PDF (17.6 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
References
Show full outline
Hide outline
Review Article | Open Access

Metal–Organic Frameworks Meet MXene: New Opportunities for Electrochemical Application

Hui Yang1Guang-Xun Zhang1Hui-Jie Zhou1Yue-Yao Sun1,2Huan Pang1 ()
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China
Show Author Information

Abstract

Over the past few decades, metal–organic frameworks (MOFs) have been recognized as the most attractive energy-involved materials due to their unique features, including ultrahigh specific surface area, superior porous structure, and excellent customizability. Nevertheless, most pristine MOFs suffer from low electronic conductivity and chemical instability, which severely hindered their large-scale applications. Recently, MXene with abundant surface terminations and high metallic conductivity have been suggested as a valid substrate to improve the stability and conductivity of pristine MOFs. Importantly, MXene/MOF composites with enhanced conductivity, rich surface chemistry, and hierarchical structure facilitate the rapid electron/ion transfer and deliver better electrochemical properties than that of original materials through synergistic effects. Moreover, MXene/MOF composites can be designed into various derivatives with desired architecture and enhanced electrochemical performance. Therefore, the elaborate synthesis of MXene/MOF hybrids and their derivatives for energy-involved devices are of great interest. Herein, we provided a state-of-the-art review on the progress of MXene/MOF composites and their derivatives in terms of synthesis strategies and electrochemical applications. Furthermore, we put forward current challenges and feasible research directions for future development.

References

1

Gong W, Xie Y, Pham TD, Shetty S, Son FA, Idrees KB, Chen Z, Xie H, Liu Y, Snurr RQ, et al. Creating optimal pockets in a Clathrochelate-based metal–organic framework for gas adsorption and separation: Experimental and computational studies. J Am Chem Soc. 2022;144(8):3737–3745.

2

Chen Z, Kirlikovali KO, Li P, Farha OK. Reticular chemistry for highly porous metal–organic frameworks: The chemistry and applications. Acc Chem Res. 2022;55(4):579–591.

3

Zhao Y, Zeng H, Zhu X-W, Lu W, Li D. Metal–organic frameworks as photoluminescent biosensing platforms: Mechanisms and applications. Chem Soc Rev. 2021;50(7):4484–4513.

4

Li R, Chen T, Pan X. Metal–organic-framework-based materials for antimicrobial applications. ACS Nano. 2021;15(3):3808–3848.

5

Liu J, Huang J, Zhang L, Lei J. Multifunctional metal–organic framework heterostructures for enhanced cancer therapy. Chem Soc Rev. 2021;50(2):1188–1218.

6

Li W, Guo X, Geng P, Du M, Jing Q, Chen X, Zhang G, Li H, Xu Q, Braunstein P, et al. Rational design and general synthesis of multimetallic metal–organic framework nano-octahedra for enhanced Li–S battery. Adv Mater. 2021;33(45):Article 2105163.

7

Geng P, Wang L, Du M, Bai Y, Li W, Liu Y, Chen S, Braunstein P, Xu Q, Pang H. MIL-96-Al for Li–S batteries: Shape or size? Adv Mater. 2022;34(4):Article 2107836.

8

Zheng S, Sun Y, Xue H, Braunstein P, Huang W, Pang H. Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance. Natl Sci Rev. 2021;9(7):Article nwab197.

9

Tan H, Zhou Y, Qiao S-Z, Fan HJ. Metal organic framework (MOF) in aqueous energy devices. Mater Today. 2021;48:270–284.

10

Chen T, Wang F, Cao S, Bai Y, Zheng S, Li W, Zhang S, Hu S-X, Pang H. In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel–zinc batteries. Adv Mater. 2022;34(30):Article 2201779.

11

Li C, Liu L, Kang J, Xiao Y, Feng Y, Cao F-F, Zhang H. Pristine MOF and COF materials for advanced batteries. Energy Storage Mater. 2020;31:115–134.

12

Qiu T, Gao S, Liang Z, Wang D-G, Tabassum H, Zhong R, Zou R. Pristine hollow metal–organic frameworks: Design, synthesis and application. Angew Chem Int Ed. 2021;60(32):17314–17336.

13

Shahbazi Farahani F, Rahmanifar MS, Noori A, El-Kady MF, Hassani N, Neek-Amal M, Kaner RB, Mousavi MF. Trilayer metal–organic frameworks as multifunctional electrocatalysts for energy conversion and storage applications. J Am Chem Soc. 2022;144(8):3411–3428.

14

Wang K, Li Y, Xie L-H, Li X, Li J-R. Construction and application of base-stable MOFs: A critical review. Chem Soc Rev. 2022;51(15):6417–6441.

15

Moghadam PZ, Rogge SMJ, Li A, Chow C-M, Wieme J, Moharrami N, Aragones-Anglada M, Conduit G, Gomez-Gualdron DA, Van Speybroeck V, et al. Structure-mechanical stability relations of metal-organic frameworks via machine learning. Matter. 2019;1(1):219–234.

16

Sharma A, Lim J, Lah MS. Strategies for designing metal–organic frameworks with superprotonic conductivity. Coord Chem Rev. 2023;479:Article 214995.

17

Liu S, Teng Z, Liu H, Wang T, Wang G, Xu Q, Zhang X, Jiang M, Wang C, Huang W, et al. A Ce-UiO-66 metal–organic framework-based graphene-embedded photocatalyst with controllable activation for solar ammonia fertilizer production. Angew Chem Int Ed. 2022;61(37):Article e202207026.

18

Yang S, Karve VV, Justin A, Kochetygov I, Espín J, Asgari M, Trukhina O, Sun DT, Peng L, Queen WL. Enhancing MOF performance through the introduction of polymer guests. Coord Chem Rev. 2021;427:Article 213525.

19

Jayaramulu K, Mukherjee S, Morales DM, Dubal DP, Nanjundan AK, Schneemann A, Masa J, Kment S, Schuhmann W, Otyepka M, et al. Graphene-based metal–organic framework hybrids for applications in catalysis, environmental, and energy technologies. Chem Rev. 2022;122(24):17241–17338.

