AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (69 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Interfacial Challenges and Strategies toward Practical Sulfide-Based Solid-State Lithium Batteries

Ruiqi Guo1,2Kun Zhang1Wenbin Zhao1Zhifan Hu1Shuqiang Li1Yuxi Zhong1Rong Yang3,4Xinran Wang1,2( )Jiantao Wang3,4( )Chuan Wu1,2Ying Bai1( )
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, P. R. China
China Automotive Battery Research Institute Co. Ltd., Beijing 100088, P. R. China
General Research Institute for Nonferrous Metals, Beijing 100088, P. R. China
Show Author Information

Abstract

All-solid-state lithium batteries are considered as the priority candidates for next-generation energy storage devices due to their better safety and higher energy density. As the key part of solid-state batteries, solid-state electrolytes have made certain research progress in recent years. Among the various types of solid-state electrolytes, sulfide electrolytes have received extensive attention because of their high room-temperature ionic conductivity and good moldability. However, sulfide-based solid-state batteries are still in the research stage. This situation is mainly due to the fact that the application of sulfide electrolytes still faces challenges in particular of interfacial issues, mainly including chemical and electrochemical instability, unstable interfacial reaction, and solid–solid physical contact between electrolyte and electrode. Here, this review provides a comprehensive summary of the existing interfacial issues in the fabrication of sulfide-based solid-state batteries. The in-depth mechanism of the interfacial issues and the current research progress of the main coping strategies are discussed in detail. Finally, we also present an outlook on the future development of sulfide-based solid-state batteries to guide the rational design of next-generation high-energy solid-state batteries.

References

1

Armand M, Tarascon J-M. Building better batteries. Nature, 2008(451):652–657.

2

Tian Y, Zeng G, Rutt A, Shi T, Kim H, Wang J, Koettgen J, Sun Y, Ouyang B, Chen T, et al. Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem Rev, 2021,121(3):1623–1669.

3

Goodenough JB, Park K-S. The Li-ion rechargeable battery: A perspective. J Am Chem Soc, 2013,135(4):1167–1176.

4

Shen Y, Zhang Y, Han S, Wang J, Peng Z, Chen L. Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes. Joule, 2018(2):1674–1689.

5

Hu Y-S. Batteries: Getting solid. Nat Energy. 2016;1:1–2.

6

Wu F, Zhang K, Liu Y, Gao H, Bai Y, Wang X, Wu C. Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects. Energy Storage Mater, 2020(33):26–54.

7

Quartarone E, Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem Soc Rev, 2011(40):2525–2540.

8

Wu J, Shen L, Zhang Z, Liu G, Wang Z, Zhou D, Wan H, Xu X, Yao X. All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes. Electrochem Energ Rev, 2021(4):101–135.

9

Zhang Q, Cao D, Ma Y, Natan A, Aurora P, Zhu H. Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries. Adv Mater, 2019(31):1901131.

10

Lee J, Lee T, Char K, Kim KJ, Choi JW. Issues and advances in scaling up sulfide-based all-solid-state batteries. Acc Chem Res, 2021(54):3390–3402.

11

Xu J, Liu L, Yao N, Wu F, Li H, Chen L. Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes, and all-solid-state batteries. Mater Today Nano, 2019(8):100048.

12

Liu D, Zhu W, Feng Z, Guerfi A, Vijh A, Zaghib K. Recent progress in sulfide-based solid electrolytes for Li-ion batteries. Mater Sci Eng B, 2016(213):169–176.

13

Takada K, Inada T, Kajiyama A, Kouguchi M, Sasaki H, Kondo S, Michiue Y, Nakano S, Tabuchi M, Watanabe M. Solid state batteries with sulfide-based solid electrolytes. Solid State Ionics, 2004(172):25–30.

14

Chen R, Li Q, Yu X, Chen L, Li H. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces. Chem Rev, 2019(120):6820–6877.

15

Choi Y-S, Lee J-C. Electronic and mechanistic origins of the superionic conductivity of sulfide-based solid electrolytes. J Power Sources, 2019(415):189–196.

16

Mercier R, Malugani J-P, Fahys B, Robert G. Superionic conduction in Li2S-P2S5-LiI-glasses. Solid State Ionics, 1981(5):663–666.

17

Wada H, Menetrier M, Levasseur A, Hagenmuller P. Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses. Mater Res Bull, 1983(18):189–193.

18

Deshpande VK, Pradel A, Ribes M. The mixed glass former effect in the Li2S: SiS2: GeS2 system. Mater Res Bull, 1988(23):379–384.

19

Tachez M, Malugani J-P, Mercier R, Robert G. Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4. Solid State Ionics, 1984(14):181–185.

20

Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, et al. A lithium superionic conductor. Nat Mater, 2011(10):682–686.

21

Wu J, Liu S, Han F, Yao X, Wang C. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv Mater, 2021(33):2000751.

