Piezoelectric materials that can effectively convert natural mechanical energy into electrical energy without time and space constraints have been widely applied for energy harvesting and conversion. The piezocomposites with high piezoelectricity and flexibility have shown great promise for renewable electric energy generation that can power implantable and wearable electronics. This minireview aims to summarize the recent progress of the piezocomposites with different composite structures, as well as the role of the theoretical understandings and designs in the development of new piezoelectric nanogenerator materials. Thereinto, the most common composite structural types (0-3, 1-3, and 3-3) have been discussed systematically. Several strategies for high output performance of piezocomposites are also proposed on the basis of current experimental and simulation results. Finally, the review concludes with perspectives on the future design of flexible piezoelectric nanocomposites for energy harvesters.
Brown T, Bischof-Niemz T, Blok K, Breyer C, Lund H, Mathiesen B. Response to ‘burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems’. Renew Sust Energ Rev. 2018;92:834–847.
Mahapatra S, Mohapatra P, Aria A, Christie G, Mishra Y, Hofmann S, Thakur V. Piezoelectric materials for energy harvesting and sensing applications: Roadmap for future smart materials. Adv Sci. 2021;8:2100864.
Zhu N, Zhang K, Wu F, Bai Y, Wu C. Ionic liquid-based electrolytes for aluminum/magnesium/sodium-ion batteries. Energy Mater Adv. 2021;2021:9204.
Chu S, Cui Y, Liu N. The path towards sustainable energy. Nat Mater. 2017;16:16–22.
Lv F, Jiang X, Zhou L, Hong Z, Wu Y, Huang Y. Enhanced energy storage performance and theoretical understanding of the dielectric breakdown behavior for Ba 0.4Sr0.6TiO3/Al2O3 ceramics. J Alloys Compd. 2022;923:166344.
Liu W, Raza H, Hu X, Liu S, Liu Z, Chen W. Key bottlenecks and distinct contradictions in fast commercialization of perovskite solar cells. Mater Futures. 2023;2:012103.
Tian C, Qin K, Suo L. Concentrated electrolytes for rechargeable lithium metal batteries. Mater Futures. 2023;2:012101.
Park K, Jeong C, Kim N, Lee K. Stretchable piezoelectric nanocomposite generator. Nano Converg. 2016;3:12.
Chen G, Li Y, Bick M, Chen J. Smart textiles for electricity generation. Chem Rev. 2020;120:3668–3720.
Zhang M, Cai W, Wang Z, Fang S, Zhang R, Lu H, Aliev A, Zakhidov A, Huynh C, Gao E, et al. Mechanical energy harvesters with tensile efficiency of 17.4% and torsional efficiency of 22.4% based on homochirally plied carbon nanotube yarns. Nat Energy. 2023;8:203–213.
Koka A, Zhou Z, Sodano H. Vertically aligned BaTiO3 nanowire arrays for energy harvesting. Energy Environ Sci. 2014;7:288–296.
Lee S, Bae S, Lin L, Yang Y, Park C, Kim S, Cha S, Kim H, Park Y, Wang Z. Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor. Adv Funct Mater. 2013;23:2445–2449.
Vivekananthan V, Alluri N, Purusothaman Y, Chandrasekhar A, Kim S. A flexible, planar energy harvesting device for scavenging road side waste mechanical energy via the synergistic piezoelectric response of K0.5Na0.5NbO3-BaTiO3/PVDF composite films. Nanoscale. 2017;9:15122.
Huang L, Bai G, Wong M, Yang Z, Xu W, Hao J. Magnetic-assisted noncontact triboelectric nanogenerator converting mechanical energy into electricity and light emissions. Adv Mater. 2016;28:2744–2751.
Wang H, Xu L, Bai Y, Wang Z. Pumping up the chargedensity of a triboelectric nanogenerator by charge-shuttling. Nat Commun. 2020;11:4203.
Tian S, Wei X, Lai L, Li B, Wu Z, Dai Y. Frequency modulated hybrid nanogenerator for efficient water wave energy harvesting. Nano Energy. 2022;102:107669.
Ren Z, Liang X, Liu D, Li X, Ping J, Wang Z, Wang Z. Water-wavedriven route avoidance warning system for wireless ocean navigation. Adv Energy Mater. 2021;11:2101116.
Wang N, Liu Y, Ye E, Li Z, Wang D. Control methods and applications of interface contact electrification of triboelectric nanogenerators: A review. Mater Res Lett. 2022;10:97–123.
Yang M, Liu J, Liu D, Jiao J, Cui N, Liu S, Xu Q, Gu L, Qin Y. A fully self-healing piezoelectric nanogenerator for self-powered pressure sensing electronic skin. Research. 2021;2021:9793458.
Wang Z, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science. 2006;312:242–246.