20

Geng P, Du M, Wu C, Luo T, Zhang Y, Pang H. PPy-constructed core–shell structures from MOFs for confining lithium polysulfides. Inorg Chem Front. 2022;9(10):2389–2394.

21

Jayaramulu K, Horn M, Schneemann A, Saini H, Bakandritsos A, Ranc V, Petr M, Stavila V, Narayana C, Scheibe B, et al. Covalent graphene-MOF hybrids for high-performance asymmetric supercapacitors. Adv Mater. 2021;33(4):Article e2004560.

22

Zhang G, Li Y, Xiao X, Shan Y, Bai Y, Xue H-G, Pang H, Tian Z, Xu Q. In situ anchoring polymetallic phosphide nanoparticles within porous Prussian blue analogue nanocages for boosting oxygen evolution catalysis. Nano Lett. 2021;21(7):3016–3025.

23

Zhou H, Zheng M, Pang H. Synthesis of hollow amorphous cobalt phosphide-cobalt oxide composite with interconnected pores for oxygen evolution reaction. Chem Eng J. 2021;416:Article 127884.

24

Du M, Geng P, Pei C, Jiang X, Shan Y, Hu W, Ni L, Pang H. High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew Chem Int Ed. 2022;61(41):Article e202209350.

25

Chen X, Wang C, Wang Y, Ma J, Dong Y, Gao S, Jing Q, Li W, Pang H. In-situ immobilization cobalt-based metal-organic frameworks nanosheets on carbon composites for supercapacitors. J Energy Storage. 2022;55(Part A):Article 105319.

26

Zhou H, Zheng M, Tang H, Xu B, Tang Y, Pang H. Amorphous intermediate derivative from ZIF-67 and its outstanding electrocatalytic activity. Small. 2020;16:Article 1904252.

27

Zeng Y, Wang Y, Jin Q, Pei Z, Luan D, Zhang X, Lou XW(D). Rationally designed Mn2O3–ZnMn2O4 hollow heterostructures from metal–organic frameworks for stable Zn-ion storage. Angew Chem Int Ed. 2021;60(49):25793–25798.

28

Niu Q, Yang M, Luan D, Li NW, Yu L, Lou XW(D). Construction of Ni-co-Fe hydr(oxy)oxide@Ni-co layered double hydroxide yolk-shelled microrods for enhanced oxygen evolution. Angew Chem Int Ed. 2022;61(49):Article e202213049.

29

Zou J, Wu J, Wang Y, Deng F, Jiang J, Zhang Y, Liu S, Li N, Zhang H, Yu J, et al. Additive-mediated intercalation and surface modification of MXenes. Chem Soc Rev. 2022;51(8):2972–2990.

30

Bai Y, Liu C, Chen T, Li W, Zheng S, Pi Y, Luo Y, Pang H. MXene-copper/cobalt hybrids via Lewis acidic molten salts etching for high performance symmetric supercapacitors. Angew Chem Int Ed. 2021;60(48):25318–25322.

31

Li X, Huang Z, Shuck CE, Liang G, Gogotsi Y, Zhi C. MXene chemistry, electrochemistry and energy storage applications. Nat Rev Chem. 2022;6:389–404.

32

Wei Y, Zhang P, Soomro RA, Zhu Q, Xu B. Advances in the synthesis of 2D MXenes. Adv Mater. 2021;33(39):Article 2103148.

33

Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23(37):4248–4253.

34

Mathis TS, Maleski K, Goad A, Sarycheva A, Anayee M, Foucher AC, Hantanasirisakul K, Shuck CE, Stach EA, Gogotsi Y. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2MXene. ACS Nano. 2021;15(4):6420–6429.

35

Jiang Q, Kurra N, Maleski K, Lei Y, Liang H, Zhang Y, Gogotsi Y, Alshareef HN. On-Chip MXene microsupercapacitors for AC-line filtering applications. Adv Energy Mater. 2019;9(26):Article 1901061.

36

Xu H, Ren A, Wu J, Wang Z. Recent advances in 2D MXenes for photodetection. Adv Funct Mater. 2020;30(24):Article 2000907.

37

Han M, Shuck CE, Rakhmanov R, Parchment D, Anasori B, Koo CM, Friedman G, Gogotsi Y. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano. 2020;14(4):5008–5016.

38

Karahan HE, Goh K, Zhang C(J), Yang E, Yıldırım C, Chuah CY, Ahunbay MG, Lee J, Tantekin-Ersolmaz ŞB, Chen Y, et al. MXene materials for designing advanced separation membranes. Adv Mater. 2020;32(29):Article 1906697.

39

Zhang Y-Z, El-Demellawi JK, Jiang Q, Ge G, Liang H, Lee K, Dong X, Alshareef HN. MXene hydrogels: Fundamentals and applications. Chem Soc Rev. 2020;49(20):7229–7251.

40

Lukatskaya MR, Kota S, Lin Z, Zhao MQ, Shpigel N, Levi MD, Halim J, Taberna PL, Barsoum MW, Simon P, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy. 2017;2:17105.

41

Yang C, Wu X, Xia H, Zhou J, Wu Y, Yang R, Zhou G, Qiu L. 3D printed template-assisted assembly of additive-free Ti3C2Tx MXene microlattices with customized structures toward high areal capacitance. ACS Nano. 2022;16(2):2699–2710.

42

Zhao M-Q, Xie X, Ren CE, Makaryan T, Anasori B, Wang G, Gogotsi Y. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv Mater. 2017;29(37):1702410.

43

Wang Y, Guo T, Tian Z, Bibi K, Zhang Y-Z, Alshareef HN. MXenes for energy harvesting. Adv Mater. 2022;34(21):Article 2108560.

44

Shao Y, Wei L, Wu X, Jiang C, Yao Y, Peng B, Chen H, Huangfu J, Ying Y, Zhang CJ, et al. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat Commun. 2022;13:3223.

45

Liao L, Jiang D, Zheng K, Zhang M, Liu J. Industry-scale and environmentally stable Ti3C2Tx MXene based film for flexible energy storage devices. Adv Funct Mater. 2021;31(35):Article 2103960.

