Recently, sulfide-based solid-state electrolytes (SSEs) have attracted much attention owing to their high ionic conductivity and feasible mechanical features. The environmental stability of sulfide-based SSEs is one of the critical aspects due to the possible decomposition, and ionic conductivity change will affect the fabrication and electrochemical performance of the batteries. Thus, important efforts have been made to reveal and improve their environmental stability, and a timely summary of the progress is urgently needed. In this review, we first clarify the definition of environmental stability and its significance in the context of practical use. After indicating the degradation mechanisms of sulfide-based SSEs, we summarize several effective strategies to improve their stability and also highlight the related theoretical studies. The stability of organic solvents of sulfide SSEs is also summarized and discussed, which may help reliable sulfide SSEs in the battery system. The main target of this review is to gain insights and provide useful guidance to further improve the environmental stability of sulfide SSEs, which will finally promote the commercialization of sulfide-based all-solid-state batteries.
Chen R, Li Q, Yu X, Chen L, Li H. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces. Chem Rev. 2019;120(14):6820–6877.
Randau S, Weber DA, Kötz O, Koerver R, Braun P, Weber A, Ivers-Tiffée E, Adermann T, Kulisch J, Zeier WG, et al. Benchmarking the performance of all-solid-state lithium batteries. Nat Energy. 2020;5(3):259–270.
Krauskopf T, Mogwitz B, Rosenbach C, Zeier WG, Janek J. Diffusion limitation of lithium metal and Li–Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure. Adv Energy Mater. 2019;9(44):1902568.
Stegmaier S, Schierholz R, Povstugar I, Barthel J, Rittmeyer SP, Yu S, Wengert S, Rostami S, Kungl H, Reuter K, et al. Nano-scale complexions facilitate Li dendrite-free operation in LATP solid-state electrolyte. Adv Energy Mater. 2021;11(26):2100707.
Cui Y, Wan J, Ye Y, Liu K, Chou L-Y, Cui Y. A fireproof, lightweight, polymer–polymer solid-state electrolyte for safe lithium batteries. Nano Lett. 2020;20(3):1686–1692.
Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, et al. A lithium superionic conductor. Nat Mater. 2011;10:682–686.
Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R. High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy. 2016;1(4):16030.
Wu J, Shen L, Zhang Z, Liu G, Wang Z, Zhou D, Wan H, Xu X, Yao X. All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes. Electrochem Energy Rev. 2021;4(1):101–135.
Wang C, Liang J, Luo J, Liu J, Li X, Zhao F, Li R, Huang H, Zhao S, Zhang L. A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries. Sci Adv. 2021;7(37):Article eabh1896.
Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv Mater. 2018;30(44):1803075.
Li X, Liang J, Chen N, Luo J, Adair KR, Wang C, Banis MN, Sham T-K, Zhang L, Zhao S, et al. Water-mediated synthesis of a superionic halide solid electrolyte. Angew Chem Int Ed. 2019;58(46):16427–16432.
Ju J, Wang Y, Chen B, Ma J, Dong S, Chai J, Qu H, Cui L, Wu X, Cui G. Integrated interface strategy toward room temperature solid-state lithium batteries. ACS Appl Mater Interfaces. 2018;10(16):13588–13597.
Kraft MA, Ohno S, Zinkevich T, Koerver R, Culver SP, Fuchs T, Senyshyn A, Indris S, Morgan BJ, Zeier WG. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+ xP1–xGexS5I for all-solid-state batteries. J Am Chem Soc. 2018;140(47):16330–16339.
Wang C, Liang J, Zhao Y, Zheng M, Li X, Sun X. All-solid-state lithium batteries enabled by sulfide electrolytes: From fundamental research to practical engineering design. Energy Environ Sci. 2021;14(5):2577–2619.
Zhang Q, Cao D, Ma Y, Natan A, Aurora P, Zhu H. Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries. Adv Mater. 2019;31(44):1901131.
Zhang Z, Zhang L, Liu Y, Yu C, Yan X, Xu B. Synthesis and characterization of argyrodite solid electrolytes for all-solid-state Li-ion batteries. J Alloys Compd. 2018;747:227–235.
Tan DHS, Banerjee A, Deng Z, Wu EA, Nguyen H, Doux J-M, Wang X. Enabling thin and flexible solid-state composite electrolytes by the scalable solution process. ACS Appl Energy Mater. 2019;2(9):6542–6550.
Calpa M, Rosero-Navarro NC, Miura A, Jalem R, Tateyama Y, Tadanaga K. Chemical stability of Li4PS4I solid electrolyte against hydrolysis. Appl Mater Today. 2021;22:100918.
