AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Hollow and Hierarchical CuCo-LDH Nanocatalyst for Boosting Sulfur Electrochemistry in Li-S Batteries

Min Li1Yebao Li1Qiao Cu1Yan Li1Hongyang Li2Zihao Li2Ming Li3Hua Liao3Ge Li4Gaoran Li2( )Xin Wang1( )
South China Academy of Advanced Optoelectronics, International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou 510006, China
MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Solar Energy Research Institute, Yunnan Normal University, Kunming 650500, Yunnan, China
Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
Show Author Information

Abstract

Lithium-sulfur batteries (LSBs) are promising candidates for next-generation high-efficiency energy storage, yet their practical implementation is seriously impeded by the parasitic shuttle effect and sluggish reaction kinetics. Herein, we develop a unique Cu, Co layered double hydroxide (CuCo-LDH) with a hollow and hierarchical structure as an advanced electrocatalyst to tackle these challenges. Combining the compositional, architectural, and chemical advantages, the as-developed CuCo-LDH enables facile charge transfer, fully exposed active interfaces, and strong interactions with polysulfides via metal–sulfur bonding. When employed in the functional separator, a reliable polysulfide barrier can be established against the shuttling behavior, while the excellent catalytic activity realizes fast and efficient sulfur electrochemistry. As a result, the CuCo-LDH-based LSBs achieve a well-restrained capacity decay of 0.049% per cycle over 500 cycles together with a good rate capability up to 5 C. Moreover, a favorable areal capacity of 4.39 mAh cm−2 and decent cyclability are still attainable even under a high sulfur loading of 4.2 mg cm−2 and a low E/S ratio of 6 ml g−1. This work affords a feasible and instructive pathway toward advanced sulfur electrocatalysts as well as high-performance LSBs.

References

1

Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nat Mater. 2011;11(1):19–29.

2

Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater. 2009;8(6):500–506.

3

Manthiram A, Fu Y, Chung SH, Zu C, Su YS. Rechargeable lithium-sulfur batteries. Chem Rev. 2014;114(23):11751–11787.

4

Wild M, O'Neill L, Zhang T, Purkayastha R, Minton G, Marinescu M, Offer GJ. Lithium sulfur batteries, a mechanistic review. Energy Environ Sci. 2015;8(12):3477–3494.

5

Tao T, Lu S, Fan Y, Lei W, Huang S, Chen Y. Anode improvement in rechargeable lithium-sulfur batteries. Adv Mater. 2017;29(48):1700542.

6

Lang S, Yu SH, Feng X, Krumov MR, Abruna HD. Understanding the lithium–sulfur battery redox reactions via operando confocal Raman microscopy. Nat Commun. 2022;13(1):4811.

7

Ding N, Lum Y, Chen S, Chien SW, Hor TSA, Liu Z, Zong Y. Sulfur–carbon yolk–shell particle based 3D interconnected nanostructures as cathodes for rechargeable lithium–sulfur batteries. J Mater Chem A. 2015;3(5):1853–1857.

8

Yang B, Guo D, Lin P, Zhou L, Li J, Fang G, Wang J, Jin H, Xa C, Wang S. Hydroxylated multi-walled carbon nanotubes covalently modified with tris(hydroxypropyl) phosphine as a functional interlayer for advanced lithium–sulfur batteries. Angew Chem Int Ed. 2022;134(28):Article e202204327.

9

Pei F, Lin L, Ou D, Zheng Z, Mo S, Fang X, Zheng N. Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium-sulfur batteries. Nat Commun. 2017;8(1):482.

10

Liu X, Zhang L, Ma X, Lu H, Li L, Zhang X, Wu L. Conversion of polysulfides on core-shell CoP@C nanostructures for lithium-sulfur batteries. Chem Eng J. 2023;454:Article 140460.

11

Zhou L, Li H, Zhang Y, Jiang M, Danilov DL, Eichel RA, Notten PHL. Enhanced sulfur utilization in lithium-sulfur batteries by hybrid modified separators. Mater Today Commun. 2021;26:Article 102133.

