Mitlin D. Review of modification strategies in emerging inorganic solid-state electrolytes for lithium, sodium, and potassium batteries. Joule. 2022;6(3):543–587.

2

Liu Q, Jiang L, Zheng P, Sun J, Liu C, Chai J, Li X, Zheng Y, Liu Z. Recent advances in stability issues of inorganic solid electrolytes and composite solid electrolytes for all-solid-state batteries. Chem Rec. 2022;22(10):e202200116.

3

Kong L, Li C, Jiang J, Pecht MG. Li-ion battery fire hazards and safety strategies. Energies. 2018;11(9):2191.

4

Chombo PV, Laoonual Y. A review of safety strategies of a Li-ion battery. J Power Sources. 2020;478:228649.

5

Chen R, Qu W, Guo X, Li L, Wu F. The pursuit of solid-state electrolytes for lithium batteries: From comprehensive insight to emerging horizons. Mater Horiz. 2016;3:487–516.

6

Liang X, Wang L, Wu X, Feng X, Wu Q, Sun Y, Xiang H, Wang J. Solid-state electrolytes for solid-state lithium-sulfur batteries: Comparisons, advances and prospects. J Energy Chem. 2022;73:370–386.

7

Zhao N, Khokhar W, Bi Z, Shi C, Guo X, Fan L-Z, Nan C-W. Solid garnet batteries. Joule. 2019;3:1190–1199.

8

Wu J, Liu S, Han F, Yao X, Wang C. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv Mater. 2021;33:2000751.

9

Zhang Q, Cao D, Ma Y, Natan A, Aurora P, Zhu H. Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries. Adv Mater. 2019;31:1901131.

10

Tufail MK, Ahmad N, Yang L, Zhou L, Naseer MA, Chen R, Yang W. A panoramic view of Li7P3S11 solid electrolytes synthesis, structural aspects and practical challenges for all-solid-state lithium batteries. Chin J Chem Eng. 2021;39:16–36.

11

Khurram Tufail M, Ahmad N, Zhou L, Faheem M, Yang L, Chen R, Yang W. Insight on air-induced degradation mechanism of Li7P3S11 to design a chemical-stable solid electrolyte with high Li2S utilization in all-solid-state Li/S batteries. Chem Eng J. 2021;425:130535.

12

Tufail MK, Zhou L, Ahmad N, Chen R, Faheem M, Yang L, Yang W. A novel air-stable Li7Sb0.05P2.95S10.5I0.5 superionic conductor glass-ceramics electrolyte for all-solid-state lithium-sulfur batteries. Chem Eng J. 2021;407:127149.

13

Guo J, Zhao X, Herisson De Beauvoir T, Seo J-H, Berbano SS, Baker AL, Azina C, Randall CA. Recent progress in applications of the cold sintering process for ceramic–polymer composites. Adv Funct Mater. 2018;28:1801724.

14

Kanimozhi G, Naresh N, Kumar H, Satyanarayana N. Review on the recent progress in the nanocomposite polymer electrolytes on the performance of lithium-ion batteries. Int J Energy Res. 2022;46:7137–7174.

15

Bi Z, Huang W, Mu S, Sun W, Zhao N, Guo X. Dual-interface reinforced flexible solid garnet batteries enabled by in-situ solidified gel polymer electrolytes. Nano Energy. 2021;90:106498.

16

Wu J, Chen L, Song T, Zou Z, Gao J, Zhang W, Shi S. A review on structural characteristics, lithium ion diffusion behavior and temperature dependence of conductivity in perovskite-type solid electrolyte Li3x La2∕3−x TiO3. Funct Mater Lett. 2017;10:1730002.

17

Gao J, Zhao Y-S, Shi S-Q, Li H. Lithium-ion transport in inorganic solid state electrolyte. Chin Phys B. 2016;25:018211.

18

Sendek AD, Yang Q, Cubuk ED, Duerloo K-AN, Cui Y, Reed EJ. Holistic computational structure screening of more than 12000 candidates for solid lithium-ion conductor materials. Energy Environ Sci. 2017;10:306–320.

19

Kahle L, Marcolongo A, Marzari N. High-throughput computational screening for solid-state Li-ion conductors. Energy Environ Sci. 2020;13:928–948.

20

Avdeev M, Sale M, Adams S, Rao RP. Screening of the alkali-metal ion containing materials from the Inorganic Crystal Structure Database (ICSD) for high ionic conductivity pathways using the bond valence method. Solid State Ionics. 2012;225:43–46.

21

Muy S, Voss J, Schlem R, Koerver R, Sedlmaier SJ, Maglia F, Lamp P, Zeier WG, Shao-Horn Y. High-throughput screening of solid-state li-ion conductors using lattice-dynamics descriptors. iScience. 2019;16:270–282.

22

Xiao R, Li H, Chen L. High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. Sci Rep. 2015;5:14227.

23

Meutzner F, Nestler T, Zschornak M, Canepa P, Gautam GS, Leoni S, Adams S, Leisegang T, Blatov VA, Meyer DC. Computational analysis and identification of battery materials. Phys Sci Rev. 2019;4:20180044.

24

Lim M-S, Jhi S-H. First-principles study of lithium-ion diffusion in β-Li3PS4 for solid-state electrolytes. Curr Appl Phys. 2018;18(5):541–545.