22

Cai Y, Li C, Zhao Z, Mu D, Wu B. Advances in air stability of sulfide solid electrolytes with high ion conductivity. ChemElectroChem, 2022(9):e202101479.

23

Liu L, Wu F, Li H, Chen L. Advances in electrochemical stability of sulfide solid-state electrolyte. J Chin Ceram Soc, 2019(47):1367–1385.

24

Lau J, Deblock RH, Butts DM, Ashby DS, Choi CS, Dunn BS. Sulfide solid electrolytes for lithium battery applications. Adv Energy Mater, 2018(8):1800933.

25

Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M. High lithium ion conducting glass-ceramics in the system Li2S–P2S5. Solid State Ionics, 2006(177):2721–2725.

26

Tatsumisago M, Mizuno F, Hayashi A. All-solid-state lithium secondary batteries using sulfide-based glass–ceramic electrolytes. J Power Sources, 2006(159):193–199.

27

Holzmann T, Schoop LM, Ali MN, Moudrakovski I, Gregori G, Maier J, Cava RJ, Lotsch BV. Li0.6[Li0.2Sn0.8S2]–A layered lithium superionic conductor. Energy Environ Sci, 2016(9):2578–2585.

28

Kuhn A, Holzmann T, Nuss J, Lotsch BV. A facile wet chemistry approach towards unilamellar tin sulfide nanosheets from Li4xSn1−xS2 solid solutions. J Mater Chem A, 2014(2):6100–6106.

29

Xu L, Tang S, Cheng Y, Wang K, Liang J, Liu C, Cao Y-C, Wei F, Mai L. Interfaces in solid-state lithium batteries. Joule, 2018(2):1991–2015.

30

Liang Y, Hong L, Wang G, Wang C, Ni Y, Nan C-W, Fan L-Z. Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries. InfoMat, 2022(4):e12292.

31

Banerjee A, Wang X, Fang C, Wu EA, Meng YS. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev, 2020(120):6878–6933.

32

Mangani LR, Villevieille C. Mechanical vs. chemical stability of sulphide-based solid-state batteries. Which one is the biggest challenge to tackle? Overview of solid-state batteries and hybrid solid state batteries. J Mater Chem A, 2020(8):10150–10167.

33

Kaiser N, Spannenberger S, Schmitt M, Cronau M, Kato Y, Roling B. Ion transport limitations in all-solid-state lithium battery electrodes containing a sulfide-based electrolyte. J Power Sources, 2018(396):175–181.

34

Kasemchainan J, Zekoll S, Jolly DS, Ning Z, Hartley GO, Marrow J, Bruce PG. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat Mater, 2019(18):1105–1111.

35

Wenzel S, Leichtweiss T, Krüger D, Sann J. Janek Jürgen. Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ionics, 2015(278):98–105.

36

Nikodimos Y, Huang C-J, Taklu BW, Su W-N, Hwang BJ. Chemical stability of sulfide solid-state electrolytes: Stability toward humid air and compatibility with solvents and binders. Energy Environ Sci, 2022(15):991–1033.

37

Muramatsu H, Hayashi A, Ohtomo T, Hama S, Tatsumisago M. Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics, 2011(182):116–119.

38

Kim J-S, Jeon M, Kim S, Lee J-H, Kim B-K, Kim H. Structural and electronic descriptors for atmospheric instability of Li-thiophosphate using density functional theory. Solid State Ionics, 2020(346):115225.

39

Sahu G, Lin Z, Li J, Liu Z, Dudney N, Liang C. Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ Sci, 2014(7):1053–1058.

40

Liang J, Chen N, Li X, Li X, Adair KR, Li J, Wang C, Yu C, Banis MN, Zhang L, et al. Li10Ge (P1–x Sbx)2S12 lithium-ion conductors with enhanced atmospheric stability. Chem Mater, 2020(32):2664–2672.

41

Lu P, Liu L, Wang S, Xu J, Peng J, Yan W, Wang Q, Li H, Chen L, Wu F. Superior all-solid-state batteries enabled by a gas-phase-synthesized sulfide electrolyte with ultrahigh moisture stability and ionic conductivity. Adv Mater, 2021(33):2100921.

42

Trevey J, Jang JS, Jung YS, Stoldt CR, Lee S-H. Glass–ceramic Li2S–P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium–ion batteries. Electrochem Commun, 2009(11):1830–1833.

43

Shin BR, Nam YJ, Oh DY, Kim DH, Kim JW, Jung YS. Comparative study of TiS2/Li-In all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes. Electrochim Acta, 2014(146):395–402.

44

Han F, Zhu Y, He X, Mo Y, Wang C. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv Energy Mater, 2016(6):1501590.

45

Han F, Gao T, Zhu Y, Gaskell KJ, Wang C. A battery made from a single material. Adv Mater, 2015(27):3473–3483.

46

Mo Y, Ong SP, Ceder G. First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem Mater, 2012(24):15–17.

47

Zhu Y, He X, Mo Y. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interfaces, 2015(7):23685–23693.