Zhang Y, Wu M, Zhu Q, Wang F, Su H, Li H, Diao C, Zheng H, Wu Y, Wang Z. Performance enhancement of flexible piezoelectric nanogenerator via doping and rational 3D structure design for self-powered mechanosensational system. Adv Funct Mater. 2019;29:1904259.
Zhang C, Fan W, Wang S, Wang Q, Zhang Y, Dong K. Recent progress of wearable piezoelectric nanogenerators. ACS Appl Electron Mater. 2021;3:2449–2467.
Hu D, Yao M, Fan Y, Ma C, Fan M, Liu M. Strategies to achieve high performance piezoelectric nanogenerators. Nano Energy. 2019;55:288–304.
Sapkal S, Kandasubramanian B, Panda H. A review of piezoelectric materials for nanogenerator applications. J Mater Sci Mater Electron. 2022;33:26633–26677.
Zhou X, Lee P. Three dimensional printed nanogenerators. EcoMat. 2021;3:e12098.
Wang Y, Zhu L, Du C. Progress in piezoelectric nanogenerators based on PVDF composite films. Micromachines. 2021;12:1278.
Li Z, Zheng Q, Wang Z, Li Z. Nanogenerator-based self-powered sensors for wearable and implantable electronics. Research. 2020;2020:8710686.
Wang Z. Nanogenerators, self-powered systems, blue energy, piezotronics and piezo-phototronics – A recall on the original thoughts for coining these fields. Nano Energy. 2018;54:477–483.
Yang Z, Zhou S, Zu J, Inman D. High-performance piezoelectric energy harvesters and their applications. Joule. 2018;2:642–697.
Jeong C, Kim I, Park K, Oh M, Paik H, Hwang G, No K, Nam Y, Lee K. Virus-directed design of a flexible BaTiO3 nanogenerator. ACS Nano. 2013;7:11016–11025.
Bai L, Li Q, Yang Y, Ling S, Yu H, Liu S, Li J, Chen W. Biopolymer nanofibers for nanogenerator development. Research. 2021;2021:1843061.
Lv F, Lin J, Zhou Z, Hong Z, Wu Y, Ren Z, Zhang Q, Dong S, Lou J, Shi J, et al. In-situ electrostatic field regulating the recrystallization behavior of P(VDF-TrFE) films with high β-phase content and enhanced piezoelectric properties towards flexible wireless biosensing device applications. Nano Energy. 2020;100:107507.
Zhou D, Zhang Z, Zhu Y, Xiao Y, Ding Q, Ruan L, Sun Y, Zhang Z, Zhu C, Chen Z, et al. Pattern-potential-guided growth of textured macromolecular films on graphene/high-index copper. Adv Mater. 2021;33:2006836.
Jella V, Jppili S, Eom J, Choi J, Yoon S. Enhanced output performance of a flexible piezoelectric energy harvesterbased on stable MAPbI3-PVDF composite films. Nano Energy. 2018;53:46–56.
Pei H, Jing J, Chen Y, Guo J, Chen N. 3D printing of PVDF-based piezoelectric nanogenerator from programmable metamaterial design: Promising strategy for flexible electronic skin. Nano Energy. 2023;109:108303.
Lin F, Li W, Du X, Chen N, Wu Y, Tang Y, Jiang J. Electrically conductive silver/polyimide fabric composites fabricated by spray-assisted electroless plating. Appl Surf Sci. 2019;493:1–8.
Moreno S, Baniasadi M, Mohammed S, Mejia I, Chen Y, Quevedo-Lopez M, Kumar N, Dimitrijevich S, Minary-Jolandan M. Biocompatible collagen films as substrates for flexible implantable electronics. Adv Electron Mater. 2015;1:1500154.
Zhang L, Gui J, Wu Z, Li R, Wang Y, Gong Z, Zhao X, Sun C, Guo S. Enhanced performance of piezoelectric nanogenerator based on aligned nanofibers and three-dimensional interdigital electrodes. Nano Energy. 2019;65:103924.
Zhou Z, Du X, Lou J, Yao L, Zhang Z, Yang H, Zhang Q. Coupling of interface effects and porous microstructures in translucent piezoelectric composites for enhanced energy harvesting and sensing. Nano Energy. 2021;84:105895.
Chen B, Yuan M, Ma R, Wang X, Gao W, Liu C, Shen C, Wang Z. High performance piezoelectric polymer film with aligned electroactive phase nanofibrils achieved by melt stretching of slightly crosslinked poly (vinylidene fluoride) for sensor applications. Chem Eng J. 2022;433:134475.
Baek C, Yun J, Wang H, Wang J, Park H, Park K, Kim D. Enhanced output performance of a lead-free nanocomposite generator using BaTiO3 nanoparticles and nanowires filler. Appl Surf Sci. 2018;429:164–170.