25

Mahmood A, Irfan A, Ahmad F. Quantum chemical analysis and molecular dynamics simulations to study the impact of electron-deficient substituents on electronic behavior of small molecule acceptors. Comput Theor Chem. 2021;1204:113387.

26

Xu Z, Xia Y. Progress, challenges and perspectives of computational studies on glassy superionic conductors for solid-state batteries. J Mater Chem A. 2022;10:11854–11880.

27

Mahmood A, Abdullah MI, Nazar MF. Quantum chemical designing of novel organic non-linear optical compounds. Bull Korean Chem Soc. 2014;35(5):1391–1396.

28

Mahmood A, Saqib M, Ali M, Abdullah MI, Khalid B. Theoretical investigation for the designing of novel antioxidants. Can J Chem. 2012;91:126–130.

29

Nolan AM, Zhu Y, He X, Bai Q, Mo Y. Computation-accelerated design of materials and interfaces for all-solid-state lithium-ion batteries. Joule. 2018;2:2016–2046.

30

Mahmood A, HussainTahir M, Irfan A, Khalid B, Al-Sehemi AG. Computational designing of triphenylamine dyes with broad and red-shifted absorption spectra for dye-sensitized solar cells using multi-thiophene rings in π-spacer. Bull Korean Chem Soc. 2015;36:2615–2620.

31

Fujimura K, Seko A, Koyama Y, Kuwabara A, Kishida I, Shitara K, Fisher CAJ, Moriwake H, Tanaka I. Accelerated materials design of lithium superionic conductors based on first-principles calculations and machine learning algorithms. Adv Energy Mater. 2013;3:980–985.

32

Zhang B, Tan R, Yang L, Zheng J, Zhang K, Mo S, Lin Z, Pan F. Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Mater. 2018;10:139–159.

33

Han J, Zhu J, Li Y, Yu X, Wang S, Wu G, Xie H, Vogel SC, Izumi F, Momma K, et al. Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12. Chem Commun. 2012;48:9840–9842.

34

KC S, Longo RC, Xiong K, Cho K. Point defects in garnet-type solid electrolyte (c-Li7La3Zr2O12) for Li-ion batteries. Solid State Ionics. 2014;261:100–105.

35

Chen C, Du J. Lithium ion diffusion mechanism in lithium lanthanum titanate solid-state electrolytes from atomistic simulations. J Am Ceram Soc. 2015;98:534–542.

36

Zhang Z, Shao Y, Lotsch B, Hu Y-S, Li H, Janek J, Nazar LF, Nan C-W, Maier J, Armand M, et al. New horizons for inorganic solid state ion conductors. Energy Environ Sci. 2018;11:1945–1976.

37

Sun Y, Guan P, Liu Y, Xu H, Li S, Chu D. Recent progress in lithium lanthanum titanate electrolyte towards all solid-state lithium ion secondary battery. Critl Rev Solid State Mater Sci. 2019;44:265–282.

38

Zhan X, Lai S, Gobet MP, Greenbaum SG, Shirpour M. Defect chemistry and electrical properties of garnet-type Li7La3Zr2O12. Phys Chem Chem Phys. 2018;20:1447–1459.

39

Lang B, Ziebarth B, Elsässer C. Lithium ion conduction in LiTi2(PO4)3 and related compounds based on the NASICON structure: A first-principles study. Chem Mater. 2015;27(14):5040–5048.

40

Lu X, Wang S, Xiao R, Shi S, Li H, Chen L. First-principles insight into the structural fundamental of super ionic conducting in NASICON MTi2(PO4)3 (M = Li, Na) materials for rechargeable batteries. Nano Energy. 2017;41:626–633.

41

Arbi K, Rojo JM, Sanz J. Lithium mobility in titanium based Nasicon Li1+xTi2−xAlx(PO4)3 and LiTi2−x Zrx(PO4)3 materials followed by NMR and impedance spectroscopy. J Eur Ceram Soc. 2007;27(13-15):4215–4218.

42

Arjmandi HR, Grieshammer S. Defect formation and migration in Nasicon Li1+xAlxTi2−x(PO4)3. Phys Chem Chem Phys. 2019;21:24232–24238.

43

Oka M, Kamisaka H, Fukumura T, Hasegawa T. Interstitialcy diffusion of fluoride ions in LaOF by DFT-based first-principles calculations. Comput Mater Sci. 2019;167:92–99.

44

Deng Y, Eames C, Chotard J-N, Lalère F, Seznec V, Emge S, Pecher O, Grey CP, Masquelier C, Islam MS. Structural and mechanistic insights into fast lithium-ion conduction in Li4SiO4–Li3PO4 solid electrolytes. J Am Chem Soc. 2015;137(28):9136–9145.

45

Sebastian L, Jayashree RS, Gopalakrishnan J. Probing the mobility of lithium in LISICON: Li+/H+ exchange studies in Li2ZnGeO4 and Li2+2xZn1−xGeO4. J Mater Chem. 2003;13:1400–1405.

46

Long L, Wang S, Xiao M, Meng Y. Polymer electrolytes for lithium polymer batteries. J Mater Chem A. 2016;4:10038–10069.

47

Berthier C, Gorecki W, Minier M, Armand MB, Chabagno JM, Rigaud P. Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics. 1983;11:91–95.

48
Blessings of mixed neutrinos. Nature. 2001;412:1.
49

Henderson WA, Brooks NR, Young VG. Single-crystal structures of polymer electrolytes. J Am Chem Soc. 2003;125:12098–12099.