48

Zhu Y, He X, Mo Y. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A, 2016(4):3253–3266.

49

Zheng C, Li L, Wang K, Wang C, Zhang J, Xia Y, Huang H, Liang C, Gan Y, He X, et al. Interfacial reactions in inorganic all-solid-state lithium batteries. Batter Supercaps, 2021(4):8–38.

50

Qiao BZ, Zheng LG, Yong Y. Advance in interface and characterizations of sulfide solid electrolyte materials. Acta Phys Sin, 2020(69):28803.

51

Wang C, Jianwen L, Zhao Y, Zheng M, Xi L, Sun X. All-solid-state lithium batteries enabled by sulfide electrolytes: From fundamental research to practical engineering design. Energy Environ Sci, 2021(14):2577–2619.

52

Liu L, Xu J, Wang S, Wu F, Li H, Chen L. Practical evaluation of energy densities for sulfide solid-state batteries. eTransportation, 2019(1):100010.

53

Takada K. Progress in solid electrolytes toward realizing solid-state lithium batteries. J Power Sources, 2018(394):74–85.

54

Haruyama J, Sodeyama K, Han L, Takada K, Tateyama Y. Space–charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem Mater, 2014(26):4248–4255.

55

Takada K. Interfacial nanoarchitectonics for solid-state lithium batteries. Langmuir, 2013(29):7538–7541.

56

Chen S, Xie D, Liu G, Mwizerwa J, Zhang Q, Zhao Y, Xu X, Yao X. Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application. Energy Storage Mater, 2018(14):58–74.

57

Koerver R, Aygün I, Leichtweiß T, Dietrich C, Zhang W, Binder JO, Hartmann P, Zeier WG, Janek J. Capacity fade in solid-state batteries: Interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem Mater, 2017(29):5574–5582.

58

Zhang J, Zheng C, Li L, Xia Y, Huang H, Gan Y, Liang C, He X, Tao X, Zhang W. Unraveling the intra and intercycle interfacial evolution of Li6PS5Cl-based all-solid-state lithium batteries. Adv Energy Mater, 2020(10):1903311.

59

Wang L, Xie R, Chen B, Yu X, Ma J, Li C, Hu Z, Sun X, Xu C, Dong S, et al. In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nat Commun, 2020(11):1–9.

60

Cheng Z, Liu M, Ganapathy S, Li C, Li Z, Zhang X, He P, Zhou H, Wagemaker M. Revealing the impact of space-charge layers on the Li-ion transport in all-solid-state batteries. Joule, 2020(4):1311–1323.

61

Kim KH, Iriyama Y, Yamamoto K, Kumazaki S, Asaka T, Tanabe K, Fisher CAJ, Hirayama T, Murugan R, Ogumi Z. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. J Power Sources, 2011(196):764–767.

62

Otoyama M, Ito Y, Hayashi A, Tatsumisago M. Raman imaging for LiCoO2 composite positive electrodes in all-solid-state lithium batteries using Li2S–P2S5 solid electrolytes. J Power Sources, 2016(302):419–425.

63

Auvergniot J, Cassel A, Ledeuil J-B, Viallet V, Seznec V, Dedryvère R. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem Mater, 2017(29):3883–3890.

64

Zhang W, Richter FH, Culver SP, Leichtweiss T, Lozano JG, Dietrich C, Bruce PG, Zeier WG, Janek J. Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid-state lithium-ion battery. ACS Appl Mater Interfaces, 2018(10):22226–22236.

65

Sakuda A, Hayashi A, Tatsumisago M. Interfacial observation between LiCoO2 electrode and Li2S−P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy. Chem Mater, 2010(22):949–956.

66

Haruyama J, Sodeyama K, Tateyama Y. Cation mixing properties toward Co diffusion at the LiCoO2 cathode/sulfide electrolyte interface in a solid-state battery. ACS Appl Mater Interfaces, 2017(9):286–292.

67

Richards WD, Miara LJ, Wang Y, Kim JC, Ceder G. Interface stability in solid-state batteries. Chem Mater, 2016(28):266–273.

68

Jung S-K, Gwon H, Se L, Kim H, Lee JC, Chung JG, Park SY, Aihara Y, Im D. Understanding the effects of chemical reactions at the cathode–electrolyte interface in sulfide based all-solid-state batteries. J Mater Chem A, 2019(7):22967–22976.

69

Han F, Westover AS, Yue J, Fan X, Wang F, Chi M, Leonard DN, Dudney NJ, Wang H, Wang C. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat Energy, 2019(4):187–196.

70

Nagao M, Hayashi A, Tatsumisago M, Kanetsuku T, Tsuda T, Kuwabata S. In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S–P2S5 solid electrolyte. Phys Chem Chem Phys, 2013(15):18600–18606.

71

Gao Y, Wang D, Li YC, Yu Z, Mallouk TE, Wang D. Salt-based organic–inorganic nanocomposites: Towards a stable lithium Metal/Li10GeP2S12 solid electrolyte interface. Angew Chem Int Ed, 2018(57):13608–13612.