46

Shin H, Eom W, Lee KH, Jeong W, Kang DJ, Han TH. Highly electroconductive and mechanically strong Ti3C2Tx MXene fibers using a deformable MXene gel. ACS Nano. 2021;15(2):3320–3329.

47

Liu X, Xu F, Li Z, Liu Z, Yang W, Zhang Y, Fan H, Yang HY. Design strategy for MXene and metal chalcogenides/oxides hybrids for supercapacitors, secondary batteries and electro/photocatalysis. Coord Chem Rev. 2022;464:Article 214544.

48

Iqbal A, Hong J, Ko TY, Koo CM. Improving oxidation stability of 2D MXenes: Synthesis, storage media, and conditions. Nano Converg. 2021;8:9.

49

Lim KRG, Handoko AD, Nemani SK, Wyatt B, Jiang H-Y, Tang J, Anasori B, Seh ZW. Rational design of two-dimensional transition metal carbide/nitride (MXene) hybrids and nanocomposites for catalytic energy storage and conversion. ACS Nano. 2020;14(9):10834–10864.

50

Nasrin K, Sudharshan V, Subramani K, Sathish M. Insights into 2D/2D MXene heterostructures for improved synergy in structure toward next-generation supercapacitors: A review. Adv Funct Mater. 2022;32(18):Article 2110267.

51

Najam T, Shah SSA, Peng L, Javed MS, Imran M, Zhao M-Q, Tsiakaras P. Synthesis and Nano-engineering of MXenes for energy conversion and storage applications: Recent advances and perspectives. Coord Chem Rev. 2022;454:Article 214339.

52

Nam S, Mahato M, Matthews K, Lord RW, Lee Y, Thangasamy P, Ahn CW, Gogotsi Y, Oh IK. Bimetal Organic framework–Ti3C2Tx MXene with metalloporphyrin electrocatalyst for lithium–oxygen batteries. Adv Funct Mater. 2023;33:Article 2210702.

53

Zhou J, Hao J, Wu R, Su L, Wang J, Qiu M, Bao B, Ning C, Teng C, Zhou Y, et al. Maximizing ion permselectivity in MXene/MOF nanofluidic membranes for high-efficient blue energy generation. Adv Funct Mater. 2022;32(49):Article 2209767.

54

Lee P-Y, Cheng T-M, Yougbaré S, Lin L-Y. Design of novel self-assembled MXene and ZIF67 derivative composites as efficient electroactive material of energy storage device. J Colloid Interface Sci. 2022;618:219–228.

55

Zhang G, Jin L, Zhang R, Bai Y, Zhu R, Pang H. Recent advances in the development of electronically and ionically conductive metal-organic frameworks. Coord Chem Rev. 2021;439:Article 213915.

56

Gu J, Peng Y, Zhou T, Ma J, Pang H, Yamauchi Y. Porphyrin-based framework materials for energy conversion. Nano Res Energy. 2022;1:Article e9120009.

57

Zhu Y, Wang S, Ma J, Das P, Zheng S, Wu Z. Recent status and future perspectives of 2D MXene for micro-supercapacitors and micro-batteries. Energy Storage Mater. 2022;51:500–526.

58

Cao F, Zhang Y, Wang H, Khan K, Tareen AK, Qian W, Zhang H, Ågren H. Recent advances in oxidation stable chemistry of 2D MXenes. Adv Mater. 2022;34(13):Article 2107554.

59

Zang X, Wang J, Qin Y, Wang T, He C, Shao Q, Zhu H, Cao N. Enhancing capacitance performance of Ti3C2Tx MXene as electrode materials of supercapacitor: From controlled preparation to composite structure construction. Nanomicro Lett. 2020;12(1):77.

60

Naguib M, Barsoum MW, Gogotsi Y. Ten years of progress in the synthesis and development of MXenes. Adv Mater. 2021;33(39):Article 2103393.

61

VahidMohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science. 2021;372(6547):Article eabf1581.

62

Kirchon A, Feng L, Drake HF, Joseph EA, Zhou H-C. From fundamentals to applications: A toolbox for robust and multifunctional MOF materials. Chem Soc Rev. 2018;47(23):8611–8638.

63

Bai Y, Liu C, Shan Y, Chen T, Zhao Y, Yu C, Pang H. Metal-organic frameworks nanocomposites with different dimensionalities for energy conversion and storage. Adv Energy Mater. 2022;12(4):Article 2100346.

64

Yang H, Zhou H, Zhang G, Guo X, Pang H. Recent progress of integrating MOFs into printed devices and their applications. Sci China Mater. 2023;66(2):441–469.

65

Zhao L, Dong B, Li S, Zhou L, Lai L, Wang Z, Zhao S, Han M, Gao K, Lu M, et al. Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano. 2017;11(6):5800–5807.

66

Liu C, Bai Y, Li W, Yang F, Zhang G, Pang H. In situ growth of three-dimensional MXene/metal–organic framework composites for high-performance supercapacitors. Angew Chem Int Ed. 2022;61(11):Article e202116282.

67

Zheng S, Zhou H, Xue H, Braunstein P, Pang H. Pillared-layer Ni-MOF Nanosheets anchored on Ti3C2 MXene for enhanced electrochemical energy storage. J Colloid Interface Sci. 2022;614:130–137.

68

Shi L, Wu C, Wang Y, Dou Y, Yuan D, Li H, Huang H, Zhang Y, Gates ID, Sun X, et al. Rational design of coordination bond connected metal organic frameworks/MXene hybrids for efficient solar water splitting. Adv Funct Mater. 2022;32(30):Article 2202571.

69

Gao X, Zheng Y, Chang J, Xu H, Hui Z, Dai H, Wang H, Xia Z, Zhou J, Sun G. Universal strategy for preparing highly stable PBA/Ti3C2Tx MXene toward lithium-ion batteries via chemical transformation. ACS Appl Mater Interfaces. 2022;14(13):15298–15306.

70

Shi Y, Zhu G, Guo X, Jing Q, Pang H, Zhang Y. Three-dimensional MXene-encapsulated porous Ni-NDC nanosheets as anodes for enhanced lithium-ion batteries. Nano Res. 2023;16:2528–2535.