Lu P, Wu D, Chen L, Li H, Wu F. Air stability of solid-state sulfide batteries and electrolytes. Electrochem Energy Rev. 2022;5(3):3.
Hayashi A, Muramatsu H, Ohtomo T, Hama S, Tatsumisago M. Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles. J Mater Chem A. 2013;1(21):6320–6326.
Xu J, Li Y, Lu P, Yan W, Yang M, Li H, Chen L, Wu F. Water-stable sulfide solid electrolyte membranes directly applicable in all-solid-state batteries enabled by superhydrophobic Li+-conducting protection layer. Adv Energy Mater. 2022;12(2):2102348.
Zhao F, Alahakoon SH, Adair K, Zhang S, Xia W, Li W, Yu C, Feng R, Hu Y, Liang J, et al. An air-stable and Li-metal-compatible glass-ceramic electrolyte enabling high-performance all-solid-state Li metal batteries. Adv Mater. 2021;33(8):2006577.
Sahu G, Lin Z, Li J, Liu Z, Dudney N, Liang C. Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ Sci. 2014;7(3):1053–1058.
Lu P, Liu L, Wang S, Xu J, Peng J, Yan W, Wang Q, Li H, Chen L, Wu F. Superior all-solid-state batteries enabled by a gas-phase-synthesized sulfide electrolyte with ultrahigh moisture stability and ionic conductivity. Adv Mater. 2021;33(32):2100921.
Muramatsu H, Hayashi A, Ohtomo T, Hama S, Tatsumisago M. Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics. 2011;182(1):116–119.
Prouzet E, Ouvrard G, Brec R, Seguineau P. Room temperature synthesis of pure amorphous nickel hexathiodiphosphate Ni2P2S6. Solid State Ionics. 1988;31(1):79–90.
Tsukasaki H, Sano H, Igarashi K, Wakui A, Yaguchi T, Mori S. Deterioration process of argyrodite solid electrolytes during exposure to humidity-controlled air. J Power Sources. 2022;524:231085.
Carnes CL, Klabunde KJ. Unique chemical reactivities of nanocrystalline metal oxides toward hydrogen sulfide. Chem Mater. 2002;14(4):1806–1811.
Xue M, Chitrakar R, Sakane K, Ooi K. Screening of adsorbents for removal of H2S at room temperature. Green Chem. 2003;5(5):529–534.
Shah MS, Tsapatsis M, Siepmann JI. Hydrogen sulfide capture: From absorption in polar liquids to oxide, zeolite, and metal–organic framework adsorbents and membranes. Chem Rev. 2017;117(14):9755–9803.
Lee D, Park K-H, Kim SY, Jung JY, Lee W, Kim K, Jeong G, Yu J-S, Choi J, Park M-S, et al. Critical role of zeolites as H2S scavengers in argyrodite Li6PS5Cl solid electrolytes for all-solid-state batteries. J Mater Chem A. 2021;9(32):17311–17316.
Ohtomo T, Hayashi A, Tatsumisago M, Kawamoto K. Suppression of H2S gas generation from the 75Li2S·25P2S5 glass electrolyte by additives. J Mater Sci. 2013;48(11):4137–4142.
Liang J, Chen N, Li X, Li X, Adair KR, Li J, Wang C, Yu C, Norouzi Banis M, Zhang L, et al. Li10Ge (P1–xSbx)2S12 lithium-ion conductors with enhanced atmospheric stability. Chem Mater. 2020;32(6):2664–2672.
Zhao F, Liang J, Yu C, Sun Q, Li X, Adair K, Wang C, Zhao Y, Zhang S, Li W, et al. A versatile Sn-substituted argyrodite sulfide electrolyte for all-solid-state Li metal batteries. Adv Energy Mater. 2020;10(9):1903422.
Zhang Z, Zhang J, Sun Y, Jia H, Peng L, Zhang Y, Xie J. Li4-xSbxSn1-xS4 solid solutions for air-stable solid electrolytes. J Energy Chem. 2020;41:171–176.
Tufail MK, Zhou L, Ahmad N, Chen R, Faheem M, Yang L, Yang W. A novel air-stable Li7Sb0.05P2.95S10.5I0.5 superionic conductor glass-ceramics electrolyte for all-solid-state lithium-sulfur batteries. Chem Eng J. 2020;407:127149.
Kimura T, Kato A, Hotehama C, Sakuda A, Hayashi A, Tatsumisago M. Preparation and characterization of lithium ion conductive Li3SbS4 glass and glass-ceramic electrolytes. Solid State Ionics. 2019;333:45–49.
