AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (17.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Constructing Cation Vacancy Defects on NiFe-LDH Nanosheets for Efficient Oxygen Evolution Reaction

Yingying Hao1Chen Qiao2( )Shuping Zhang2Yibin Zhu2Lei Ji2Chuanbao Cao1( )Jiatao Zhang2( )
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China
Show Author Information

Abstract

Active site exposure and intrinsic catalytic performance are considered important aspects of oxygen evolution reaction catalyst design. In this work, the coordination capacity of tributylphosphine is utilized to construct cationic vacancy defects on NiFe-LDH nanosheets. As-prepared defective NiFe-LDH nanosheets show not only the optimization of the exposure ability of the active site but also the intrinsic catalytic capacity is improved by construction of cationic vacancy defect to tune local electronic structure. The x-ray photoelectron spectroscopy results revealed that after reconstruction of the prepared d-NiFe-LDH, high-valence Ni and Fe can stably appear on the surface of the material. The presence of high-valence Ni and Fe is considered to be the main reason to improve the intrinsic catalytic capacity of catalysts. Finally, d-NiFe-LDH nanosheets show excellent catalytic performance (η10 = 243 mV) and remarkable long-term stability.

References

1

Wang Y, Yang R, Ding Y, Zhang B, Li H, Bai B, Li M, Cui Y, Xiao J, Wu Z-S. Unraveling oxygen vacancy site mechanism of Rh-doped RuO2 catalyst for long-lasting acidic water oxidation. Nat Commun, 2023,14(1):Article 1412.

2

Yang H, Li F, Zhan S, Liu Y, Li W, Meng Q, Kravchenko A, Liu T, Yang Y, Fang Y, et al. Intramolecular hydroxyl nucleophilic attack pathway by a polymeric water oxidation catalyst with single cobalt sites. Nat Catal, 2022(5):414–429.

3

Jiang N, Zhu Z, Xue W, Xia BY, You B. Emerging electrocatalysts for water oxidation under near-neutral CO2 reduction conditions. Adv Mater, 2022,34(2):Article 2105852.

4

Bai X-J, Lu X-Y, Ju R, Chen H, Shao L, Zhai X, Li Y-N, Fan F-Q, Fu Y, Qi W. Preparation of MOF film/aerogel composite catalysts via substrate-seeding secondary-growth for the oxygen evolution reaction and CO2 cycloaddition. Angew Chem Int Ed, 2021,60(2):701–705.

5

Yin K, Chao Y, Zeng L, Li M, Liu F, Guo S, Li H. Ultrathin PtRu nanowires as efficient and stable electrocatalyst for liquid fuel oxidation reactions. Energy Mater Adv, 2022:Article 9871842.

6

Lee WH, Han MH, Ko YJ, Min BK, Chae KH, Oh HS. Electrode reconstruction strategy for oxygen evolution reaction: Maintaining Fe-CoOOH phase with intermediate-spin state during electrolysis. Nat Commun, 2022(13):Article 605.

7

Zhao M, Cheng X, Xiao H, Gao J, Xue S, Wang X, Wu H, Jia J, Yang N. Cobalt-iron oxide/black phosphorus nanosheet heterostructure: Electrosynthesis and performance of (photo-) electrocatalytic oxygen evolution. Nano Res, 2022(16):6057–6066.

8

Wan X, Song Y, Zhou H, Shao M. Layered double hydroxides for oxygen evolution reaction towards efficient hydrogen generation. Energy Mater Adv, 2022:Article 9842610.

9

Yang H, Zhang G-X, Zhou H-J, Sun Y-Y, Pang H. Metal–organic frameworks meet MXene: New opportunities for electrochemical application. Energy Mater Adv, 2023(4):Article 0033.

10

Zhang R, Pan L, Guo B, Huang Z-F, Chen Z, Wang L, Zhang X, Guo Z, Xu W, Loh KP, et al. Tracking the role of defect types in Co3O4 structural evolution and active motifs during oxygen evolution reaction. J Am Chem Soc, 2023,145(4):2271–2281.

11

Yu H, Fan F, He C, Zhou M, Ma T, Wang Y, Cheng C. Sulfur-modulated FeNi nanoalloys as bifunctional oxygen electrode for efficient rechargeable aqueous Zn-air batteries. Sci China Mater, 2022(65):3007–3016.

12

Zhao Y, Zhang X, Jia X, Waterhouse GIN, Shi R, Zhang X, Zhan F, Tao Y, Wu L-Z, Tung C-H, et al. Sub-3 nm ultrafine monolayer layered double hydroxide Nanosheets for electrochemical water oxidation. Adv Energy Mater, 2018,8(18):Article 1703585.

