AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Software for Evaluating Ionic Conductivity of Inorganic–Polymer Composite Solid Electrolytes

Yuqing Ding1Bing He2Da Wang1Maxim Avdeev3,4Yajie Li1Siqi Shi1,5( )
School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
Australian Nuclear Science and Technology Organisation, Sydney 2232, Australia
School of Chemistry, The University of Sydney, Sydney 2006, Australia
Materials Genome Institute, Shanghai University, Shanghai 200444, China
Show Author Information

Abstract

Inorganic–polymer composite solid electrolytes (IPCSEs) obtained by filling the polymer matrix with inorganic materials usually have higher ionic conductivity compared with individual phases. This important increase in ionic conductivity is explained in terms of the new percolation paths formed by the highly conductive interface between inorganic filler and polymer. The conduction in such systems can be investigated using the effective medium theory (EMT) and random resistance model (RRM). EMT can be used to analyze the effect of filler size on the ionic conductivity of disordered IPCSEs, while RRM can describe the composites with inorganic fillers of various shapes (nano-particles, nano-wires, nano-sheets, and nano-networks) in ordered or disordered arrangement. Herein, we present software evaluating the ionic conductivity in IPCSEs by combining EMT and RRM. The approach is illustrated by considering the size, shapes, and arrangements of inorganic fillers. The ionic conductivities of different types of IPCSEs are predicted theoretically and found in good agreement with the experimental values. The software can be used as an auxiliary tool to design composite electrolytes.

References

1

Zou Z, Li Y, Lu Z, Wang D, Cui Y, Guo B, Li Y, Liang X, Feng J, Li H, et al. Mobile ions in composite solids. Chem Rev, 2020,120(9):4169–4221.

2

Lopez J, Mackanic DG, Cui Y, Bao Z. Designing polymers for advanced battery chemistries. Nat Rev Mater, 2019(4):312–330.

3

Mindemark J, Lacey MJ, Bowden T, Brandell D. Beyond PEO–alternative host materials for Li+-conducting solid polymer electrolytes. Prog Polym Sci, 2018(81):114–143.

4

Zhao Q, Stalin S, Zhao CZ, Archer LA. Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater, 2020(5):229–252.

5

Famprikis T, Canepa P, Dawson JA, Islam MS, Masquelier C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat Mater, 2019(18):1278–1291.

6

Ren Y, Chen K, Chen R, Liu T, Zhang Y, Nan CW. Oxide electrolytes for lithium batteries. J Am Ceram Soc, 2015(98):3603–3623.

7

Wang C, Fu K, Kammampata SP, McOwen DW, Samson AJ, Zhang L, Hitz GT, Nolan AM, Wachsman ED, Mo Y, et al. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries. Chem Rev, 2020,120(10):4257–4300.

8

Li X, Liang J, Yang X, Adair KR, Wang C, Zhao F, Sun X. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy Environ Sci, 2020,13(5):1429–1461.

9

Chen R, Li Q, Yu X, Chen L, Li H. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces. Chem Rev, 2019,120(14):6820–6877.

10

Tan DH, Banerjee A, Chen Z, Meng YS. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat Nanotechnol, 2020,15(3):170–180.

11

Fenton D, Parker JM, Wright PV. Complexes of alkali metal ions with poly(ethylene oxide). Polymer, 1973,14(73):589.

12

Liu W, Liu N, Sun J, Hsu P-C, Li Y, Lee H-W, Cui Y. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett, 2015,15(4):2740–2745.

13

Zhang X, Liu T, Zhang S, Huang X, Xu B, Lin Y, Xu B, Li L, Nan C-W, Shen Y. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly (vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J Am Ceram Soc, 2017,139(39):13779–13785.

14

Jian Z, Hu YS, Ji X, Chen W. Nasicon-structured materials for energy storage. Adv Mater, 2017,29(20):Article 1601925.

15

Stramare S, Thangadurai V, Weppner W. Lithium lanthanum titanates: A review. Chem Mater, 2003(15):3974–3990.