72

Porz L, Swamy T, Sheldon BW, Rettenwander D, Frömling T, Thaman HL, Berendts S, Uecker R, Carter WC, Chiang Y-M. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv Energy Mater, 2017(7):1701003.

73

Han F, Yue J, Zhu X, Wang C. Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation. Adv Energy Mater, 2018(8):1703644.

74

Schlenker R, Stępień D, Koch P, Hupfer T, Indris S, Roling B, Miß V, Fuchs A, Wilhelmi M, Ehrenberg H. Understanding the lifetime of battery cells based on solid-state Li6PS5Cl electrolyte paired with lithium metal electrode. ACS Appl Mater Interfaces, 2020(12):20012–20025.

75

Tian H-K, Liu Z, Ji Y, Chen L-Q, Qi Y. Interfacial electronic properties dictate Li dendrite growth in solid electrolytes. Chem Mater, 2019(31):7351–7359.

76

Seitzman N, Guthrey H, Sulas DB, Platt H, Al-Jassim M, Pylypenko S. Toward all-solid-state lithium batteries: Three-dimensional visualization of lithium migration in β-Li3PS4 ceramic electrolyte. J Electrochem Soc, 2018(165):A3732.

77

Wenzel S, Randau S, Leichtweiß T, Weber DA, Sann J, Zeier WG, Janek J. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem Mater, 2016(28):2400–2407.

78

Wenzel S, Sedlmaier SJ, Dietrich C, Zeier WG, Janek J. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ionics, 2018(318):102–112.

79

Zheng C, Zhang J, Xia Y, Huang H, Gan Y, Liang C, He X, Tao X, Zhang W. Unprecedented self-healing effect of Li6PS5Cl-based all-solid-state lithium battery. Small, 2021(17):2101326.

80

Wang S, Xiong P, Zhang J, Wang G. Recent progress on flexible lithium metal batteries: Composite lithium metal anodes and solid-state electrolytes. Energy Storage Mater, 2020(29):310–331.

81

Zhou L, Park K-H, Sun X, Lalère F, Adermann T, Hartmann P, Nazar LF. Solvent-engineered design of argyrodite Li6PS5X (X= Cl, Br, I) solid electrolytes with high ionic conductivity. ACS Energy Lett, 2018,4(1):265–270.

82

Oh DY, Ji NY, Park KH, Jung SH, Cho S-J, Kim YK, Lee Y-G, Lee S-Y, Jung YS. Excellent compatibility of solvate ionic liquids with sulfide solid electrolytes: Toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries. Adv Energy Mater, 2015,5(22):1500865.

83

Wang Z, Jiang Y, Wu J, Jiang Y, Huang S, Zhao B, Chen Z, Zhang J. Reaction mechanism of Li2S-P2S5 system in acetonitrile based on wet chemical synthesis of Li7P3S11 solid electrolyte. Chem Eng J, 2020(393):124706.

84

Yamamoto M, Terauchi Y, Sakuda A, Takahashi M. Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities. Sci Rep, 2018(8):Article1212.

85

Tan DH, Banerjee A, Deng Z, Wu EA, Nguyen H, Doux J-M, Wang X, Cheng J, Ong SP, Meng Y, et al. Enabling thin and flexible solid-state composite electrolytes by the scalable solution process. ACS Appl Energy Mater, 2019,2(9):6542–6550.

86

Lee Y-G, Fujiki S, Jung C, Suzuki N, Yashiro N, Omoda R, Ko D-S, Shiratsuchi T, Sugimoto T, Ryu S, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat Energy, 2020(5):299–308.

87

Zhang Z, Wu L, Zhou D, Weng W, Yao X. Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries. Nano Lett, 2021,21(12):5233–5239.

88

Liu G, Shi J, Zhu M, Weng W, Shen L, Yang J, Yao X. Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries. Energy Storage Mater, 2021(38):249–254.

89

Zhu G, Zhao C, Peng H, Yuan H, Hu J, Nan H, Lu Y, Liu X, Huang J, He C, et al. A self-limited free-standing sulfide electrolyte thin film for all-solid-state lithium metal batteries. Adv Funct Mater, 2021,31(32):2101985.

90

Liu S, Zhou L, Han J, Wen K, Guan S, Xue C, Zhang Z, Xu B, Lin Y, Shen Y, et al. Super long-cycling all-solid-state battery with thin Li6PS5Cl-based electrolyte. Adv Energy Mater, 2022,12(25):Article2200660.

91

Miura A, Rosero-Navarro NC, Sakuda A, Tadanaga K, Phuc N, Matsuda A, Machida N, Hayashi A, Tatsumisago M. Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery. Nat Rev Chem, 2019(3):189–198.

92

Rosero-Navarro NC, Miura A, Tadanaga K. Composite cathode prepared by argyrodite precursor solution assisted by dispersant agents for bulk-type all-solid-state batteries. J Power Sources, 2018(396):33–40.