12

Seh ZW, Sun Y, Zhang Q, Cui Y. Designing high-energy lithium-sulfur batteries. Chem Soc Rev. 2016;45(20):5605–5634.

13

Chong YL, Zhao DD, Wang B, Feng L, Li SJ, Shao LX, Tong X, Du X, Cheng H, Zhuang JL. Metal-organic frameworks functionalized separators for lithium-sulfur batteries. Chem Rev. 2022;22(10):Article e202200142.

14

Yang W, Wei Y, Chen Q, Qin S, Zuo J, Tan S, Zhai P, Cui S, Wang H, Jin C, et al. A MoO3/MoO2-CP self-supporting heterostructure for modification of lithium-sulfur batteries. J Mater Chem A. 2020;8(31):15816–15821.

15

Zheng Z-J, Ye H, Guo Z-P. Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium-sulfur batteries. Energy Environ Sci. 2021;14(4):1835–1853.

16

Qiu Y, Yin X-J, Wang M-X, Li M, Sun X, Jiang B, Zhou H, Tang D-Y, Zhang Y, Fan L-S, et al. Constructed conductive CoSe2 nanoarrays as efficient electrocatalyst for high-performance Li-S battery. Rare Metals. 2021;40:3147–3155.

17

Zhang Y, Zhang P, Zhang S, Wang Z, Li N, Silva SRP, Shao G. A flexible metallic TiC nanofiber/vertical graphene 1D/2D heterostructured as active electrocatalyst for advanced Li–S batteries. InfoMat. 2021;3(7):790–803.

18

Cui J, Li Z, Wang G, Guo J, Shao M. Layered double hydroxides and their derivatives for lithium-sulfur batteries. J Mater Chem A. 2020;8(45):23738–23755.

19

Peng HJ, Zhang ZW, Huang JQ, Zhang G, Xie J, Xu WT, Shi JL, Chen X, Cheng XB, Zhang Q. A cooperative interface for highly efficient lithium-sulfur batteries. Adv Mater. 2016;28(43):9551–9558.

20

Qiu W, Li G, Luo D, Zhang Y, Zhao Y, Zhou G, Shui L, Wang X, Chen Z. Hierarchical micro-nanoclusters of bimetallic layered hydroxide polyhedrons as advanced sulfur reservoir for high-performance lithium–sulfur batteries. Adv Sci. 2021;8(7):2003400.

21

Zhang JF, Li GR, Zhang YG, Zhang W, Wang X, Zhao Y, Li JD, Chen ZW. Vertically rooting multifunctional tentacles on carbon scaffold as efficient polysulfide barrier toward superior lithium-sulfur batteries. Nano Energy. 2019;64:Article 103905.

22

Wu HL, Li Y, Ren J, Rao DW, Zheng QJ, Zhou L, Lin DM. CNT-assembled dodecahedra core@nickel hydroxide nanosheet shell enabled sulfur cathode for high-performance lithium-sulfur batteries. Nano Energy. 2019;55:82–92.

23

Ding N, Chien SW, Hor TSA, Liu Z, Zong Y. Key parameters in design of lithium sulfur batteries. J Power Sources. 2014;269:111–116.

24

Ding N, Schnell J, Li X, Yin X, Liu Z, Zong Y. Electrochemical impedance spectroscopy study of sulfur reduction pathways using a flexible, free-standing and high-sulfur-loading film. Chem Eng J. 2021;412:Article 128559.

25

Li ZQ, Li CX, Ge XL, Ma JY, Zhang ZW, Li Q, Wang CX, Yin LW. Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano Energy. 2016;23:15–26.

26

Li Y, Zheng Y, Guo K, Zhao J, Li C. Mg-Li hybrid batteries: The combination of fast kinetics and reduced overpotential. Energy Mater Adv. 2022;9840837.