16

Thangadurai V, Narayanan S, Pinzaru D. Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review. Chem Soc Rev, 2014,43(13):4714–4727.

17

Zhao N, Khokhar W, Bi Z, Shi C, Guo X, Fan L-Z, Nan C-W. Solid garnet batteries. Joule, 2019,3(5):1190–1199.

18

Fan LZ, He H, Nan CW. Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nat Rev Mater, 2021(6):1003–1019.

19

Zheng J, Tang M, Hu YY. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew Chem Int Ed, 2016,55(40):12538–12542.

20

Zheng J, Hu Y-Y. New insights into the compositional dependence of Li-ion transport in polymer–ceramic composite electrolytes. ACS Appl Mater Interfaces, 2018,10(4):4113–4120.

21

Yang T, Zheng J, Cheng Q, Hu Y-Y, Chan CK. Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: Mechanism of conductivity enhancement and role of doping and morphology. ACS Appl Mater Interfaces, 2017,9(26):21773–21780.

22

Zheng J, Wang P, Liu H, Hu Y-Y. Interface-enabled ion conduction in Li10GeP2S12–poly (ethylene oxide) hybrid electrolytes. ACS Appl Energy Mater, 2019,2(2):1452–1459.

23

Zhang J, Zhao N, Zhang M, Li Y, Chu PK, Guo X, Di Z, Wang X, Li H. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy, 2016(28):447–454.

24

Lin D, Liu W, Liu Y, Lee HR, Hsu P-C, Liu K, Cui Y. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly (ethylene oxide). Nano Lett, 2016,16(1):459–465.

25

Zhu P, Yan C, Dirican M, Zhu J, Zang J, Selvan RK, Chung CC, Jia H, Li Y, Kiyak Y, et al. Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. J Mater Chem A, 2018,6(10):4279–4285.

26

Wan Z, Lei D, Yang W, Liu C, Shi K, Hao X, Shen L, Lv W, Li B, Yang QH, et al. Low resistance–integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv Funct Mater, 2019,29(1):Article 1805301.

27

Wu N, Chien PH, Li Y, Dolocan A, Xu H, Xu B, Grundish NS, Jin H, Hu YY, Goodenough JB. Fast Li+ conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte. J Am Ceram Soc, 2020,142(5):2497–2505.

28

Xu H, Chien PH, Shi J, Li Y, Wu N, Liu Y, Hu Y-Y, Goodenough J-B. High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly (ethylene oxide). PNAS, 2019,116(38):18815–18821.

29

Wu N, Chien P-H, Qian Y, Li Y, Xu H, Grundish NS, Xu B, Jin H, Hu Y-Y, Yu G, et al. Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte. Angew Chem Int Ed, 2020,59(10):4131–4137.

30

Gong Y, Fu K, Xu S, Dai J, Hamann TR, Zhang L, Hitz GT, Fu Z, Ma Z, McOwen DW, et al. Lithium-ion conductive ceramic textile: A new architecture for flexible solid-state lithium metal batteries. Mater Today, 2018,21(6):594–601.

31

Li Z, Sha W-X, Guo X. Three-dimensional garnet framework-reinforced solid composite electrolytes with high lithium-ion conductivity and excellent stability. ACS Appl Mater Interfaces, 2019,11(30):26920–26927.

32

Li Y, Zhao Y, Cui Y, Zou Z, Wang D, Shi S. Screening polyethylene oxide-based composite polymer electrolytes via combining effective medium theory and Halpin-Tsai model. Comput Mater Sci, 2018(144):338–344.

33

Bunde A, Dieterich W, Roman E. Dispersed ionic conductors and percolation theory. Phys Rev Lett, 1985,55(1):5–8.

34

Roman H, Bunde A, Dieterich W. Conductivity of dispersed ionic conductors: A percolation model with two critical points. Phy Rev B Condens Matter, 1986,34(5):3439–3445.