50

Johansson P, Tegenfeldt J, Lindgren J. Modelling amorphous lithium salt–PEO polymer electrolytes: Ab initio calculations of lithium ion–tetra-, penta- and hexaglyme complexes. Polymer. 1999;40(15):4399–4406.

51

Borodin O, Smith GD. Molecular dynamics simulations of poly(ethylene oxide)/LiI melts. 1. Structural and conformational properties. Macromolecules. 1998;31:8396–8406.

52

Stoeva Z, Martin-Litas I, Staunton E, Andreev YG, Bruce PG. Ionic conductivity in the crystalline polymer electrolytes PEO6:LiXF6, X = P, As, Sb. J Am Chem Soc. 2003;125(15):4619–4626.

53

Gadjourova Z, Andreev YG, Tunstall DP, Bruce PG. Ionic conductivity in crystalline polymer electrolytes. Nature. 2001;412:520–523.

54

Ratner MA, Johansson P, Shriver DF. Polymer electrolytes: Ionic transport mechanisms and relaxation coupling. MRS Bull. 2000;25:31–37.

55

Islam MS, Driscoll DJ, Fisher CAJ, Slater PR. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem Mater. 2005;17:5085–5092.

56
Jónsson H, Mills G, Jacobsen KW, Nudged elastic band method for finding minimum energy paths of transitions. In: Classical and quantum dynamics in condensed phase simulations. Singapore: World Scientific; 1998; p. 385–404.
57

Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo Y, Ceder G. Design principles for solid-state lithium superionic conductors. Nat Mater. 2015;14:1026–1031.

58

Dietrich C, Sadowski M, Sicolo S, Weber DA, Sedlmaier SJ, Weldert KS, Indris S, Albe K, Janek J, Zeier WG. Local structural investigations, defect formation, and ionic conductivity of the lithium ionic conductor Li4P2S6. Chem Mater. 2016;28:8764–8773.

59

Du YA, Holzwarth NAW. Li ion diffusion mechanisms in the crystalline electrolyte γ-Li3PO4. J Electrochem Soc. 2007;154:A999.

60

Du YA, Holzwarth NAW. Mechanisms of Li+ diffusion in crystalline γ-and β− Li3 PO4 electrolytes from first principles. Phys Rev B. 2007;76:174302.

61

Ivanov-Shitz AK, Kireev VV, Mel’nikov OK, Demianets LN. Growth and ionic conductivity of γ-Li3PO4. Crystallogr Rep. 2001;46:864–867.

62

Huggins RA. Recent results on lithium ion conductors. Electrochim Acta. 1977;22:773–781.

63

Wang B, Chakoumakos BC, Sales BC, Kwak BS, Bates JB. Synthesis, crystal structure, and ionic conductivity of a polycrystalline lithium phosphorus oxynitride with the γ-Li3PO4 structure. J Solid State Chem. 1995;115:313–323.

64

Al-Qawasmeh A, Howard J, Holzwarth NAW. Li4SnS4 and Li4SnSe4: Simulations of their structure and electrolyte properties. J Electrochem Soc. 2017;164(1):A6386–A6394.

65

Al-Qawasmeh A, Holzwarth NAW. Computational study of Li ion electrolytes composed of Li3AsS4 alloyed with Li4GeS4. J Electrochem Soc. 2016;163:A2079–A2088.

66

Xu Z, Chen R, Zhu H. A Li2CuPS4 superionic conductor: A new sulfide-based solid-state electrolyte. J Mater Chem A. 2019;7:12645–12653.

67

Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K. A lithium superionic conductor. Nat Mater. 2011;10:682–686.

68

Mo Y, Ong SP, Ceder G. First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem Mater. 2012;24:15–17.

69

Kaup K, Bishop K, Assoud A, Liu J, Nazar LF. Fast ion-conducting thioboracite with a perovskite topology and argyrodite-like lithium substructure. J Am Chem Soc. 2021;143(18):6952–6961.

70

Chu IH, Nguyen H, Hy S, Lin YC, Wang Z, Xu Z, Deng Z, Meng YS, Ong SP. Insights into the performance limits of the Li7P3S11 superionic conductor: A combined first-principles and experimental study. ACS Appl Mater Interfaces. 2016;8:7843–7853.

71

Nam K, Chun H, Hwang J, Han B. First-principles design of highly functional sulfide electrolyte of Li10−xSnP2S12−xClx for all solid-state Li-ion battery applications. ACS Sustain Chem Eng. 2020;8:3321–3327.

72

Liu B, Hu Q, Gao T, Liao P, Wen Y, Lu Z, Yang J, Shi S, Zhang W. Computational insights into the ionic transport mechanism and interfacial stability of the Li2OHCl solid-state electrolyte. J Mater. 2022;8(1):59–67.

73

Chun H, Nam K, Hong SJ, Kang J, Han B. Design of a unique anion framework in halospinels for outstanding performance of all solid-state Li-ion batteries: First-principles approach. J Mater Chem A. 2021;9:15605–15612.

74

Zhu Y, He X, Mo Y. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A. 2016;4:3253–3266.

75

Richards WD, Miara LJ, Wang Y, Kim JC, Ceder G. Interface stability in solid-state batteries. Chem Mater. 2016;28:266–273.

76

Richards WD, Tsujimura T, Miara LJ, Wang Y, Kim JC, Ong SP, Uechi I, Suzuki N, Ceder G. Design and synthesis of the superionic conductor Na10SnP2S12. Nat Commun. 2016;7:11009.