71

Wang Y, Song J, Wong W-Y. Constructing 2D sandwich-like MOF/MXene heterostructures for durable and fast aqueous zinc-ion batteries. Angew Chem Int Ed. 2023;62(8):Article e202218343.

72

Tan P, Gao R, Zhang Y, Han N, Jiang Y, Xu M, Bao SJ, Zhang X. Electrostatically directed assembly of two-dimensional ultrathin Co2Ni-MOF/Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. J Colloid Interface Sci. 2023;630(Part B):363–371.

73

Zhao W, Peng J, Wang W, Jin B, Chen T, Liu S, Zhao Q, Huang W. Interlayer hydrogen-bonded metal porphyrin frameworks/MXene hybrid film with high capacitance for flexible all-solid-state supercapacitors. Small. 2019;15(18):1901351.

74

Yu K, Tang L, Cao X, Guo Z, Zhang Y, Li N, Dong C, Gong X, Chen T, He R, et al. Semiconducting metal–organic frameworks decorated with spatially separated dual cocatalysts for efficient uranium(Ⅵ) photoreduction. Adv Funct Mater. 2022;32(20):Article 2200315.

75

Wu H, Almalki M, Xu X, Lei Y, Ming F, Mallick A, Roddatis V, Lopatin S, Shekhah O, Eddaoudi M, et al. MXene derived metal–organic frameworks. J Am Chem Soc. 2019;141(51):20037–20042.

76

Xu X, Wu H, He X, Hota MK, Liu Z, Zhuo S, Kim H, Zhang X, Alshareef HN. Iontronics using V2CTx MXene-derived metal-organic framework solid electrolytes. ACS Nano. 2020;14(8):9840–9847.

77

Tan Y, Yang L, Zhai D, Sun L, Zhai S, Zhou W, Wang X, Deng WQ, Wu H. MXene-derived metal-organic framework@MXene heterostructures toward electrochemical NO sensing. Small. 2022;18(50):Article 2204942.

78

Zheng Y, Gao X, Miao C, Dai H, Xia Z, Wang H, Yao Z, Zhou J, Sun G. Co2V2O7@Ti3C2Tx MXene hollow structures synergizing the merits of conversion and intercalation for efficient lithium ion storage. Adv Sustain Syst. 2022;6(9):Article 2200153.

79

Wang M, Zhou P, Feng T, Song Z, Ren Q, Gu H, Shi X, Zhang Q, Wang L. Ni-MOF/Ti3C2Tx derived multidimensional hierarchical Ni/TiO2/C nanocomposites with lightweight and efficient microwave absorption. Ceram Int. 2022;48(16):22681–22690.

80

Cai L, Pan F, Zhu X, Dong Y, Shi Y, Xiang Z, Cheng J, Jiang H, Shi Z, Lu W. Etching engineering and electrostatic self-assembly of N-doped MXene/hollow co-ZIF hybrids for high-performance microwave absorbers. Chem Eng J. 2022;434:Article 133865.

81

Ling X, Wang K, Zhang W, Wu Y, Jin Q, Zhang D. Bio-inspired, bimetal ZIF-derived hollow carbon/MXene microstructure aim for superior microwave absorption. J Colloid Interface Sci. 2022;625:317–327.

82

Zhong J, Qin L, Li J, Yang Z, Yang K, Zhang M. MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors. Int J Miner Metall Mater. 2022;29(5):1061–1072.

83

Zhu X, Zhu T, Chen Q, Peng W, Li Y, Zhang F, Fan X. FeP-CoP nanocubes in situ grown on Ti3C2Tx MXene as efficient electrocatalysts for the oxygen evolution reaction. Ind Eng Chem Res. 2022;61(30):10837–10845.

84

Zhao X, Zhang Y, Hou Y, Zhao Z, Gong Y, Wang Y, Wei H, Pol VG. Synergistic effect of tailored 3D/2D Ti3C2Tx/CoS2/C nanostructured composite anode for significantly enhanced Li-ion storage. Adv Compos Hybrid Mater. 2022;5(4):2988–3001.

85

Luo S, Wu Z, Zhao J, Luo Z, Qiu Q, Li Z, Wu H, Xing G, Wu C. ZIF-67 derivative decorated MXene for a highly integrated flexible self-powered photodetector. ACS Appl Mater Interfaces. 2022;14(17):19725–19735.

86

Chen F, Zhang S, Ma B, Xiong Y, Luo H, Cheng Y, Li X, Wang X, Gong R. Bimetallic CoFe-MOF@Ti3C2Tx MXene derived composites for broadband microwave absorption. Chem Eng J. 2022;431(Part 1):Article 134007.

87

Guo X, Zhang H, Yao Y, Xiao C, Yan X, Chen K, Qi J, Zhou Y, Zhu Z, Sun X, et al. Derivatives of two-dimensional MXene-MOFs heterostructure for boosting peroxymonosulfate activation: Enhanced performance and synergistic mechanism. Appl Catal B Environ. 2023;323:Article 122136.

88

Wu F, Liu Z, Wang J, Shah T, Liu P, Zhang Q, Zhang B. Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties. Chem Eng J. 2021;422:Article 130591.

89

Wang B, Li S, Huang F, Wang S, Zhang H, Liu F, Liu Q. Construction of multiple electron transfer paths in 1D core-shell heterostructures with MXene as interlayer enabling efficient microwave absorption. Carbon. 2022;187:56–66.

90

Cao B, Liu H, Zhang X, Zhang P, Zhu Q, Du H, Wang L, Zhang R, Xu B. MOF-derived ZnS Nanodots/Ti3C2Tx MXene hybrids boosting superior lithium storage performance. Nanomicro Lett. 2021;13:202.

91

Gu Q, Yu X, Yao L. Three-dimensional Mofs@MXene aerogel composite derived MXene threaded hollow carbon confined cos nanoparticles toward advanced alkali-ion batteries. ACS Nano. 2021;15(2):3228–3240.