93

Wang C, Li X, Zhao Y, Banis MN, Liang J, Li X, Sun Y, Adair KR, Sun Q, Liu Y, et al. Manipulating interfacial nanostructure to achieve high-performance all-solid-state lithium-ion batteries. Small Methods, 2019,3(10):1900261.

94

Kim DH, Oh DY, Park KH, Choi YE, Nam YJ, Lee HA, Lee S-M, Jung YS. Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries. Nano Lett, 2017,17(5):3013–3020.

95

Zhu Y, Mo Y. Materials design principles for air-stable lithium/sodium solid electrolytes. Angew Chem Int Ed, 2020(132):17625–17629.

96

Ohtomo T, Hayashi A, Tatsumisago M, Kawamoto K. All-solid-state batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-step mechanical milling. J Solid State Electrochem, 2013(17):2551–2557.

97

Ohtomo T, Hayashi A, Tatsumisago M, Kawamoto K. Characteristics of the Li2O–Li2S–P2S5 glasses synthesized by the two-step mechanical milling. JA Non-Cryst Solids, 2013(364):57–61.

98

Chen T, Zhang L, Zhang Z, Li P, Wang H, Yu C, Yan X, Wang L, Xu B. Argyrodite solid electrolyte with a stable interface and superior dendrite suppression capability realized by ZnO co-doping. ACS Appl Mater Interfaces, 2019,11(43):40808–40816.

99

Liu G, Xie D, Wang X, Yao X, Chen S, Xiao R, Li H, Xu X. High air-stability and superior lithium ion conduction of Li3+3xP1-xZnxS4-xOx by aliovalent substitution of ZnO for all-solid-state lithium batteries. Energy Storage Mater, 2019(17):266–274.

100

Hayashi A, Muramatsu H, Ohtomo T, Hama S, Tatsumisago M. Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M= Fe, Zn, and Bi) nanoparticles. J Mater Chem A, 2013(1):6320–6326.

101

Hayashi A, Muramatsu H, Ohtomo T, Hama S, Tatsumisago M. Improved chemical stability and cyclability in Li2S–P2S5–P2O5–ZnO composite electrolytes for all-solid-state rechargeable lithium batteries. J Alloys Compd, 2014(591):247–250.

102

Sigot L, Ducom G, Germain P. Adsorption of hydrogen sulfide (H2S) on zeolite (Z): Retention mechanism. Chem Eng J, 2016(287):47–53.

103

Cho W, Kim W-J, Lee D, Kim K, Park K-H, Jeong G, Yu J-S. Enhanced air-stability of argyrodite solid electrolyte by introducing zeolite additive as H2S scavenger. ECS Meet Abstr, 2020(951):MA2020–MA2002.

104

Lee D, Park K-H, Kim SY, Jung JY, Lee W, Kim K, Jeong G, Yu J-S, Choi J, Park MS, et al. Critical role of zeolites as H2S scavengers in argyrodite Li6PS5Cl solid electrolytes for all-solid-state batteries. J Mater Chem A, 2021(9):17311–17316.

105

Kimura T, Kato A, Hotehama C, Sakuda A, Hayashi A, Tatsumisago M. Preparation and characterization of lithium ion conductive Li3SbS4 glass and glass-ceramic electrolytes. Solid State Ionics, 2019(333):45–49.

106

Zhao X, Xiang P, Wu J, Liu Z, Shen L, Liu G, Tian Z, Chen L, Yao X. Toluene tolerated Li9.88GeP1.96Sb0.04S11.88Cl0.12 solid electrolyte toward ultrathin membranes for all-solid-state lithium batteries. Nano Lett, 2023,23(1):227–234.

107

Zhao F, Liang J, Yu C, Sun Q, Li X, Adair K, Wang C, Zhao Y, Zhang S, Li W, et al. A versatile Sn-substituted argyrodite sulfide electrolyte for all-solid-state Li metal batteries. Adv Energy Mater, 2020,10(9):1903422.

108

Wang Y, Lü X, Zheng C, Liu X, Chen Z, Yang W, Lin J, Huang F. Chemistry design towards a stable sulfide-based superionic conductor Li4Cu8Ge3S12. Angew Chem Int Ed, 2019,131(23):7755–7759.

109

Jung WD, Jeon M, Shin S, Kim J-S, Jung H-G, Kim B-K, Lee J-H, Chung Y-C, Kim H. Functionalized sulfide solid electrolyte with air-stable and chemical-resistant oxysulfide nanolayer for all-solid-state batteries. ACS Omega, 2020,5(40):26015–26022.

110

Li J, Chen H, Shen Y, Hu C, Cheng Z, Lu W, Qiu Y, Chen L. Covalent interfacial coupling for hybrid solid-state Li ion conductor. Energy Storage Mater, 2019(23):277–283.