77

Ong SP, Mo Y, Richards WD, Miara L, Lee HS, Ceder G. Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors. Energy Environ Sci. 2013;6:148–156.

78

Holzwarth NAW, Lepley ND, Du YA. Computer modeling of lithium phosphate and thiophosphate electrolyte materials. J Power Sources. 2011;196:6870–6876.

79

Adams S, Rao RP. High power lithium ion battery materials by computational design. Phys Status Solidi A. 2011;208:1746–1753.

80

Adams S, Rao RP. Transport pathways for mobile ions in disordered solids from the analysis of energy-scaled bond-valence mismatch landscapes. Phys Chem Chem Phys. 2009;11:3210–3216.

81

Mazza D, Ronchetti S, Bohnké O, Duroy H, Fourquet JL. Modeling Li-ion conductivity in fast ionic conductor La2/3−xLi3xTiO3. Solid State Ionics. 2002;149:81–88.

82

Brese NE, O’Keeffe M. Bond-valence parameters for solids. Acta Crystallogr B. 1991;47:192–197.

83

Inaguma Y, Katsumata T, Itoh M, Morii Y, Tsurui T. Structural investigations of migration pathways in lithium ion-conducting La2/3−xLi3xTiO3 perovskites. Solid State Ionics. 2006;177(35-36):3037–3044.

84

Adams S, Rao RP. Ion transport and phase transition in Li7−xLa3(Zr2−xMx)O12 (M = Ta5+, Nb5+, x = 0, 0.25). J Mater Chem. 2012;22:1426–1434.

85

Filsø MØ, Turner MJ, Gibbs GV, Adams S, Spackman MA, Iversen BB. Visualizing lithium-ion migration pathways in battery materials. Chemistry. 2013;19:15535–15544.

86

Liu G, Xie D, Wang X, Yao X, Chen S, Xiao R, Li H, Xu X. High air-stability and superior lithium ion conduction of Li3+3xP1-xZnxS4-xOx by aliovalent substitution of ZnO for all-solid-state lithium batteries. Energy Storage Mater. 2019;17:266–274.

87

He B, Chi S, Ye A, Mi P, Zhang L, Pu B, Zou Z, Ran Y, Zhao Q, Wang D, et al. High-throughput screening platform for solid electrolytes combining hierarchical ion-transport prediction algorithms. Sci Data. 2020;7:151.

88

Zhang L, He B, Zhao Q, Zou Z, Chi S, Mi P, Ye A, Li Y, Wang D, Avdeev M, et al. A database of ionic transport characteristics for over 29 000 inorganic compounds. Adv Funct Mater. 2020;30(35):2003087.

89

Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2010;22:587–603.

90

Zhu Y, Gonzalez-Rosillo JC, Balaish M, Hood ZD, Kim KJ, Rupp JLM. Lithium-film ceramics for solid-state lithionic devices. Nat Rev Mater. 2021;6:313–331.

91
Shannon RD, Taylor BE, English AD, Berzins T, New Li solid electrolytes. In: International Symposium on Solid Ionic and Ionic-Electronic Conductors. Rome: Elsevier; 1977; p. 783–796.
92

Rodger AR, Kuwano J, West AR. Li+ ion conducting γ solid solutions in the systems Li4XO4-Li3YO4: X= Si, Ge, Ti; Y= P, as, V; Li4XO4-LiZO2: Z= Al, Ga, Cr and Li4GeO4-Li2CaGeO4. Solid State Ionics. 1985;15:185–198.

93

Bates JB, Dudney NJ, Gruzalski GR, Zuhr RA, Choudhury A, Luck CF, Robertson JD. Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics. 1992;53:647–654.

94

Lacivita V, Artrith N, Ceder G. Structural and compositional factors that control the Li-ion conductivity in LiPON electrolytes. Chem Mater. 2018;30:7077–7090.

95

Wolfenstine J, Allen JL, Sumner J, Sakamoto J. Electrical and mechanical properties of hot-pressed versus sintered LiTi2(PO4)3. Solid State Ionics. 2009;180(14-16):961–967.

96

Su Y, Falgenhauer J, Polity A, Leichtweiß T, Kronenberger A, Obel J, Zhou S, Schlettwein D, Janek J, Meyer BK. LiPON thin films with high nitrogen content for application in lithium batteries and electrochromic devices prepared by RF magnetron sputtering. Solid State Ionics. 2015;282:63–69.

97

Epp V, Ma Q, Hammer E-M, Tietz F, Wilkening M. Very fast bulk Li ion diffusivity in crystalline Li1.5Al0.5Ti1.5(PO4)3 as seen using NMR relaxometry. Phys Chem Chem Phys. 2015;17:32115–32121.

98

Wang S, Ding Y, Zhou G, Yu G, Manthiram A. Durability of the Li1+xTi2–xAlx (PO4)3 solid electrolyte in lithium–sulfur batteries. ACS Energy Lett. 2016;1:1080–1085.

99

Takahashi T, Iwahara H. Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell. Energy Convers. 1971;11(3):105–111.

100

Bohnke O. The fast lithium-ion conducting oxides Li3xLa2/3−xTiO3 from fundamentals to application. Solid State Ionics. 2008;179(1-6):9–15.