92

Hong L, Ju S, Yang Y, Zheng J, Xia G, Huang Z, Liu X, Yu X. Hollow-shell structured porous CoSe2 microspheres encapsulated by MXene nanosheets for advanced lithium storage. Sustain Energy Fuels. 2020;4(5):2352–2362.

93

Liu X, Liu F, Zhao X, Fan LZ. Constructing MOF-derived CoP-NC@MXene sandwich-like composite by in-situ intercalation for enhanced lithium and sodium storage. J Mater. 2022;8(1):30–37.

94

Chen W, Han B, Xie Y, Liang S, Deng H, Lin Z. Ultrathin co-co LDHs nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO2 reduction. Chem Eng J. 2020;391:Article 123519.

95

Qi JQ, Huang MY, Ruan CY, Zhu DD, Zhu L, Wei FX, Sui YW, Meng QK. Construction of CoNi2S4 nanocubes interlinked by few-layer Ti3C2Tx MXene with high performance for asymmetric supercapacitors. Rare Metals. 2022;41(12):4116–4126.

96

Yang Y, Huang X, Sheng C, Pan Y, Huang Y, Wang X. In-situ formation of MOFs derivatives CoSe2/Ni3Se4 nanosheets on MXene nanosheets for hybrid supercapacitor with enhanced electrochemical performance. J Alloys Compd. 2022;920:Article 165908.

97

Liu Z, Chen J, Que M, Zheng H, Yang L, Yuan H, Ma Y, Li Y, Yang X. 2D Ti3C2Tx MXene/MOFs composites derived CoNi bimetallic nanoparticles for enhanced microwave absorption. Chem Eng J. 2022;450(Part 4):Article 138442.

98

Wang HY, Sun XB, Yang SH, Zhao PY, Zhang XJ, Wang GS, Huang Y. 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nanomicro Lett. 2021;13:206.

99

Raza N, Kumar T, Singh V, Kim K-H. Recent advances in bimetallic metal-organic framework as a potential candidate for supercapacitor electrode material. Coord Chem Rev. 2021;430:Article 213660.

100

Han J, Xu C, Zhang J, Xu N, Xiong Y, Cao X, Liang Y, Zheng L, Sun J, Zhai J, et al. Multifunctional coaxial energy fiber toward energy harvesting, storage, and utilization. ACS Nano. 2021;15(1):1597–1607.

101

Wu G, Sun S, Zhu X, Ma Z, Zhang Y, Bao N. Microfluidic fabrication of hierarchical-ordered ZIF-L(Zn)@Ti3C2Tx core–sheath fibers for high-performance asymmetric supercapacitors. Angew Chem Int Ed. 2022;61(8):Article e202115559.

102

Luo Y, Tang Y, Bin X, Xia C, Que W. 3D porous compact 1D/2D Fe2O3/MXene composite aerogel film electrodes for all-solid-state supercapacitors. Small. 2022;18(48):Article 2204917.

103

Zheng W, Halim J, Sun Z, Rosen J, Barsoum MW. MXene—Manganese oxides aqueous asymmetric supercapacitors with high mass loadings, high cell voltages and slow self-discharge. Energy Storage Mater. 2021;38:438–446.

104

Gao C, Gu Y, Zhao Y, Qu L. Recent development of integrated systems of microsupercapacitors. Energy Mater Adv. 2022;2022:Article 9804891.

105

Zhang X, Yang S, Lu W, Lei D, Tian Y, Guo M, Mi P, Qu N, Zhao Y. MXenes induced formation of Ni-MOF microbelts for high-performance supercapacitors. J Colloid Interface Sci. 2021;592:95–102.

106

Yue L, Chen L, Wang X, Lu D, Zhou W, Shen D, Yang Q, Xiao S, Li Y. Ni/Co-MOF@aminated MXene hierarchical electrodes for high-stability supercapacitors. Chem Eng J. 2023;451:Article 138687.

107

Jia B, Yang H, Wang L, Zhao Z, Wu X. Synergistic Interface-pillared Fe-MOF on 2D Ti3C2Tx MXene electrode coupling toward high energy density. Appl Surf Sci. 2022;602:Article 154386.

108

Yang X, Tian Y, Li S, Wu YP, Zhang Q, Li DS, Zhang S. Heterogeneous Ni-MOF/V2CTx-MXene hierarchically-porous nanorods for robust and high energy density hybrid supercapacitors. J Mater Chem A. 2022;10(22):12225–12234.

109

Ramachandran R, Zhao C, Rajkumar M, Rajavel K, Zhu P, Xuan W, Xu ZX, Wang F. Porous nickel oxide microsphere and Ti3C2Tx hybrid derived from metal-organic framework for battery-type supercapacitor electrode and non-enzymatic H2O2 sensor. Electrochim Acta. 2019;322:Article 134771.

110

Zhang H, Li Z, Hou Z, Mei H, Feng Y, Xu B, Sun D. Self-assembly of MOF on MXene nanosheets and in-situ conversion into superior nickel phosphates/MXene battery-type electrode. Chem Eng J. 2021;425:Article 130602.

111

Wei W, Luo S, Zhao Y, Li X, Liang B, Fang J, Luo M. A solution-assisted etching preparation of an MOF-derived NH4CoPO4·H2O/Ti3C2Tx MXene nanocomposite for high-performance hybrid supercapacitors. New J Chem. 2021;45(25):11174–11182.

112

Guo H, Zhang J, Yang F, Wang M, Zhang T, Hao Y, Yang W. Sandwich-like porous MXene/Ni3S4/CuS derived from MOFs as superior supercapacitor electrode. J Alloys Compd. 2022;906:Article 163863.

113

Luo L, Zhou Y, Yan W, Du G, Fan M, Zhao W. Construction of advanced zeolitic imidazolate framework derived cobalt sulfide/MXene composites as high-performance electrodes for supercapacitors. J Colloid Interface Sci. 2022;615:282–292.

114

Chen X, Wang K, Xie K, Tao H, Wang Y. MXene-coated nickel ion-exchanged ZIF skeleton-cavity layered double hydroxides for supercapacitors. Energy Fuel. 2023;37(1):763–773.