111

Xu J, Li Y, Lu P, Yan W, Yang M, Li H, Chen L, Wu F. Water-stable sulfide solid electrolyte membranes directly applicable in all-solid-state batteries enabled by superhydrophobic Li+-conducting protection layer. Adv Energy Mater, 2022,12(2):2102348.

112

Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R. High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy, 2016(1):Article16030.

113

Schwöbel A, Hausbrand R, Jaegermann W. Interface reactions between LiPON and lithium studied by in-situ x-ray photoemission. Solid State Ionics, 2015(273):51–54.

114

Liu Z, Fu W, Payzant EA, Yu X, Wu Z, Dudney NJ, Kiggans J, Hong K, Rondinone AJ, Liang C. Anomalous high ionic conductivity of nanoporous β-Li3PS4. J Am Chem Soc, 2013,135(3):975–978.

115

Rangasamy E, Liu Z, Gobet M, Pilar K, Sahu G, Zhou W, Wu H, Greenbaum S, Liang C. An iodide-based Li7P2S8I superionic conductor. J Am Chem Soc, 2015,137(4):1384–1387.

116

Kato T, Hamanaka T, Yamamoto K, Hirayama T, Sagane F, Motoyama M, Iriyama Y. In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery. J Power Sources, 2014(260):292–298.

117

Takada K, Ohta N, Zhang L, Fukuda K, Sakaguchi I, Ma R, Osada M, Sasaki T. Interfacial modification for high-power solid-state lithium batteries. Solid State Ionics, 2008,179(27–32):1333–1337.

118

Fitzhugh W, Wu F, Ye L, Deng W, Qi P, Li X. A high-throughput search for functionally stable interfaces in sulfide solid-state lithium ion conductors. Adv Energy Mater, 2019(9):1900807.

119

Wu F, Fitzhugh W, Ye L, Ning J, Li X. Advanced sulfide solid electrolyte by core-shell structural design. Nat Commun, 2018(9):4037.

120

Jung SH, Kim U-H, Kim J-H, Jun S, Yoon CS, Jung YS, Sun YK. Ni-rich layered cathode materials with electrochemo-mechanically compliant microstructures for all-solid-state Li batteries. Adv Energy Mater, 2020,10(6):1903360.

121

Bi Y, Tao J, Wu Y, Li L, Xu Y, Hu E, Wu B, Hu J, Wang C, Zhang J, et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science, 2020,370(6522):1313–1317.

122

Zhang F, Lou S, Li S, Yu Z, Liu Q, Dai A, Cao C, Toney MF, Ge M, Xiao X, et al. Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage. Nat Commun, 2020(11):Article3050.

123

Liu Y, Harlow J, Dahn J. Microstructural observations of “single crystal” positive electrode materials before and after long term cycling by cross-section scanning electron microscopy. J Electrochem Soc, 2020(167):Article020512.

124

Li J, Cameron AR, Li H, Glazier S, Xiong D, Chatzidakis M, Allen J, Botton GA, Dahn JR. Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells. J Electrochem Soc, 2017(164):A1534.

125

Wang C, Yu R, Hwang S, Liang J, Li X, Zhao C, Sun Y, Wang J, Holmes N, Li R, et al. Single crystal cathodes enabling high-performance all-solid-state lithium-ion batteries. Energy Storage Mater, 2020(30):98–103.

126

Wang C, Liang J, Hwang S, Li X, Zhao Y, Adair K, Zhao C, Li X, Deng S, Lin X, et al. Unveiling the critical role of interfacial ionic conductivity in all-solid-state lithium batteries. Nano Energy, 2020(72):104686.

127

Liu X, Zheng B, Zhao J, Zhao W, Liang Z, Su Y, Xie C, Zhou K, Xiang Y, Zhu J, et al. Electrochemo-mechanical effects on structural integrity of Ni-rich cathodes with different microstructures in all solid-state batteries. Adv Energy Mater, 2021,11(8):2003583.

128

Han Y, Jung SH, Kwak H, Jun S, Kwak HH, Lee JH, Hong S-T, Jung YS. Single- or poly-crystalline Ni-rich layered cathode, sulfide or halide solid electrolyte: Which will be the winners for all-solid-state batteries? Adv Energy Mater, 2021,11(21):2100126.

129

Li X, Jin L, Song D, Zhang H, Shi X, Wang Z, Zhang L, Zhu L. LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery. J Energy Chem, 2020(40):39–45.

130

Kitaura H, Hayashi A, Tadanaga K, Tatsumisago M. Improvement of electrochemical performance of all-solid-state lithium secondary batteries by surface modification of LiMn2O4 positive electrode. Solid State Ionics, 2011,192(1):304–307.

131

Sakuda A, Kitaura H, Hayashi A, Tadanaga K, Tatsumisago M. Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO2 coated with Li2O–SiO2 glasses. Electrochem Solid-State Lett, 2007(11):A1.

132

Woo JH, Travis J, George SM, Lee S-H. Utilization of Al2O3 atomic layer deposition for Li ion pathways in solid state Li batteries. J Electrochem Soc, 2014(162):A344.