13

Kang J, Qiu X, Hu Q, Zhong J, Gao X, Huang R, Wan C, Liu L-M, Duan X, Guo L. Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation. Nat Catal, 2021(4):1050–1058.

14

Zhang H, Chen C, Wu X, Lv C, Lv Y, Guo J, Jia D. Synergistic incorporating RuO2 and NiFeOOH layers onto Ni3S2 nanoflakes with modulated electron structure for efficient water splitting. Small Methods, 2022(6):Article 2200483.

15

Huang C, Zhou Q, Duan D, Yu L, Zhang W, Wang Z, Liu J, Peng B, An P, Zhang J, et al. The rapid self-reconstruction of Fe-modified Ni hydroxysulfide for efficient and stable large-current-density water/seawater oxidation. Energy Environ Sci, 2022,15(11):4647–4658.

16

Zhai Y, Ren X, Sun Y, Li D, Wang B, Liu S. Synergistic effect of multiple vacancies to induce lattice oxygen redox in NiFe-layered double hydroxide OER catalysts. Appl Catal B Environ, 2023(323):Article 122091.

17

Cui H, Liao H-X, Wang Z-L, Xie J-P, Tan P-F, Chu D-W, Jun P. Synergistic electronic interaction between ruthenium and nickel-iron hydroxide for enhanced oxygen evolution reaction. Rare Metals, 2022(41):2606–2615.

18

Wu Q, Wang S, Guo J, Feng X, Li H, Lv S, Zhou Y, Chen Z. Insight into sulfur and iron effect of binary nickel-iron sulfide on oxygen evolution reaction. Nano Res, 2021(15):1901–1908.

19

Shin H, Xiao H, Goddard WA Ⅲ. In silico discovery of new dopants for Fe-doped Ni Oxyhydroxide (Ni1-xFexOOH) catalysts for oxygen evolution reaction. J Am Chem Soc, 2018,140(22):6745–6748.

20

Chen JY, Dang L, Liang H, Bi W, Gerken JB, Jin S, Alp EE, Stahl SS. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: Detection of Fe4+ by Mossbauer spectroscopy. J Am Chem Soc, 2015,137(48):15090–15093.

21

Gorlin M, Chernev P, de Araujo JF, Reier T, Dresp S, Paul B, Krahnert R, Dau H, Strasser P. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni-Fe oxide water splitting Electrocatalysts. J Am Chem Soc, 2016(138):5603–5614.

22

Qiao C, Usman Z, Cao T, Rafai S, Wang Z, Zhu Y, Cao C, Zhang J. High-valence Ni and Fe sites on sulfated NiFe-LDH nanosheets to enhance O-O coupling for water oxidation. Chem Eng J, 2021(426):Article 130873.

23

Yao N, Wang G, Jia H, Yin J, Cong H, Chen S, Luo W. Intermolecular energy gap-induced formation of high-valent cobalt species in CoOOH surface layer on cobalt sulfides for efficient water oxidation. Angew Chem Int Ed, 2022,61(28):Article e202117178.

24

Zhao Y, Wan W, Dongfang N, Triana CA, Douls L, Huang C, Erni R, Iannuzzi M, Patzke GR. Optimized NiFe-based coordination polymer catalysts: Sulfur-tuning and operando monitoring of water oxidation. ACS Nano, 2022,16(9):15318–15327.

25

Qiao C, Hao Y, Cao C, Zhang J. Transformation mechanism of high-valence metal sites for the optimization of co- and Ni-based OER catalysts in an alkaline environment: Recent progress and perspectives. Nanoscale, 2023,15(2):450–460.

26

Yan D, Xia C, Zhang W, Hu Q, He C, Xia BY, Wang S. Cation defect engineering of transition metal Electrocatalysts for oxygen evolution reaction. Adv Energy Mater, 2022,12(45):Article 2202317.

27

Peng L, Yang N, Yang Y, Wang Q, Xie X, Sun-Waterhouse D, Shang L, Zhang T, Waterhouse GIN. Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction. Angew Chem Int Ed, 2021,60(46):24612–24619.

28

Zhang X, Zhao Y, Zhao Y, Shi R, Waterhouse GIN, Zhang T. A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation. Adv Energy Mater, 2019,9(24):Article 1900881.

29

Bai B, Xu M, Li J, Zhang S, Qiao C, Liu J, Zhang J. Dopant diffusion equilibrium overcoming impurity loss of doped QDs for multimode anti-counterfeiting and encryption. Adv Funct Mater, 2021,31(25):Article 2100286.