101

Bohnke O, Emery J, Fourquet J-L. Anomalies in Li+ ion dynamics observed by impedance spectroscopy and 7Li NMR in the perovskite fast ion conductor (Li3xLa2/3-x□1/3-2x)TiO3. Solid State Ionics. 2003;158(1–2):119–132.

102

Stramare S, Thangadurai V, Weppner W. Lithium lanthanum titanates: A review. Chem Mater. 2003;15(21):3974–3990.

103

Lu J, Li Y. Perovskite-type Li-ion solid electrolytes: A review. J Mater Sci Mater Electron. 2021;32(8):9736–9754.

104

Emery J, Buzare JY, Bohnke O, Fourquet JL. Lithium-7 NMR and ionic conductivity studies of lanthanum lithium titanate electrolytes. Solid State Ionics. 1997;99(1–2):41–51.

105

Harada Y, Ishigaki T, Kawai H, Kuwano J. Lithium ion conductivity of polycrystalline perovskite La0.67−xLi3xTiO3 with ordered and disordered arrangements of the A-site ions. Solid State Ionics. 1998;108(1–4):407–413.

106

Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed. 2007;46(41):7778–7781.

107

Thangadurai V, Kaack H, Weppner WJF. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M= Nb, Ta). J Am Ceram Soc. 2003;86(3):437–440.

108

Xie H, Alonso JA, Li Y, Fernández-Díaz MT, Goodenough JB. Lithium distribution in aluminum-free cubic Li7La3Zr2O12. Chem Mater. 2011;23(16):3587–3589.

109

Li Y, Han J-T, Wang C-A, Vogel SC, Xie H, Xu M, Goodenough JB. Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12. J Power Sources. 2012;209:278–281.

110

Buschmann H, Dölle J, Berendts S, Kuhn A, Bottke P, Wilkening M, Heitjans P, Senyshyn A, Ehrenberg H, Lotnyk A, et al. Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”. Phys Chem Chem Phys. 2011;13(43):19378–19392.

111

Geiger CA, Alekseev E, Lazic B, Fisch M, Armbruster T, Langner R, Fechtelkord M, Kim N, Pettke T, Weppner W. Crystal chemistry and stability of “Li7La3Zr2O12” garnet: A fast lithium-ion conductor. Inorg Chem. 2011;50(3):1089–1097.

112

Aktaş S, Özkendir OM, Eker YR, Ateş Ş, Atav Ü, Çelik G, Klysubun W. Study of the local structure and electrical properties of gallium substituted LLZO electrolyte materials. J Alloys Compd. 2019;792:279–285.

113

Awaka J, Takashima A, Kataoka K, Kijima N, Idemoto Y, Akimoto J. Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12. Chem Lett. 2010;40(1):60–62.

114

Song S, Chen B, Ruan Y, Sun J, Yu L, Wang Y, Thokchom J. Gd-doped Li7La3Zr2O12 garnet-type solid electrolytes for all-solid-state Li-Ion batteries. Electrochim Acta. 2018;270:501–508.

115

Naseer MA, Tufail MK, Ali A, Hussain S, Khan U, Jin H. Review on computational-assisted to experimental synthesis, interfacial perspectives of garnet-solid electrolytes for all-solid-state lithium batteries, journal of the electrochemical. Society. 2021;168(6):60529.

116
Aguadero A, Aguesse F, Bernuy-López C, Manalastas WW Jr, del Amo JML, Kilner JA. Improvement of transport properties in Li-conducting ceramic oxides. Electrochem Soc Meet Abstr 2015:503.
117

Lotsch BV, Maier J. Relevance of solid electrolytes for lithium-based batteries: A realistic view. J Electroceram. 2017;38(2):128–141.

118

Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci. 2014;7(2):627–631.

119

Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R. High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy. 2016;1(4):16030.

120

Murayama M, Kanno R, Irie M, Ito S, Hata T, Sonoyama N, Kawamoto Y. Synthesis of new lithium ionic conductor thio-LISICON—lithium silicon sulfides system. J Solid State Chem. 2002;168(1):140–148.

121

Bachman JC, Muy S, Grimaud A, Chang H-H, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, et al. Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction. Chem Rev. 2016;116(1):140–162.

122

Murayama M, Kanno R, Kawamoto Y, Kamiyama T. Structure of the thio-LISICON, Li4GeS4. Solid State Ionics. 2002;154–155:789–794.

123

Kong S-T, Deiseroth H-J, Maier J, Nickel V, Weichert K, Reiner C. Li6PO5Br and Li6PO5Cl: The first lithium-oxide-argyrodites. Z Anorg Allg Chem. 2010;636(11):1920–1924.

124

Boulineau S, Courty M, Tarascon J-M, Viallet V. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics. 2012;221:1–5.

125

Tachez M, Malugani J-P, Mercier R, Robert G. Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4. Solid State Ionics. 1984;14(3):181–185.

126

Lepley ND, Holzwarth NAW, Du YA. Structures, Li+ mobilities, and interfacial properties of solid electrolytes Li3PS4 and Li3PO4 from first principles. Phys Rev B. 2013;88(10):104103.

127

Pan L, Zhang L, Ye A, Chi S, Zou Z, He B, Chen L, Zhao Q, Wang D, Shi S. Revisiting the ionic diffusion mechanism in Li3PS4 via the joint usage of geometrical analysis and bond valence method. J Mater. 2019;5(4):688–695.

128

Liu Z, Fu W, Payzant EA, Yu X, Wu Z, Dudney NJ, Kiggans J, Hong K, Rondinone AJ, Liang C. Anomalous high ionic conductivity of nanoporous β-Li3PS4. J Am Chem Soc. 2013;135(3):975–978.