27

Tuan DD, Lin KYA. Ruthenium supported on ZIF-67 as an enhanced catalyst for hydrogen generation from hydrolysis of sodium borohydride. Chem Eng J. 2018;351:48–55.

28

Wang W, Yan H, Anand U, Mirsaidov U. Visualizing the conversion of metal-organic framework nanoparticles into hollow layered double hydroxide nanocages. J Am Chem Soc. 2021;143(4):1854–1862.

29

Yilmaz G, Yam KM, Zhang C, Fan HJ, Ho GW. In situ transformation of MOFs into layered double hydroxide embedded metal sulfides for improved electrocatalytic and supercapacitive performance. Adv Mater. 2017;29(26):1606814.

30

Liu YX, Wang YZ, Shi CJ, Chen YJ, Li D, He ZF, Wang C, Guo L, Ma JM. Co-ZIF derived porous NiCo-LDH nanosheets/N doped carbon foam for high-performance supercapacitor. Carbon. 2020;165:129–138.

31

Wei X, Wang Y, Feng Y, Xie X, Li X, Yang S. Different adsorption-degradation behavior of methylene blue and Congo red in nanoceria/H2O2 system under alkaline conditions. Sci Rep. 2019;9(1):4964.

32

Zhu L, Han T, Ding Y, Long J, Lin X, Liu J. A metal–organic-framework derived NiFe2O4@NiCo-LDH nanocube as high-performance lithium-ion battery anode under different temperatures. Appl Surf Sci. 2022;599:Article 153953.

33

Kumar L, Boruah PK, Borthakur S, Saikia L, Das MR, Deka S. CuCo-layered double hydroxide nanosheet-based polyhedrons for flexible supercapacitor cells. ACS Appl Nano Mater. 2021;4(5):5250–5262.

34

Yu L, Xia BY, Wang X, Lou XW. General formation of M-MoS3 (M = Co, Ni) hollow structures with enhanced electrocatalytic activity for hydrogen evolution. Adv Mater. 2016;28(1):92–97.

35

Saghir S, Fu EF, Xiao ZG. Synthesis of CoCu-LDH nanosheets derived from zeolitic imidazole framework-67 (ZIF-67) as an efficient adsorbent for azo dye from waste water. Microporous Mesoporous Mater. 2020;297:Article 110010.

36

Li L, Cheng M, Qin L, Almatrafi E, Yang X, Yang L, Tang C, Liu S, Yi H, Zhang M, et al. Enhancing hydrogen peroxide activation of CuCo layered double hydroxide by compositing with biochar: Performance and mechanism. Sci Total Environ. 2022;828:Article 154188.

37

Kumar L, Boruah PK, Das MR, Deka S. Superbending (0–180°) and high-voltage operating metal-oxide-based flexible supercapacitor. ACS Appl Mater Interfaces. 2019;11(41):37665–37674.

38

Li W, Li S, Bernussi AA, Fan Z. 3-D edge-oriented electrocatalytic NiCo2S4 nanoflakes on vertical graphene for Li-S batteries. Energy Mater Adv. 2021;2712391.

39

Wu Q, Zhou X, Xu J, Cao F, Li C. Adenine derivative host with interlaced 2D structure and dual lithiophilic-sulfiphilic sites to enable high-loading Li-S batteries. ACS Nano. 2019;13(8):9520–9532.

40

Zheng K, Ren J, Li X, Li G, Jiao L, Xu C. Engineering crystalline CoMP-decorated (M = Mn, Fe, Ni, Cu, Zn) amorphous CoM LDH for high-rate alkaline water splitting. Chem Eng J. 2022;441:Article 136031.

41

Chang L, Wang K, Huang LA, He ZS, Zhu SS, Chen MM, Shao HB, Wang JM. Hierarchical CoO microflower film with excellent electrochemical lithium/sodium storage performance. J Mater Chem A. 2017;5(39):20892–20902.