115

Liu C, Feng W, Bai Y, Pang H. Compositing MXenes with hierarchical ZIF-67/cobalt hydroxide via controllable in situ etching for a high-performance supercapacitor. Inorg Chem Front. 2022;9:5463–5468.

116

Guo H, Zhang J, Xu M, Wang M, Yang F, Wu N, Zhang T, Sun L, Yang W. Zeolite-imidazole framework derived nickel-cobalt hydroxide on ultrathin MXene nanosheets for long life and high performance supercapacitance. J Alloys Compd. 2021;888:Article 161250.

117

Yu T, Li S, Zhang L, Li F, Wang J, Pan H, Zhang D. In situ growth of ZIF-67-derived nickel-cobalt-manganese hydroxides on 2D V2CTx MXene for dual-functional orientation as high-performance asymmetric supercapacitor and electrochemical hydroquinone sensor. J Colloid Interface Sci. 2023;629:546–558.

118

Ruan C, Zhu D, Qi J, Meng Q, Wei F, Ren Y, Sui Y, Zhang H. MXene-modulated CoNi2S4 dendrite as enhanced electrode for hybrid supercapacitors. Surf Interfaces. 2021;25:Article 101274.

119

Olsson E, Yu J, Zhang H, Cheng H-M, Cai Q. Atomic-scale design of anode materials for alkali metal (Li/Na/K)-ion batteries: Progress and perspectives. Adv Energy Mater. 2022;12(25):Article 2200662.

120

Hu R, Sha D, Cao X, Lu C, Wei Y, Pan L, Sun ZM. Anchoring metal-organic framework-derived ZnTe@C onto elastic Ti3C2Tx MXene with 0D/2D dual confinement for ultrastable potassium-ion storage. Adv Energy Mater. 2022;12(47):Article 2203118.

121

Li R, Wang D. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022;15(8):6888–6923.

122

Reddy RCK, Lin J, Chen Y, Zeng C, Lin X, Cai Y, Su CY. Progress of nanostructured metal oxides derived from metal–organic frameworks as anode materials for lithium–ion batteries. Coord Chem Rev. 2020;420:Article 213434.

123

Li S, Wang K, Zhang G, Li S, Xu Y, Zhang X, Zhang X, Zheng S, Sun X, Ma Y. Fast charging anode materials for lithium-ion batteries: Current status and perspectives. Adv Funct Mater. 2022;32(23):Article 2200796.

124

Sun L, Wang H, Zhai S, Sun J, Fang X, Yang H, Zhai D, Liu C, Deng WQ, Wu H. Dual-conductive metal-organic framework@MXene heterogeneity stabilizes lithium-ion storage. J Energy Chem. 2023;76:368–376.

125

Li C, Dai Z, Liu W, Kantichaimongkol P, Yu P, Pattananuwat P, Qin J, Zhang X. A self-sacrifice template strategy to synthesize co-LDH/MXene for lithium-ion batteries. Chem Commun. 2021;57(86):11378–11381.

126

Zhao X, Xu H, Hui Z, Sun Y, Yu C, Xue J, Zhou R, Wang L, Dai H, Zhao Y, et al. Electrostatically assembling 2D nanosheets of MXene and MOF-derivatives into 3D hollow frameworks for enhanced lithium storage. Small. 2019;15(47):Article 1904255.

127

Cai P, Zou K, Deng X, Wang B, Zheng M, Li L, Hou H, Zou G, Ji X. Comprehensive understanding of sodium-ion capacitors: Definition, mechanisms, configurations, materials, key technologies, and future developments. Adv Energy Mater. 2021;11(16):Article 2003804.

128

Ali Z, Zhang T, Asif M, Zhao L, Yu Y, Hou Y. Transition metal chalcogenide anodes for sodium storage. Mater Today. 2020;35:131–167.

129

Xu E, Li P, Quan J, Zhu H, Wang L, Chang Y, Sun Z, Chen L, Yu D, Jiang Y. Dimensional gradient structure of CoSe2@CNTs–MXene anode assisted by ether for high-capacity, stable sodium storage. Nanomicro Lett. 2021;13(1):40.

130

Wang M, Liu X, Qin B, Li Z, Zhang Y, Yang W, Fan H. In-situ etching and ion exchange induced 2D-2D MXene@Co9S8/CoMo2S4 heterostructure for superior Na+ storage. Chem Eng J. 2023;451:Article 138508.

131

Li Q, Jiao Q, Yan Y, Li H, Zhou W, Gu T, Shen X, Lu C, Zhao Y, Zhang Y, et al. Optimized co–S bonds energy and confinement effect of hollow MXene@CoS2/NC for enhanced sodium storage kinetics and stability. Chem Eng J. 2022;450:Article 137922.

132

Liu X, Liu Z, Yang W, Wang M, Qin B, Zhang Y, Liu Z, Fan H. In situ fragmented and confined CoP nanocrystals into sandwich-structure MXene@CoP@NPC heterostructure for superior sodium-ion storage. Mater Today Chem. 2022;26:Article 101002.

133

Lei H, Li J, Zhang X, Ma L, Ji Z, Wang Z, Pan L, Tan S, Mai W. A review of hard carbon anode: Rational design and advanced characterization in potassium ion batteries. InfoMat. 2022;4(2):Article e12272.

134

Gao Y, Guo Q, Zhang Q, Cui Y, Zheng Z. Li–S batteries: Fibrous materials for flexible Li–S battery. Adv Energy Mater. 2021;11(15):Article 2170058.

135

Ye Z, Jiang Y, Li L, Wu F, Chen R. Self-assembly of 0D–2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction. Adv Mater. 2021;33(33):Article 2101204.

136

Ren Y, Zhai Q, Wang B, Hu L, Ma Y, Dai Y, Tang S, Meng X. Synergistic adsorption-Electrocatalysis of 2D/2D Heterostructure toward high performance Li-S batteries. Chem Eng J. 2022;439:Article 135535.

137

Dong H, Tutusaus O, Liang Y, Zhang Y, Lebens-Higgins Z, Yang W, Mohtadi R, Yao Y. High-power mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes. Nat Energy. 2020;5(12):1043–1050.