129

Adams S, Prasada Rao R. Structural requirements for fast lithium ion migration in Li10GeP2S12. J Mater Chem. 2012;22(16):7687–7691.

130

Bron P, Johansson S, Zick K, Schmedt auf der Günne J, Dehnen S, Roling B. Li10SnP2S12: An affordable lithium superionic conductor. J Am Chem Soc. 2013;135(42):15694–15697.

131
Weisbach A. Argyrodit. ein neues Silbererz; 1886.
132

Gagor A, Pietraszko A, Kaynts D. Structural aspects of fast copper mobility in Cu6PS5Cl—The best solid electrolyte from Cu6PS5X series. J Solid State Chem. 2008;181(4):777–782.

133

Deiseroth HJ, Kong ST, Eckert H, Vannahme J, Reiner C, Zaiß T, Schlosser M. Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew Chem Int Ed. 2008;47(4):755–758.

134

Rao RP, Adams S. Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Phys Status Solidi A. 2011;208(8):1804–1807.

135

Rayavarapu PR, Sharma N, Peterson VK, Adams S. Variation in structure and Li+-ion migration in argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes. J Solid State Electrochem. 2012;16(5):1807–1813.

136

Chen HM, Maohua C, Adams S. Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes. Phys Chem Chem Phys. 2015;17(25):16494–16506.

137

Kraft MA, Culver SP, Calderon M, Böcher F, Krauskopf T, Senyshyn A, Dietrich C, Zevalkink A, Janek J, Zeier WG. Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). J Am Chem Soc. 2017;139(31):10909–10918.

138

Minafra N, Culver SP, Krauskopf T, Senyshyn A, Zeier WG. Effect of Si substitution on the structural and transport properties of superionic Li-argyrodites. J Mater Chem A. 2018;6(2):645–651.

139

Nagata H, Chikusa Y. Activation of sulfur active material in an all-solid-state lithium–sulfur battery. J Power Sources. 2014;263:141–144.

140
Yamasaki H, Shirasawa A, Nishino N. DFT and MD simulations of Li-ion pathway in solid state sulfide Li7P3S11 electrolyte. Electrochem Soc Meet Abstr 2010:600.
141

Mori K, Enjuji K, Murata S, Shibata K, Kawakita Y, Yonemura M, Onodera Y, Fukunaga T. Direct observation of fast lithium-ion diffusion in a superionic conductor: Li7P3S11 metastable crystal. Phys Rev Appl. 2015;4(5):54008.

142

Homma K, Yonemura M, Kobayashi T, Nagao M, Hirayama M, Kanno R. Crystal structure and phase transitions of the lithium ionic conductor Li3PS4. Solid State Ionics. 2011;182(1):53–58.

143

Eom M, Kim J, Noh S, Shin D. Crystallization kinetics of Li2S–P2S5 solid electrolyte and its effect on electrochemical performance. J Power Sources. 2015;284:44–48.

144

Zhang Y, Chen R, Liu T, Shen Y, Lin Y, Nan C-W. High capacity, superior cyclic performances in all-solid-state lithium-ion batteries based on 78Li2S-22P2S5 glass-ceramic electrolytes prepared via simple heat treatment. ACS Appl Mater Interfaces. 2017;9(34):28542–28548.

145

Hayashi A, Minami K, Tatsumisago M. High lithium ion conduction of sulfide glass-based solid electrolytes and their application to all-solid-state batteries. J Non-Cryst Solids. 2009;355(37–42):1919–1923.

146

He X, Zhu Y, Mo Y. Origin of fast ion diffusion in super-ionic conductors. Nat Commun. 2017;8(1):15893.

147

Brenner TM, Gehrmann C, Korobko R, Livneh T, Egger DA, Yaffe O. Anharmonic host-lattice dynamics enable fast ion conduction in superionic AgI. Phys Rev Mater. 2020;4(11):115402.

148

Schlem R, Bernges T, Li C, Kraft MA, Minafra N, Zeier WG. Lattice dynamical approach for finding the lithium superionic conductor Li3ErI6. ACS Appl Energy Mater. 2020;3(4):3684–3691.

149

Schlem R, Ghidiu M, Culver SP, Hansen A-L, Zeier WG. Changing the static and dynamic lattice effects for the improvement of the ionic transport properties within the argyrodite Li6PS5–xSexI. ACS Appl Energy Mater. 2020;3(1):9–18.

150

Bernges T, Culver SP, Minafra N, Koerver R, Zeier WG. Competing structural influences in the Li superionic conducting argyrodites Li6PS5–xSexBr (0 ≤ x ≤ 1) upon Se substitution. Inorg Chem. 2018;57(21):13920–13928.

151

Koch B, Kong ST, Gün Ö, Deiseroth H-J, Eckert H. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: Ⅱ. Multinuclear solid state NMR of the systems Li6PS5−xSex Cl and Li6PS5−xSexBr. Z Phys Chem. 2022;236(6–8):875–898.

152

Xu Z, Chen X, Chen R, Li X, Zhu H. Anion charge and lattice volume dependent lithium ion migration in compounds with fcc anion sublattices. Npj Comput Mater. 2020;6(1):47.