133

Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M, Sasaki T. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem Commun, 2007,9(7):1486–1490.

134

Xiao Y, Miara LJ, Wang Y, Ceder G. Computational screening of cathode coatings for solid-state batteries. Joule, 2019,3(5):1252–1275.

135

Sun N, Song Y, Liu Q, Zhao W, Zhang F, Ren L, Chen M, Zhou Z, Xu Z, Lou S, et al. Surface-to-bulk synergistic modification of single crystal cathode enables stable cycling of sulfide-based all-solid-state batteries at 4.4 V. Adv Energy Mater, 2022,12(29):2200682.

136

Shi J, Li P, Han K, Sun D, Zhao W, Liu Z, Liang G, Davey K, Guo Z, Qu X. High-rate and durable sulfide-based all-solid-state lithium battery with in situ Li2O buffering. Energy Storage Mater, 2022(51):306–316.

137

Deng S, Sun Q, Li M, Adair K, Yu C, Li J, Li W, Fu J, Li X, Li R, et al. Insight into cathode surface to boost the performance of solid-state batteries. Energy Storage Mater, 2021(35):661–668.

138

Strauss F, Teo J, Schiele A, Bartsch T, Hatsukade T, Hartmann P, Janek J, Brezesinski T. Gas evolution in lithium-ion batteries: Solid versus liquid electrolyte. ACS Appl Mater Interfaces, 2020,12(18):20462–20468.

139

Kong W, Li H, Huang X, Chen L. Gas evolution behaviors for several cathode materials in lithium-ion batteries. J Power Sources, 2005;142(1–2):285–291.

140

Jung SH, Oh K, Nam YJ, Oh DY, Brüner P, Kang K, Jung YS. Li3BO3–Li2CO3: Rationally designed buffering phase for sulfide all-solid-state Li-ion batteries. Chem Mater, 2018,30(22):8190–8200.

141

Zhang Y, Sun X, Cao D, Gao G, Yang Z, Zhu H, Wang Y. Self-stabilized LiNi0.8Mn0.1Co0.1O2 in thiophosphate-based all-solid-state batteries through extra LiOH. Energy Storage Mater, 2021(41):505–514.

142

Zhang J, Zhong H, Zheng C, Xia Y, Liang C, Huang H, Gan Y, Tao X, Zhang W. All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: Effect of binder content. J Power Sources, 2018(391):73–79.

143

Xu R, Han F, Ji X, Fan X, Tu J, Wang C. Interface engineering of sulfide electrolytes for all-solid-state lithium batteries. Nano Energy, 2018(53):958–966.

144

Fan X, Ji X, Han F, Yue J, Chen J, Chen L, Deng T, Jiang J, Wang C. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci Adv, 2018,4(12):Article eaau9245.

145

Chae S, Choi S-H, Kim N, Sung J, Cho J. Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries. Angew Chem Int Ed, 2020,59(1):110–135.

146

Jäckle M, Helmbrecht K, Smits M, Stottmeister D, Groß A. Self-diffusion barriers: Possible descriptors for dendrite growth in batteries? Energy Environ Sci, 2018(11):3400–3407.

147

Wang C, Adair KR, Liang J, Li X, Sun Y, Li X, Wang J, Sun Q, Zhao F, Lin X, et al. Solid-state plastic crystal electrolytes: Effective protection interlayers for sulfide-based all-solid-state lithium metal batteries. Adv Funct Mater, 2019,29(26):1900392.

148

Zhang J, Zheng C, Lou J, Xia Y, Liang C, Huang H, Gan Y, Tao X, Zhang W. Poly(ethylene oxide) reinforced Li6PS5Cl composite solid electrolyte for all-solid-state lithium battery: Enhanced electrochemical performance, mechanical property and interfacial stability. J Power Sources, 2019(412):78–85.

149

Wang C, Sun X, Yang L, Song D, Wu Y, Ohsaka T, Matsumoto F, Wu J. In situ ion-conducting protective layer strategy to stable lithium metal anode for all-solid-state sulfide-based lithium metal batteries. Adv Mater Interfaces, 2021,8(1):2001698.

150

Ren Y, Cui Z, Bhargav A, He J, Manthiram A. A self-healable sulfide/polymer composite electrolyte for long-life, low-lithium-excess lithium-metal batteries. Adv Funct Mater, 2022,32(2):2106680.

151

Wang C, Zhao Y, Sun Q, Li X, Liu Y, Liang J, Li X, Lin X, Li R, Adair KR, et al. Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition. Nano Energy, 2018(53):168–174.

152

Zhang J, Li L, Zheng C, Xia Y, Gan Y, Huang H, Liang C, He X, Tao X, Zhang W. Silicon-doped argyrodite solid electrolyte Li6PS5I with improved ionic conductivity and interfacial compatibility for high-performance all-solid-state lithium batteries. ACS Appl Mater Interfaces, 2020,12(37):41538–41545.