30

Bai B, Zhao C, Xu M, Ma J, Du Y, Chen H, Liu J, Liu J, Rong H, Chen W, et al. Unique cation exchange in nanocrystal matrix via surface vacancy engineering overcoming chemical kinetic energy barriers. Chem, 2020,6(11):3086–3099.

31

Bai Y, Liu C, Chen T, Li W, Zheng S, Pi Y, Luo Y, Pang H. MXene-copper/cobalt hybrids via Lewis acidic molten salts etching for high performance symmetric supercapacitors. Angew Chem Int Ed, 2021,60(48):25318–25322.

32

Li M, Li Y, Cu Q, Li Y, Li H, Li Z, Li M, Liao H, Li G, Li G, et al. Hollow and hierarchical CuCo-LDH nanocatalyst for boosting sulfur electrochemistry in Li-S batteries. Energy Mater Adv, 2023(4):Article 0032.

33

Zheng S, Li Q, Xue H, Pang H, Xu Q. A highly alkaline-stable metal oxide@metal-organic framework composite for high-performance electrochemical energy storage. Natl Sci Rev, 2020,7(2):305–314.

34

Hunter BM, Hieringer W, Winkler JR, Gray HB, Müller AM. Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy Environ Sci, 2016,9(5):1734–1743.

35

Wu YJ, Yang J, Tu TX, Li WQ, Zhang PF, Zhou Y, Li JF, Li JT, Sun SG. Evolution of cationic vacancy defects: A motif for surface restructuration of OER precatalyst. Angew Chem Int Ed, 2021,60(51):26829–26836.

36

Zhao Y, Lu XF, Wu ZP, Pei Z, Luan D, Lou XW. Supporting trimetallic metal-organic frameworks on S/N-doped carbon macroporous fibers for highly efficient electrocatalytic oxygen evolution. Adv Mater, 2023,35(19):Article e2207888.

37

Jiang J, Zhang Y-J, Zhu X-J, Lu S, Long L-L, Chen J-J. Nanostructured metallic FeNi2S4 with reconstruction to generate FeNi-based oxide as a highly-efficient oxygen evolution electrocatalyst. Nano Energy, 2021(81):Article 105619.

38

Wang C, Shao X, Pan J, Hu J, Xu X. Redox bifunctional activities with optical gain of Ni3S2 nanosheets edged with MoS2 for overall water splitting. Appl Catal B Environ, 2020(268):Article 118435.

39

Li D, Li T, Hao G, Guo W, Chen S, Liu G, Li J, Zhao Q. IrO2 nanoparticle-decorated single-layer NiFe LDHs nanosheets with oxygen vacancies for the oxygen evolution reaction. Chem Eng J, 2020(399):Article 125738.

40

Chen G, Hu Z, Zhu Y, Gu B, Zhong Y, Lin H-J, Chen C-T, Zhou W, Shao Z. A universal strategy to design superior water-splitting electrocatalysts based on fast in situ reconstruction of amorphous nanofilm precursors. Adv Mater, 2018,30(43):Article e1804333.

41

Wang S, Li Q, Sun SJ, Ge K, Zhao Y, Yang K, Zhang ZH, Cao JY, Lu J, Yang YF, et al. Heterostructured ferroelectric BaTiO3@MOF-Fe/co electrocatalysts for efficient oxygen evolution reaction. J Mater Chem A, 2022,10(10):5350–5360.

42

Xu ZX, Ying YR, Zhang GG, Li KZ, Liu Y, Fu NQ, Guo XY, Yu F, Huang HT. Engineering NiFe layered double hydroxide by valence control and intermediate stabilization toward the oxygen evolution reaction. J Mater Chem A, 2020,8(48):26130–26138.

43

Kang Y, Guo Y, Zhao J, Jiang B, Guo J, Tang Y, Li H, Malgras V, Amin MA, Nara H, et al. Soft template-based synthesis of mesoporous phosphorus- and boron-codoped NiFe-based alloys for efficient oxygen evolution reaction. Small, 2022,18(33):Article e2203411.

44

Inamdar AI, Chavan HS, Hou B, Lee CH, Lee SU, Cha S, Kim H, Im H. A robust nonprecious CuFe composite as a highly efficient bifunctional catalyst for overall electrochemical water splitting. Small, 2020,16(2):Article e1905884.

45

Zhang LG, Tang W, Dong C, Zhou DX, Xing XQ, Dong WJ, Ding YH, Wang G, Wu MY. Bionic sunflower-like structure of polydopamine-confined NiFe-based quantum dots for electrocatalytic oxygen evolution reaction. Appl Catal B-Environ, 2022(302):Article 120833.