153

de Klerk NJJ, Rosłoń I, Wagemaker M. Diffusion mechanism of Li argyrodite solid electrolytes for Li-ion batteries and prediction of optimized halogen doping: The effect of Li vacancies, halogens, and halogen disorder. Chem Mater. 2016;28(21):7955–7963.

154

Hanghofer I, Brinek M, Eisbacher SL, Bitschnau B, Volck M, Hennige V, Hanzu I, Rettenwander D, Wilkening HMR. Substitutional disorder: Structure and ion dynamics of the argyrodites Li6PS5Cl, Li6PS5Br and Li6PS5I. Phys Chem Chem Phys. 2019;21(16):8489–8507.

155

Adelstein N, Wood BC. Role of dynamically frustrated bond disorder in a Li+ superionic solid electrolyte. Chem Mater. 2016;28(20):7218–7231.

156

Kraft MA, Ohno S, Zinkevich T, Koerver R, Culver SP, Fuchs T, Senyshyn A, Indris S, Morgan BJ, Zeier WG. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1–xGexS5I for all-solid-state batteries. J Am Chem Soc. 2018;140(47):16330–16339.

157

Ohno S, Helm B, Fuchs T, Dewald G, Kraft MA, Culver SP, Senyshyn A, Zeier WG. Further evidence for energy landscape flattening in the superionic argyrodites Li6+xP1–xMxS5I (M = Si, Ge, Sn). Chem Mater. 2019;31(13):4936–4944.

158

Banik A, Liu Y, Ohno S, Rudel Y, Jiménez-Solano A, Gloskovskii A, Vargas-Barbosa NM, Mo Y, Zeier WG. Can substitutions affect the oxidative stability of lithium argyrodite solid electrolytes? ACS Appl Energy Mater. 2022;5(2):2045–2053.

159

Maughan AE, Ha Y, Pekarek RT, Schulze MC. Lowering the activation barriers for lithium-ion conductivity through orientational disorder in the cyanide argyrodite Li6PS5CN. Chem Mater. 2021;33(13):5127–5136.

160

Gautam A, Sadowski M, Prinz N, Eickhoff H, Minafra N, Ghidiu M, Culver SP, Albe K, Fässler TF, Zobel M, et al. Rapid crystallization and kinetic freezing of site-disorder in the lithium superionic argyrodite Li6PS5Br. Chem Mater. 2019;31(24):10178–10185.

161

Hogrefe K, Minafra N, Hanghofer I, Banik A, Zeier WG, Wilkening HMR. Opening diffusion pathways through site disorder: The interplay of local structure and ion dynamics in the solid electrolyte Li6+xP1–xGexS5I as probed by neutron diffraction and NMR. J Am Chem Soc. 2022;144(4):1795–1812.

162

Helm B, Minafra N, Wankmiller B, Agne MT, Li C, Senyshyn A, Hansen MR, Zeier WG. Correlating structural disorder to Li+ ion transport in Li4–xGe1–xSbxS4 (0 ≤ x ≤ 0.2). Chem Mater. 2022;34(12):5558–5570.

163

Leube BT, Collins CM, Daniels LM, Duff BB, Dang Y, Chen R, Gaultois MW, Manning TD, Blanc F, Dyer MS, et al. Cation disorder and large tetragonal supercell ordering in the Li-rich argyrodite Li7Zn0.5SiS6. Chem Mater. 2022;34(9):4073–4087.

164

Schweiger L, Hogrefe K, Gadermaier B, Rupp JLM, Wilkening HMR. Ionic conductivity of nanocrystalline and amorphous Li10GeP2S12: The detrimental impact of local disorder on ion transport. J Am Chem Soc. 2022;144(22):9597–9609.

165

Dawson JA, Islam MS. A nanoscale design approach for enhancing the Li-ion conductivity of the Li10GeP2S12 solid electrolyte. ACS Mater Lett. 2022;4(2):424–431.

166

Fang H, Jena P. Li-rich antiperovskite superionic conductors based on cluster ions. Proc Natl Acad Sci. 2017;114(42):11046–11051.

167

Jansen M. Volume effect or paddle-wheel mechanism—Fast alkali-metal ionic conduction in solids with rotationally disordered complex anions. Angew Chem Int Ed Engl. 1991;30(12):1547–1558.

168

Nilsson L, Thomas JO, Tofield BC. The structure of the high-temperature solid electrolyte lithium sulphate at 908K. J Phys C Solid State Phys. 1980;13(35):6441.

169

Zhao Q, Pan L, Li Y-J, Chen L-Q, Shi S-Q. Rotational motion of polyanion versus volume effect associated with ionic conductivity of several solid electrolytes. Rare Metals. 2018;37(6):497–503.

170

Lin S, Lin Y, He B, Pu B, Ren Y, Wang G, Luo Y, Shi S. Reclaiming neglected compounds as promising solid state electrolytes by predicting electrochemical stability window with dynamically determined decomposition pathway. Adv Energy Mater. 2022;12(45):2201808.

171

Ren Y, Liu B, He B, Lin S, Shi W, Luo Y, Wang D, Shi S. Portraying the ionic transport and stability window of solid electrolytes by incorporating bond valence-Ewald with dynamically determined decomposition methods. Appl Phys Lett. 2022;121(17):173904.

172

Shi S, Lu P, Liu Z, Qi Y, Hector LG Jr, Li H, Harris SJ. Direct calculation of Li-ion transport in the solid electrolyte interphase. J Am Chem Soc. 2012;134(37):15476–15487.