Kwak H, Park KH, Han D, Nam K-W, Kim H, Jung YS. Li+ conduction in air-stable Sb-substituted Li4SnS4 for all-solid-state Li-ion batteries. J Power Sources. 2020;446:227338.
Wang Y, Lü X, Zheng C, Liu X, Chen Z, Yang W, Lin J, Huang F. Chemistry design towards a stable sulfide-based superionic conductor Li4Cu8Ge3S12. Angew Chem Int Ed. 2019;58(23):7676–7677.
Sun X, Stavola AM, Cao D, Bruck AM, Wang Y, Zhang Y, Luan P, Gallaway JW, Zhu H. Operando EDXRD study of all-solid-state lithium batteries coupling thioantimonate superionic conductors with metal sulfide. Adv Energy Mater. 2021;11(3):2002861.
Lee Y, Jeong J, Lee HJ, Kim M, Han D, Kim H, Yuk JM, Nam K-W, Chung KY, Jung H-G. Lithium argyrodite sulfide electrolytes with high ionic conductivity and air stability for all-solid-state Li-ion batteries. ACS Energy Lett. 2021;7(1):171–179.
Ye L, Gil-González E, Li X. Li9.54Si1.74(P1-xSbx)1.44S11.7Cl0.3: A functionally stable sulfide solid electrolyte in air for solid-state batteries. Electrochem Commun. 2021;128:107058.
Taklu BW, Su W-N, Nikodimos Y, Lakshmanan K, Temesgen NT, Lin P-X, Jiang S-K, Huang C-J, Wang D-Y, Sheu H-S, et al. Dual CuCl doped argyrodite superconductor to boost the interfacial compatibility and air stability for all solid-state lithium metal batteries. Nano Energy. 2021;90:106542.
Li Y, Li J, Cheng J, Xu X, Chen L, Ci L. Enhanced air and electrochemical stability of Li7P3S11–based solid electrolytes enabled by aliovalent substitution of SnO2. Adv Mater Interfaces. 2021;8(14):2100368.
Liu H, Zhu Q, Wang C, Wang G, Liang Y, Li D, Gao L, Fan LZ. High air stability and excellent Li metal compatibility of argyrodite-based electrolyte enabling superior all-solid-state Li metal batteries. Adv Fun Mater. 2022;32(32):2203858.
Ohtomo T, Hayashi A, Tatsumisago M, Kawamoto K. Characteristics of the Li2O–Li2S–P2S5 glasses synthesized by the two-step mechanical milling. J Non-Cryst Solids. 2013;364:57–61.
Ohtomo T, Hayashi A, Tatsumisago M, Kawamoto K. All-solid-state batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-step mechanical milling. J Solid State Electrochem. 2013;17(10):2551–2557.
Hayashi A, Muramatsu H, Ohtomo T, Hama S, Tatsumisago M. Improved chemical stability and cyclability in Li2S–P2S5–P2O5–ZnO composite electrolytes for all-solid-state rechargeable lithium batteries. J Alloys Compd. 2014;591:247–250.
Liu G, Xie D, Wang X, Yao X, Chen S, Xiao R, Li H, Xu X. High air-stability and superior lithium ion conduction of Li3+3xP1-xZnxS4-xOx by aliovalent substitution of ZnO for all-solid-state lithium batteries. Energy Storage Mater. 2019;17:266–274.
Ahmad N, Zhou L, Faheem M, Tufail MK, Yang L, Chen R, Zhou Y, Yang W. Enhanced air stability and high Li-ion conductivity of Li6.988P2.994Nb0.2S10.934O0.6 glass–ceramic electrolyte for all-solid-state lithium–sulfur batteries. ACS Appl Mater Interfaces. 2020;12(19):21548–21558.
Xu M, Song S, Daikuhara S, Matsui N, Hori S, Suzuki K, Hirayama M, Shiotani S, Nakanishi S, Yonemura M. Li10GeP2S12-type structured solid solution phases in the Li9+ δP3+ δ′S12–kOk system: Controlling crystallinity by synthesis to improve the air stability. Inorg Chem. 2021;61(1):52–61.
Tufail MK, Ahmad N, Zhou L, Faheem M, Yang L, Chen R, Yang W. Insight on air-induced degradation mechanism of Li7P3S11 to design a chemical-stable solid electrolyte with high Li2S utilization in all-solid-state Li/S batteries. Chem Eng J. 2021;425:130535.