35

Li Z, Huang HM, Zhu JK, Wu JF, Yang H, Wei L, Guo X. Ionic conduction in composite polymer electrolytes: Case of PEO: Ga-LLZO composites. ACS Appl Mater Interfaces, 2018,11(1):784–791.

36

Nan C-W, Smith DM. A.c. electrical properties of composite solid electrolytes. Mater Sci Eng B, 1991,10(2):99–106.

37

Nan CW. Physics of inhomogeneous inorganic materials. ProgMater Sci, 1993,37(1):1–116.

38

Nan C-W. Conduction theory of ionic conductor containing dispersed second phase. Acta Phys Sin, 1987,36(2):191–198.

39

De Gennes PG. La Percolation: Un concept unificateur. La recherche, 1976(7):919–927.

40

De Gennes PG. Percolation: Quelques systemes nouveaux. J Phys Colloques, 1980(41): C3-17–C3-26.

41

Havlin S, Ben-Avraham D. Diffusion in disordered media. Adv Phys, 1987,36(1-2):695–798.

42
Blanc R. Introduction to percolation theory. In: Contribution of clusters physics to materials science and technology: From isolated clusters to aggregated materials. Springer Dordrecht; 1986.
43

Majid I, Ben-Avraham D, Havlin S, Stanley HE. Exact-enumeration approach to random walks on percolation clusters in two dimensions. Phys. Rev, 1984(30):Article 1626.

44

Stoneham A, Wade E, Kilner J. A model for the fast ionic diffusion in alumina-doped LiI. Mater Res Bull, 1979,14(5):661–666.

45

Han DG, Choi GM. Computer simulation of the electrical conductivity of composites: The effect of geometrical arrangement. Solid State Ionics, 1998,106(1-2):71–87.

46

Roman H. A continuum percolation model for dispersed ionic conductors. J Phys: Condens Matt, 1990(2):Article 3909.

47

Kalnaus S, Sabau AS, Tenhaeff WE, Dudney NJ, Daniel C. Design of composite polymer electrolytes for Li ion batteries based on mechanical stability criteria. J Power Sources, 2012(201):280–287.

48

Przyluski J, Siekierski M, Wieczorek W. Effective medium theory in studies of conductivity of composite polymeric electrolytes. Electrochim Acta, 1995,40(13-14):2101–2108.

49

Wieczorek W, Zalewska A, Siekierski M, Przyłuski J. Modelling the ac conductivity behaviour of composite polymeric electrolytes by the effective medium theory. Solid State Ionics, 1996(86):357–362.

50

Nan CW, Fan L, Lin Y, Cai Q. Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. Phys Rev Lett, 2003(91):Article 266104.

51

Wieczorek W, Siekierski M. A description of the temperature dependence of the conductivity for composite polymeric electrolytes by effective medium theory. J Appl Phys, 1994,76(4):2220–2226.

52

Song S, Wu Y, Tang W, Deng F, Yao J, Liu Z, Hu R, Alamusi, Wen Z, Lu L, et al. Composite solid polymer electrolyte with garnet nanosheets in poly(ethylene oxide). ACS Sustainable Chem Eng, 2019,7(7):7163–7170.

53

Bae J, Li YT, Zhang J, Zhou XY, Zhao F, Shi Y, Goodenough JB, Yu G. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew Chem Int Ed, 2018,57(8):2096–2100.

54

Ong SP, Richards WD, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier VL, Persson KA, Ceder G. Python materials genomics (pymatgen): A robust, open-source python library for materials analysis. Comput Mater Sci, 2013(68):314–319.

Energy Material Advances
Article number: 0041
Cite this article:
Ding Y, He B, Wang D, et al. Software for Evaluating Ionic Conductivity of Inorganic–Polymer Composite Solid Electrolytes. Energy Material Advances, 2023, 4: 0041. https://doi.org/10.34133/energymatadv.0041

39

Views

0

Downloads

11

Crossref

8

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 16 May 2023
Accepted: 14 June 2023
Published: 10 July 2023
© 2023 Yuqing Ding et al. Exclusive licensee Beijing Institute of Technology Press. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return