46

Luo X, Shao Q, Pi Y, Huang X. Trimetallic molybdate nanobelts as active and stable electrocatalysts for the oxygen evolution reaction. ACS Catal, 2019,9(2):1013–1018.

47

Kuang Z, Liu S, Li X, Wang M, Ren X, Ding J, Ge R, Zhou W, Rykov AI, Sougrati MT, et al. Topotactically constructed nickel–iron (oxy)hydroxide with abundant in-situ produced high-valent iron species for efficient water oxidation. J Energy Chem, 2021(57):212–218.

48

Selvadurai APB, Xiong TZ, Huang P, Tan QR, Huang YC, Yang H, Balogun M-S. Tailoring the cationic and anionic sites of LaFeO3-based perovskite generates multiple vacancies for efficient water oxidation. J Mater Chem A, 2021,9(31):16906–16916.

49

Zhao WP, Peng CL, Kuang ZY, Zhang QM, Xue Y, Li ZX, Zhou XX, Chen HR. Na+-induced in situ reconstitution of metal phosphate enabling efficient electrochemical water oxidation in neutral and alkaline media. Chem Eng J, 2020(398):Article 125537.

50

Lei H, Liang Y, Cen G, Liu BT, Tan S, Wang Z, Mai W. Liu B-t, Tan S, Wang Z, and Mai W, atomic layer deposited Al2O3 layer confinement: An efficient strategy to synthesize durable MOF-derived catalysts toward the oxygen evolution reaction. Inorg Chem Front, 2021,8(6):1432–1438.

51

Zhang L-Y, Bao Y-M, Chen Y-H, Zhang Q, Zhang N, Zhang J-Y, Liu Z-J. The boosting electrocatalytic OER and 4-nitrophenol oxidation over bimetallic ZIF-67/Fe2O3 p-n conjunction: Experiments and DFT calculations. J Alloys Compd, 2023(937):Article 168373.

52

Wang K, Du H, He S, Liu L, Yang K, Sun J, Liu Y, Du Z, Xie L, Ai W, et al. Kinetically controlled, scalable synthesis of γ-FeOOH nanosheet arrays on nickel foam toward efficient oxygen evolution: The key role of in-situ-generated γ-NiOOH. Adv Mater, 2021,33(11):Article e2005587.

53

Tang HM, Lv L, Xian HY, Ran LY, Chen BH, Fu YX, Wu YD, Fan M, Wan HZ, Wang H. Interfacial electronic coupling in Mn3O4/C@FeOOH nano-octahedrals regulates intermediate adsorption for highly efficient oxygen evolution reaction. Appl Surf Sci, 2023(612):Article 155951.

54

Antony RP, Betty CA, Tyagi D, Banerjee AM, Pai MR, Tripathi AK. Tracking the role of Fe in NiFe-layered double hydroxide for solar water oxidation and prototype demonstration towards PV assisted solar water-splitting. Int J Hydrog Energy, 2021(46):2143–2155.

55

McCrory CC, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc, 2015,137(13):4347–4357.

56

Wang J, Kim S-J, Liu J, Gao Y, Choi S, Han J, Shin H, Jo S, Kim J, Ciucci F, et al. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat Catal, 2021(4):212–222.

57

Wu T, Sun S, Song J, Xi S, Du Y, Chen B, Sasangka WA, Liao H, Gan CL, Scherer GG, et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat Catal, 2019(2):763–772.

58

Qiao C, Rafai S, Cao T, Wang Z, Wang H, Zhu Y, Ma X, Xu P, Cao C. Tuning surface electronic structure of two-dimensional cobalt-based hydroxide nanosheets for highly efficient water oxidation. ChemCatChem, 2020,12(10):2823–2832.

59

Duan Y, Yu Z-Y, Hu S-J, Zheng X-S, Zhang C-T, Ding H-H, Hu B-C, Fu Q-Q, Yu Z-L, Zheng X, et al. Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis. Angew Chem Int Ed, 2019(58):15772–15777.

Energy Material Advances
Article number: 0040
Cite this article:
Hao Y, Qiao C, Zhang S, et al. Constructing Cation Vacancy Defects on NiFe-LDH Nanosheets for Efficient Oxygen Evolution Reaction. Energy Material Advances, 2023, 4: 0040. https://doi.org/10.34133/energymatadv.0040

48

Views

0

Downloads

4

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 08 May 2023
Accepted: 10 June 2023
Published: 29 June 2023
© 2023 Yingying Hao et al. Exclusive licensee Beijing Institute of Technology Press. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return