Ahmad N, Sun S, Yu P, Yang W. Design unique air-stable and Li–metal compatible sulfide electrolyte via exploration of anion functional units for all-solid-state lithium–metal batteries. Adv Fun Mater. 2022;32(28):Article 2201528.
Zhao B-S, Wang L, Chen P, Liu S, Li G-R, Xu N, Wu M-T, Gao X-P. Congener substitution reinforced Li7P2.9Sb0.1S10.75O0.25 glass-ceramic electrolytes for all-solid-state lithium–sulfur batteries. ACS Appl Mater Interfaces. 2021;13(29):34477–34485.
Jung WD, Jeon M, Shin SS, Kim J-S, Jung H-G, Kim B-K, Lee J-H, Chung Y-C, Kim H. Functionalized sulfide solid electrolyte with air-stable and chemical-resistant oxysulfide nanolayer for all-solid-state batteries. ACS Omega. 2020;5(40):26015–26022.
Li J, Chen H, Shen Y, Hu C, Cheng Z, Lu W, Qiu Y, Chen L. Covalent interfacial coupling for hybrid solid-state Li ion conductor. Energy Storage Mater. 2019;23:277–283.
Yang M, Chen L, Li H, Wu F. Air/water stability problems and solutions for lithium batteries. Energy Mater Adv. 2022;2022:Article 9842651.
Zhang K, Wu F, Wang X, Weng S, Yang X, Zhao H, Guo R, Sun Y, Zhao W, Song T. 8.5 μm-thick flexible-rigid hybrid solid–electrolyte/lithium integration for air-stable and interface-compatible all-solid-state lithium metal batteries. Adv Energy Mater. 2022;12(24):2200368.
Wu F, Zhang K, Liu Y, Gao H, Bai Y, Wang X, Wu C. Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects. Energy Storage Mater. 2020;33:26–54.
Kaib T, Haddadpour S, Kapitein M, Bron P, Schröder C, Eckert H, Roling B, Dehnen S. New lithium chalcogenidotetrelates, LiChT: Synthesis and characterization of the Li+-conducting tetralithium ortho-sulfidostannate Li4SnS4. Chem Mater. 2012;24(11):2211–2219.
Kaib T, Bron P, Haddadpour S, Mayrhofer L, Pastewka L, Järvi TT, Moseler M, Roling B, Dehnen S. Lithium chalcogenidotetrelates: LiChT—Synthesis and characterization of new Li+ ion conducting Li/Sn/Se compounds. Chem Mater. 2013;25(15):2961–2969.
Choi YE, Park KH, Kim DH, Oh DY, Kwak HR, Lee Y-G, Jung YS. Coatable Li4SnS4 solid electrolytes prepared from aqueous solutions for all-solid-state lithium-ion batteries. ChemSusChem. 2017;10(12):2605–2611.
Brant JA, Massi DM, Holzwarth N, MacNeil JH, Douvalis AP, Bakas T, Martin SW, Gross MD, Aitken JA. Fast lithium ion conduction in Li2SnS3: Synthesis, physicochemical characterization, and electronic structure. Chem Mater. 2015;27(1):189–196.
Joos M, Schneider C, Münchinger A, Moudrakovski I, Usiskin R, Maier J, Lotsch BV. Impact of hydration on ion transport in Li2Sn2S5·xH2O. J Mater Chem A. 2021;9(30):16532–16544.
Hatz A-K, Moudrakovski I, Bette S, Terban MW, Etter M, Joos M, Vargas-Barbosa NM, Dinnebier RE, Lotsch BV. Fast water-assisted lithium ion conduction in restacked lithium tin sulfide nanosheets. Chem Mater. 2021;33(18):7337–7349.
Kanazawa K, Yubuchi S, Hotehama C, Otoyama M, Shimono S, Ishibashi H, Kubota Y, Sakuda A, Hayashi A, Tatsumisago M. Mechanochemical synthesis and characterization of metastable hexagonal Li4SnS4 solid electrolyte. Inorg Chem. 2018;57(16):9925–9930.
MacNeil JH, Massi DM, Zhang J-H, Rosmus KA, Brunetta CD, Gentile TA, Aitken JA. Synthesis, structure, physicochemical characterization and electronic structure of thio-lithium super ionic conductors, Li4GeS4 and Li4SnS4. J Alloys Compd. 2014;586:736–744.
Matsuda R, Kokubo T, Phuc NHH, Muto H, Matsuda A. Preparation of ambient air-stable electrolyte Li4SnS4 by aqueous ion-exchange process. Solid State Ionics. 2020;345:115190.