138

Pan J, Wang X, Li H, Cui Z, Chen H, Nie J, Gou H, Yu D, Chen C, Liu Y. The conversion-type selenides as potential high-energy cathode materials for mg-based batteries: A review. ACS Sustain Chem Eng. 2022;10(46):14980–15006.

139

Zhang Y, Cao JM, Yuan Z, Xu H, Li D, Li Y, Han W, Wang L. TiVCTx MXene/chalcogenide heterostructure-based high-performance magnesium-ion battery as flexible integrated units. Small. 2022;18(30):2202313.

140

Lv T, Zhu G, Dong S, Kong Q, Peng Y, Jiang S, Zhang G, Yang Z, Yang S, Dong X, et al. Co-intercalation of dual charge carriers in metal-ion-confining layered vanadium oxide nanobelts for aqueous zinc-ion batteries. Angew Chem Int Ed. 2023;62(5):Article e202216089.

141

Tang Z, Chen W, Lyu Z, Chen Q. Size-dependent reaction mechanism of λ-MnO2 particles as cathodes in aqueous zinc-ion batteries. Energy Mater Adv. 2022;2022:Article 9765710.

142

Elia GA, Kravchyk KV, Kovalenko MV, Chacón J, Holland A, Wills RGA. An overview and prospective on Al and Al-ion battery technologies. J Power Sources. 2021;481:Article 228870.

143

Yao L, Ju S, Xu T, Yu X. Spatial isolation-inspired ultrafine CoSe2 for high-energy aluminum batteries with improved rate cyclability. ACS Nano. 2021;15(8):13662–13673.

144

Hu L, Xiao R, Wang X, Wang X, Wang C, Wen J, Gu W, Zhu C. MXene-induced electronic optimization of metal-organic framework-derived CoFe LDH nanosheet arrays for efficient oxygen evolution. Appl Catal B Environ. 2021;298:Article 120599.

145

Li J, Chen C, Lv Z, Ma W, Wang M, Li Q, Dang J. Constructing Heterostructures of ZIF-67 derived C, N doped Co2P and Ti2VC2Tx MXene for enhanced OER. J Mater Sci Technol. 2023;145:74–82.

146

Zou H, He B, Kuang P, Yu J, Fan K. Metal–organic framework-derived nickel–cobalt sulfide on ultrathin MXene nanosheets for electrocatalytic oxygen evolution. ACS Appl Mater Interfaces. 2018;10(26):22311–22319.

147

Chen J, Yuan X, Lyu F, Zhong Q, Hu H, Pan Q, Zhang Q. Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J Mater Chem A. 2019;7(3):1281–1286.

148

Pi Y, Qiu Z, Sun Y, Ishii H, Liao Y-F, Zhang X, Chen H-Y, Pang H. Synergistic mechanism of sub-nanometric Ru clusters anchored on tungsten oxide nanowires for high-efficient bifunctional hydrogen electrocatalysis. Adv Sci. 2023;10(7):Article e2206096.

149

Luo R, Li Z, Li R, Jiang C, Qi R, Liu M, Lin H, Huang R, Luo C, Peng H. Ultrafine Ru nanoparticles derived from few-layered Ti3C2Tx MXene templated MOF for highly efficient alkaline hydrogen evolution. Int J Hydrog Energy. 2022;47(77):32787–32795.

150

Wang L, Song L, Yang Z, Chang YM, Hu F, Li L, Li L, Chen HY, Peng S. Electronic modulation of metal–organic frameworks by interfacial bridging for efficient PH-universal hydrogen evolution. Adv Funct Mater. 2023;33(1):Article 2210322.

151

Zong H, Qi R, Yu K, Zhu Z. Ultrathin Ti2NTx MXene-wrapped MOF-derived CoP frameworks towards hydrogen evolution and water oxidation. Electrochim Acta. 2021;393:Article 139068.

152

Zhang J, Zhang W, Zhang J, Li Y, Wang Y, Yang L, Yin S. MOF-derived bimetallic NiMo-based sulfide electrocatalysts for efficient hydrogen evolution reaction in alkaline media. J Alloys Compd. 2023;935:Article 167974.

153

Radwan A, Jin H, He D, Mu S. Design engineering, synthesis protocols, and energy applications of MOF-derived Electrocatalysts. Nanomicro Lett. 2021;13:132.

154

Wang WT, Batool N, Zhang TH, Liu J, Han XF, Tian JH, Yang R. When MOFs meet MXenes: Superior ORR performance in both alkaline and acidic solutions. J Mater Chem A. 2021;9(7):3952–3960.

155

Zhang Y, Zhu X, Sun S, Guo Q, Xu M, Wu G. Ordered interface engineering enabled high-performance Ti3C2Tx MXene fiber-based supercapacitors. Energy Fuels. 2022;36(14):7898–7907.

156

Ramachandran R, Rajavel K, Xuan W, Lin D, Wang F. Influence of Ti3C2Tx (MXene) intercalation pseudocapacitance on electrochemical performance of co-MOF binder-free electrode. Ceram Int. 2018;44(12):14425–14431.

157

Qu Y, Shi C, Cao H, Wang Y. Synthesis of Ni-MOF/Ti3C2Tx hybrid nanosheets via ultrasonific method for supercapacitor electrodes. Mater Lett. 2020;280:Article 128526.

158

Yadav A, Singal S, Soni P, Singh G, Sharma RK. Structural engineering and carbon enrichment in V2CTx MXene: An approach for enhanced supercapacitive charge storage. J Alloys Compd. 2023;934:Article 167859.

159

Yang X, Xu C, Li S, Wu YP, Wu XQ, Yin YM, Li DS. Thermal treatment for promoting interfacial interaction in co-BDC/Ti3C2Tx hybrid nanosheets for hybrid supercapacitors. J Colloid Interface Sci. 2022;617:633–640.

160

Ganiyat Olatoye A, Li W, Oluwaseyi Fagbohun E, Zeng X, Zheng Y, Cui Y. High-performance asymmetric supercapacitor based on nickel-MOF anchored MXene//NPC/RGO. J Electroanal Chem. 2023;928:Article 117036.