173

Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G. Ionic conductivity and sinterability of lithium titanium phosphate system. Solid State Ionics. 1990;40–41:38–42.

174

Zhang Z, Zou Z, Kaup K, Xiao R, Shi S, Avdeev M, Hu Y-S, Wang D, He B, Li H, et al. Correlated migration invokes higher Na+-ion conductivity in NaSICON-type solid electrolytes. Adv Energy Mater. 2019;9(42):1902373.

175

Zou Z, Ma N, Wang A, Ran Y, Song T, Jiao Y, Liu J, Zhou H, Shi W, He B, et al. Relationships between Na+ distribution, concerted migration, and diffusion properties in rhombohedral NASICON. Adv Energy Mater. 2020;10(30):2001486.

176

Gao J, Chu G, He M, Zhang S, Xiao R, Li H, Chen L. Screening possible solid electrolytes by calculating the conduction pathways using Bond Valence method. Sci China Phys Mech Astron. 2014;57(8):1526–1536.

177

Wang A, Zou Z, Wang D, Liu Y, Li Y, Wu J, Avdeev M, Shi S. Identifying chemical factors affecting reaction kinetics in Li-air battery via ab initio calculations and machine learning. Energy Storage Mater. 2021;35:595–601.

178

Zou Z, Li Y, Lu Z, Wang D, Cui Y, Guo B, Li Y, Liang X, Feng J, Li H, et al. Mobile ions in composite solids. Chem Rev. 2020;120(9):4169–4221.

179

Hu J-M, Wang B, Ji Y, Yang T, Cheng X, Wang Y, Chen L-Q. Phase-field based multiscale modeling of heterogeneous solid electrolytes: Applications to nanoporous Li3PS4. ACS Appl Mater Interfaces. 2017;9(38):33341–33350.

180

Hong Z, Viswanathan V. Open-sourcing phase-field simulations for accelerating energy materials design and optimization. ACS Energy Lett. 2020;5(10):3254–3259.

181

Hong Z, Viswanathan V. Phase-field simulations of lithium dendrite growth with open-source software. ACS Energy Lett. 2018;3(7):1737–1743.

182

Ran Y, Zhao Z-Y, Zhao Q, Wang D, Yu J, Shi S-Q. Brief overview of microscopic physical image of ion transport in electrolytes. Acta Phys Sin. 2020;69(22):226601.

183

Yu C, Zhao F, Luo J, Zhang L, Sun X. Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics. Nano Energy. 2021;83:105858.

184

Chen X, Guan Z, Chu F, Xue Z, Wu F, Yu Y. Air-stable inorganic solid-state electrolytes for high energy density lithium batteries: Challenges, strategies, and prospects. InfoMat. 2022;4(1):e12248.

185

Tao B, Ren C, Li H, Liu B, Jia X, Dong X, Zhang S, Chang H. Thio-/LISICON and LGPS-type solid electrolytes for all-solid-state lithium-ion batteries. Adv Funct Mater. 2022;32(34):2203551.

186

Kato Y, Hori S, Kanno R. Li10GeP2S12-type superionic conductors: Synthesis, structure, and ionic transportation. Adv Energy Mater. 2020;10(42):2002153.

187

Meng YS, Srinivasan V, Xu K. Designing better electrolytes. Science. 2022;378(6624):eabq3750.

188

Wang C, Fu K, Kammampata SP, McOwen DW, Samson AJ, Zhang L, Hitz GT, Nolan AM, Wachsman ED, Mo Y, et al. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries. Chem Rev. 2020;120(10):4257–4300.

189
Tufail MK, Shah SSA, Hussain S, Najam T, MK Aslam. Chapter 12—A solid-state approach to a lithium-sulfur battery. In: Hepp AF, Kumta PN, Velikokhatnyi OI, Datta MK, editors. Lithium-sulfur batteries. Amsterdam (Netherlands): Elsevier; 2022. p. 441–488.
190

Famprikis T, Canepa P, Dawson JA, Islam MS, Masquelier C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat Mater. 2019;18(12):1278–1291.

191

Kim KJ, Balaish M, Wadaguchi M, Kong L, Rupp JLM. Solid-state Li–metal batteries: Challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv Energy Mater. 2021;11(1):2002689.

192

Krauskopf T, Culver SP, Zeier WG. Bottleneck of diffusion and inductive effects in Li10Ge1–xSnxP2S12. Chem Mater. 2018;30(5):1791–1798.

193

Awaka J, Kijima N, Hayakawa H, Akimoto J. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J Solid State Chem. 2009;182(8):2046–2052.

194

Chang D, Oh K, Kim SJ, Kang K. Super-ionic conduction in solid-state Li7P3S11-type sulfide electrolytes. Chem Mater. 2018;30(24):8764–8770.

195

Kaupp M, Metz B, Stoll H. Breakdown of bond length-bond strength correlation: A case study. Angew Chem Int Ed. 2000;39(24):4607–4609.

196

Muy S, Schlem R, Shao-Horn Y, Zeier WG. Phonon–ion interactions: Designing ion mobility based on lattice dynamics. Adv Energy Mater. 2021;11(15):2002787.

Energy Material Advances
Article number: 0015
Cite this article:
Tufail MK, Zhai P, Jia M, et al. Design of Solid Electrolytes with Fast Ion Transport: Computation-Driven and Practical Approaches. Energy Material Advances, 2023, 4: 0015. https://doi.org/10.34133/energymatadv.0015
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return