153

Pang B, Gan Y, Xia Y, Huang H, He X, Zhang W. Regulation of the interfaces between argyrodite solid electrolytes and lithium metal anode. Front Chem, 2022(10):837978.

154

Zhao F, Sun Q, Yu C, Zhang S, Adair K, Wang S, Liu Y, Zhao Y, Liang J, Wang C, et al. Ultrastable anode interface achieved by fluorinating electrolytes for all-solid-state Li metal batteries. ACS Energy Lett, 2020,5(4):1035–1043.

155

Wu C, Lou J, Zhang J, Chen Z, Kakar A, Emley B, Ai Q, Guo H, Liang Y, Lou J, et al. Current status and future directions of all-solid-state batteries with lithium metal anodes, sulfide electrolytes, and layered transition metal oxide cathodes. Nano Energy, 2021(87):106081.

156

Zheng B, Zhu J, Wang H, Feng M, Umeshbabu E, Li Y, Wu Q, Yang Y. Stabilizing Li10SnP2S12/Li interface via an in situ formed solid electrolyte interphase layer. ACS Appl Mater Interfaces, 2018,10(30):25473–25482.

157

Wan H, Zhang J, Xia J, Ji X, He X, Liu S, Wang C. F and N rich solid electrolyte for stable all-solid-state battery. Adv Funct Mater, 2022,32(15):2110876.

158

Santhosha AL, Medenbach L, Buchheim JR, Adelhelm P. The indium−lithium electrode in solid-state lithium-ion batteries: Phase formation, redox potentials, and interface stability. Batter Supercaps, 2019,2(6):524–529.

159

Yuan Y, Wu F, Chen G, Bai Y, Wu C. Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode. J Energy Chem, 2019(37):197–203.

160

Li X, Liang J, Li X, Wang C, Luo J, Li R, Sun X. High-performance all-solid-state Li–Se batteries induced by sulfide electrolytes. Energy Environ Sci, 2018(11):2828–2832.

161

Luo S, Wang Z, Li X, Liu X, Wang H, Ma W, Zhang L, Zhu L, Zhang X. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat Commun, 2021(12):Article6968.

162

Pan H, Zhang M, Cheng Z, Jiang H, Yang J, Wang P, He P, Zhou H. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability. Sci Adv, 2022,8(15):Articleeabn4372.

163

Zhang K, Wu F, Wang X, Weng S, Yang X, Zhao H, Guo R, Sun Y, Zhao W, Song T, et al. 8.5 μm-thick flexible-rigid hybrid solid–electrolyte/lithium integration for air-stable and interface-compatible all-solid-state lithium metal batteries. Adv Energy Mater, 2022,12(24):2200368.

164

Zhang K, Wu F, Wang X, Zheng L, Yang X, Zhao H, Sun Y, Zhao W, Bai Y, Wu C. An ion-dipole-reinforced polyether electrolyte with ion-solvation cages enabling high–voltage-tolerant and ion-conductive solid-state lithium metal batteries. Adv Funct Mater, 2022,32(5):2107764.

165

Zhao W, Zhang K, Wu F, Wang X, Guo R, Zhang K, Yuan Y, Bai Y, Wu C. Moisture-assistant chlorinated separator with dual-protective interface for ultralong-life and high-rate lithium metal batteries. Chem Eng J, 2023,453(Part 1):139348.

166

Gao M, Li H, Xu L, Xue Q, Wang X, Bai Y, Wu C. Lithium metal batteries for high energy density: Fundamental electrochemistry and challenges. J Energy Chem, 2021(59):666–678.

167

Zhang K, Wu F, Zhang K, Weng S, Wang X, Gao M, Sun Y, Cao D, Bai Y, Xu H, et al. Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode. Energy Storage Mater, 2021(41):485–494.

168

Guo R, Wu F, Wang X, Bai Y, Wu C. Multi-electron reaction-boosted high energy density batteries: Material and system innovation. J Electrochem, 2022,28(12):2219011.

169

Wan J, Song Y, Chen W, Guo H, Shi Y, Guo Y, Shi J, Guo Y, Jia F, Wang F, et al. Micromechanism in all-solid-state alloy-metal batteries: Regulating homogeneous lithium precipitation and flexible solid electrolyte interphase evolution. J Am Chem Soc, 2020,143(2):839–848.

Energy Material Advances
Article number: 0022
Cite this article:
Guo R, Zhang K, Zhao W, et al. Interfacial Challenges and Strategies toward Practical Sulfide-Based Solid-State Lithium Batteries. Energy Material Advances, 2023, 4: 0022. https://doi.org/10.34133/energymatadv.0022

92

Views

1

Downloads

37

Crossref

33

Web of Science

36

Scopus

0

CSCD

Altmetrics

Received: 07 January 2023
Accepted: 22 February 2023
Published: 23 May 2023
© 2023 Ruiqi Guo et al. Exclusive Licensee Beijing Institute of Technology Press. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return