42

Bitenc J, Košir U, Vizintin A, Lindahl N, Krajnc A, Pirnat K, Jerman I, Dominko R. Electrochemical mechanism of Al metal–organic battery based on phenanthrenequinone. Energy Mater Adv. 2021;9793209.

43

Cao G, Duan R, Li X. Controllable catalysis behavior for high performance lithium sulfur batteries: From kinetics to strategies. EnergyChem. 2023;5(1):Article 100096.

44

Chen L, Xu Y, Cao G, Sari HMK, Duan R, Wang J, Xie C, Li W, Li X. Bifunctional catalytic effect of CoSe2 for lithium–sulfur batteries: Single doping versus dual doping. Adv Funct Mater. 2022;32(8):2107838.

45

Zou Q, Lu YC. Solvent-dictated lithium sulfur redox reactions: An operando UV-vis spectroscopic study. J Phys Chem Lett. 2016;7(8):1518–1525.

46

Luo D, Li G, Deng YP, Zhang Z, Li J, Liang R, Li M, Jiang Y, Zhang W, Liu Y, et al. Synergistic engineering of defects and architecture in binary metal chalcogenide toward fast and reliable lithium-sulfur batteries. Adv Energy Mater.2019;9(18):1900228.

47

Zhang Y, Liu J, Wang J, Zhao Y, Luo D, Yu A, Wang X, Chen Z. Engineering oversaturated Fe-N5 multifunctional catalytic sites for durable lithium-sulfur batteries. Angew Chem Int Ed. 2021;133(51):26826–26833.

48

Xiao Z, Yang Z, Li Z, Li P, Wang R. Synchronous gains of areal and volumetric capacities in lithium–sulfur batteries promised by flower-like porous Ti3C2Tx matrix. ACS Nano. 2019;13(3):3404–3412.

49

Liu S, Zhang X, Wu S, Chen X, Yang X, Yue W, Lu J, Zhou W. Crepe cake structured layered double hydroxide/sulfur/graphene as a positive electrode material for Li-S batteries. ACS Nano. 2020;14(7):8220–8231.

50

Cai W, Li G, Luo D, Xiao G, Zhu S, Zhao Y, Chen Z, Zhu Y, Qian Y. The dual-play of 3D conductive scaffold embedded with Co, N codoped hollow polyhedra toward high-performance Li–S full cell. Adv Energy Mater. 2018;8(34):1802561.

51

Liu Q, Zhang YQ, Zhou YB, Wang M, Li RL, Yue WB. Layered double hydroxides used as the sulfur hosts for lithium-sulfur batteries and the influence of metal composition on their performance. J Solid State Electrochem. 2023;27(3):797–807.

52

Tian Y, Li G, Zhang Y, Luo D, Wang X, Zhao Y, Liu H, Ji P, Du X, Li J, et al. Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium–sulfur batteries. Adv Mater. 2020;32(4):Article e1904876.

53

Yuan RM, Li HJ, Yin XM, Wang PP, Lu JH, Zhang LL. Construction of multi-structures based on cu NWs-supported MOF-derived co oxides for asymmetric pseudocapacitors. J Mater Sci Technol. 2021;65:182–189.

54

Wang J, Cao G, Duan R, Li X, Li X. Advances in single metal atom catalysts enhancing kinetics of sulfur cathode. Acta Phys Chim Sin. 2023;39(5):Article 2212005.

Energy Material Advances
Article number: 0032
Cite this article:
Li M, Li Y, Cu Q, et al. Hollow and Hierarchical CuCo-LDH Nanocatalyst for Boosting Sulfur Electrochemistry in Li-S Batteries. Energy Material Advances, 2023, 4: 0032. https://doi.org/10.34133/energymatadv.0032

57

Views

0

Downloads

15

Crossref

14

Web of Science

17

Scopus

0

CSCD

Altmetrics

Received: 15 March 2023
Accepted: 10 April 2023
Published: 23 May 2023
© 2023 Min Li et al. Exclusive licensee Beijing Institute of Technology Press. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License (CC BY 4.0).

Return