Kuhn A, Holzmann T, Nuss J, Lotsch BV. A facile wet chemistry approach towards unilamellar tin sulfide nanosheets from Li4x Sn1−xS2 solid solutions. J Mater Chem A. 2014;2(17):6100–6106.
Wang Z, Jiang Y, Wu J, Jiang Y, Ma W, Shi Y, Liu X, Zhao B, Xu Y, Zhang J. Doping effects of metal cation on sulfide solid electrolyte/lithium metal interface. Nano Energy. 2021;84:105906.
Ni Y, Huang C, Liu H, Liang Y, Fan LZ. A high air-stability and Li-metal-compatible Li3+2xP1−xBixS4−1.5xO1.5x sulfide electrolyte for all-solid-state Li–metal batteries. Adv. Funct. Mater. 2022;32(41):2205998.
Zhu Y, Mo Y. Materials design principles for air-stable lithium/sodium solid electrolytes. Angew Chem Int Ed. 2020;59:17472–17476.
Banerjee S, Zhang X, Wang L-W. Motif-based design of an oxysulfide class of lithium superionic conductors: Toward improved stability and record-high Li-ion conductivity. Chem Mater. 2019;31(18):7265–7276.
Zhang B, Weng M, Lin Z, Feng Y, Yang L, Wang LW, Pan F. Li-ion cooperative migration and oxy-sulfide synergistic effect in Li14P2Ge2S16−6xOx solid-state-electrolyte enables extraordinary conductivity and high stability. Small. 2020;16(11):1906374.
Kim J-S, Jeon M, Kim S, Lee J-H, Kim B-K, Kim H. Structural and electronic descriptors for atmospheric instability of Li-thiophosphate using density functional theory. Solid State Ionics. 2020;346:115225.
Luo S, Wang Z, Fan A, Liu X, Wang H, Ma W, Zhu L, Zhang X. A high energy and power all-solid-state lithium battery enabled by modified sulfide electrolyte film. J Power Sources. 2021;485:229325.
Chen Y-T, Duquesnoy M, Tan DHS, Doux J-M, Yang H, Deysher G, Ridley P, Franco AA, Meng YS, Chen Z. Fabrication of high-quality thin solid-state electrolyte films assisted by machine learning. ACS Energy Lett. 2021;6(4):1639–1648.
Lee K, Kim S, Park J, Park SH, Coskun A, Jung DS, Cho W, Choi JW. Selection of binder and solvent for solution-processed all-solid-state battery. J Electrochem Soc. 2017;164(9): A2075–A2081.
Yubuchi S, Uematsu M, Deguchi M, Hayashi A, Tatsumisago M. Lithium-ion-conducting Argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes prepared by a liquid-phase technique using ethanol as a solvent. ACS Appl Energy Mater. 2018;1(8):3622–3629.
Miura A, Rosero-Navarro NC, Sakuda A, Tadanaga K, Phuc NHH, Matsuda A, Machida N, Hayashi A, Tatsumisago M. Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery. Nat Rev Chem. 2019;3(3):189–198.
Kim DH, Oh DY, Park KH, Choi YE, Nam YJ, Lee HA, Lee S-M, Jung YS. Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries. Nano Lett. 2017;17(5):3013–3020.
Nam YJ, Cho SJ, Oh DY, Lim JM, Kim SY, Song JH, Lee YG, Lee SY, Jung YS. Bendable and thin sulfide solid electrolyte film: A new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries. Nano Lett. 2015;15(5):3317–3323.
Oh DY, Kim KT, Jung SH, Kim DH, Jun S, Jeoung S, Moon HR, Jung YS. Tactical hybrids of Li+-conductive dry polymer electrolytes with sulfide solid electrolytes: Toward practical all-solid-state batteries with wider temperature operability. Mater Today. 2022;53:7–15.
Zhang Z, Zhang L, Yan X, Wang H, Liu Y, Yu C, Cao X, van Eijck L, Wen B. All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune. J Power Sources. 2019;410:162–170.
Chen T, Zhang L, Zhang Z, Li P, Wang H, Yu C, Yan X, Wang L, Xu B. Argyrodite solid electrolyte with a stable interface and superior dendrite suppression capability realized by ZnO co-doping. ACS Appl Mater Interfaces. 2019;11(43):40808–40816.
Subramanian Y, Rajagopal R, Ryu K-S. Synthesis, air stability and electrochemical investigation of lithium superionic bromine substituted argyrodite (Li6-xPS5-xCl1.0Brx) for all-solid-state lithium batteries. J Power Sources. 2022;520:230849.