161

Zhang C, Wang L, Lei W, Wu Y, Li C, Khan MA, Ouyang Y, Jiao X, Ye H, Mutahir S, et al. Achieving quick charge/discharge rate of 3.0 V s−1 by 2D titanium carbide (MXene) via N-doped carbon intercalation. Mater Lett. 2019;234(3):21–25.

162

Xie W, Wang Y, Zhou J, Zhang M, Yu J, Zhu C, Xu J. MOF-derived CoFe2O4 nanorods anchored in MXene Nanosheets for all Pseudocapacitive flexible supercapacitors with superior energy storage. Appl Surf Sci. 2020;534:Article 147584.

163

Wang J, Gong J, Zhang H, Lv L, Liu Y, Dai Y. Construction of hexagonal nickel-cobalt oxide nanosheets on metal-organic frameworks based on MXene interlayer ion effect for hybrid supercapacitors. J Alloys Compd. 2021;870:Article 159466.

164

Deng Y, Shen Y, Du Y, Goto T, Zhang J. A novel electrode hybrid of N–Ti3C2T /C/CuS fabricated using ZIF-67 as an intermediate derivation for superhigh electrochemical properties of supercapacitors. J Mater Res Technol. 2022;19:3507–3520.

165

Xiao T, Jin J, Zhang Y, Xi W, Wang R, Gong Y, He B, Wang H. Rational construction of 2D/2D Ti3C2Tx/NiCo MOF heterostructure for highly efficient Li+ storage. Electrochim Acta. 2022;427:Article 140851.

166

Zong H, Hu L, Wang Z, Qi R, Yu K, Zhu Z. Metal-organic frameworks-derived CoP anchored on MXene toward an efficient bifunctional electrode with enhanced lithium storage. Chem Eng J. 2021;416:Article 129102.

167

Geun OH, Park SK. Two-dimensional composite of nitrogen-doped graphitic carbon-coated cobaltosic oxide nanocrystals on MXene nanosheets as high-performance anode for lithium-ion batteries. Appl Surf Sci. 2021;564:Article 150415.

168

Wu W, Zhao C, Liu H, Liu T, Wang L, Zhu J. Hierarchical architecture of two-dimensional Ti3C2 nanosheets@metal-organic framework derivatives as anode for hybrid Li-ion capacitors. J Colloid Interface Sci. 2022;623:216–225.

169

Zhang P, Chen J, Feng L, Jiang M, Xu B. Dual confinement of Si nanoparticles in a MXene/ZIF-8-derived carbon framework for lithium-ion batteries. ACS Appl Nano Mater. 2022;5(9):12720–12728.

170

Huang P, Ying H, Zhang S, Zhang Z, Han WQ. Multidimensional synergistic architecture of Ti3C2 MXene/CoS2@N-doped carbon for sodium-ion batteries with ultralong cycle lifespan. Chem Eng J. 2022;429:Article 132396.

171

Zhang H, Xiong D, Xie Y, Wu K, Feng Z, Wen K, Li Z, He M. Co3C/MXene composites wrapped in N-rich carbon as stable-performance anodes for potassium/sodium-ion batteries. Colloids Surf A Physicochem Eng Asp. 2023;656(Part A):Article 130332.

172

Sun L, Sun J, Zhai S, Dong T, Yang H, Tan Y, Fang X, Liu C, Deng WQ, Wu H. Homologous MXene-derived electrodes for potassium-ion full batteries. Adv Energy Mater. 2022;12(23):Article 2200113.

173

Xiao T, Zhang Y, Xi W, Wang R, Gong Y, He B, Wang H, Jin J. Rationally designing a Ti3C2Tx/CNTs-Co9S8 heterostructure as a sulfur host with multi-functionality for high-performance lithium–sulfur batteries. Nanoscale. 2022;14(43):16139–16147.

174

Zhou X, Cui Y, Huang X, Zhang Q, Wang B, Tang S. Interface engineering of Fe3Se4/FeSe heterostructures encapsulated in MXene for boosting LiPS conversion and inhibiting shuttle effect. Chem Eng J. 2023;457:Article 141139.

175

Jiang G, Zheng N, Chen X, Ding G, Li Y, Sun F, Li Y. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem Eng J. 2019;373:1309–1318.

176

Liu F, Wang T, Liu X, Jiang N, Fan LZ. High-performance heterojunction Ti3C2/CoSe2 with both intercalation and conversion storage mechanisms for magnesium batteries. Chem Eng J. 2021;426:Article 130747.

177

Wen Y, Wei Z, Ma C, Xing X, Li Z, Luo D. MXene boosted CoNi-ZIF-67 as highly efficient electrocatalysts for oxygen evolution. Nanomaterials. 2019;9(5):775.

178

Xu C, Yang X, Li S, Li K, Xi B, Han QW, Wu YP, Wu XQ, Chi RA, Li DS. Modulating the electronic configuration of co species in MOF/MXene nanosheet derived co-based mixed spinel oxides for an efficient oxygen evolution reaction. Inorg Chem Front. 2023;10:85–92.

179

He L, Liu J, Hu B, Liu Y, Cui B, Peng D, Zhang Z, Wu S, Liu B. Cobalt oxide doped with titanium dioxide and embedded with carbon nanotubes and graphene-like nanosheets for efficient trifunctional electrocatalyst of hydrogen evolution, oxygen reduction, and oxygen evolution reaction. J Power Sources. 2019;414:333–344.

180

Fang Z, Xu C, Zhang X, Wang Y, Xiao T, Wang L, Chen M, Liu X. MXene (Ti3C2Tx)-supported binary Co-, Zn-doped carbon as oxygen reduction reaction catalyst for anion exchange membrane fuel cells. Energ Technol. 2022;10(5):Article 2101168.

Energy Material Advances
Article number: 0033
Cite this article:
Yang H, Zhang G-X, Zhou H-J, et al. Metal–Organic Frameworks Meet MXene: New Opportunities for Electrochemical Application. Energy Material Advances, 2023, 4: 0033. https://doi.org/10.34133/energymatadv.0033
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return