Mahmud M, Adhikary P, Zolfagharian A, Adams S, Kaynak A,Kouzani A. Advanced design, fabrication, and applications of 3D-printable piezoelectric nanogenerators. Electron Mater Lett. 2022;18:129–144.
Gao H, Asheghali D, Yadavalli S, Pham M, Nguyen T, Minko S, Sharma S. Fabrication of core-sheath nanoyarn via touchspinning and its application in wearable piezoelectric nanogenerator. J Text Inst. 2020;111:906–915.
Mokhtari F, Foroughi J, Zheng T, Cheng Z, Spinks G. Triaxial braided piezo fiber energy harvesters for self-powered wearable technologies. J Mater Chem A. 2019;7:8245–8257.
Hwang G, Park H, Lee J, Oh S, Park K, Byun M, Park H,Ahn G, Jeong C, No K, et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv Mater. 2014;26:4880–4887.
Gu L, Liu J, Cui N, Xu Q, Du T, Zhang L, Wang Z, Long C, Qin Y. Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode. Nat Commun. 2020;11:1030.
Huang X, Qin Q, Wang X, Xiang H, Zheng J, Lu Y, Lv C, Wu K, Yan L, Wang N, et al. Piezoelectric nanogenerator for highly sensitive and synchronous multi-stimuli sensing. ACS Nano. 2021;15:19783–19792.
Xu S, Hansen B, Wang Z. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat Commun. 2010;1:93.
Li J, Qu W, Daniels J, Wu H, Liu L, Wu J, Wang M, Checchia S, Yang S, Lei H, et al. Lead zirconate titanate ceramics with aligned crystallite grains. Science. 2023;380:87–93.
Su H, Wang X, Li C, Wang Z, Wu Y, Zhang J, Zhang Y,Zhao C, Wu J, Zheng H. Enhanced energy harvesting ability of polydimethylsiloxane-BaTiO3-based flexible piezoelectric nanogenerator for tactile imitation application. Nano Energy. 2021;83:105809.
Hazra S, Ghatak A, Ghosh A, Sengupta S, Raychaudhuri A, Ghosh B. Enhanced piezoelectric response in BTO NWs-PVDF composite through tuning of polar phase content. Nanotechnology. 2023;34:045405.
Mahapatra A, Ajimsha R, Misra P. Oxygen annealing induced enhancement in output characteristics of ZnO based flexible piezoelectric nanogenerators. J Alloys Compd. 2022;913:165277.
Tlemcani T, Justeau C, Nadaud K, Alquier D, Poulin-Vittrant G. Fabrication of piezoelectric ZnO nanowires energy harvester on flexible substrate coated with various seed layer structures. Nano. 2021;11:1433.
Huang Y, Rui G, Li Q, Allahyarov E, Li R, Fukuto M, Zhong G,Xu J, Li Z, Taylor P, et al. Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly(vinylidene fluoride) with pure β crystals. Nat Commun. 2021;12:675.
Katsouras I, Asadi K, Li M, Driel T, Kjær K, Zhao D, Lenz T, Gu Y, Blom P, Damjanovic D, et al. The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride). Nat Mater. 2016;15:78–84.
You L, Zhang Y, Zhou S, Chaturvedi A, Morris S, Liu F, Chang L, Ichinose D, Funakubo H, Hu W, et al. Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric. Sci Adv. 2019;5:eaav3780.
Ramadan K, Sameoto D, Evoy S. A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater Struct. 2014;23:033001.
Hikosaka S, Ishikawa H, Ohki Y. Effects of crystallinity on dielectric properties of poly(L-lactide). Electron Commun Jpn. 2011;94(7):1–8.
Yang F, Li J, Long Y, Zhang Z, Wang L, Sui J, Dong Y, Wang Y, Taylor R, Ni D, et al. Wafer-scale heterostructured piezoelectric bio-organic thin films. Science. 2021;373:337–342.
Wu H, Wei S, Chen S, Pan H, Pan W, Huang S, Tsai M, Yang P. Metal-free perovskite piezoelectric nanogenerators for human–machine interfaces and self-powered electrical stimulation applications. Adv Sci. 2022;9:2105974.
Zhang H, Xu Z, Wang Z, Yu H, Lv H, Li P, Liao W, Xiong R. Large piezoelectric response in a metal-free three-dimensional perovskite ferroelectric. J Am Chem Soc. 2023;145:4892–4899.
Lu J, Hu S, Li W, Wang X, Mo X, Gong X, Liu H, Luo W, Dong W, Sima C, et al. A biodegradable and recyclable piezoelectric sensor based on a molecular ferroelectric embedded in a bacterial cellulose hydrogel. ACS Nano. 2022;16:3744–3755.
Zhang Z, Li P, Tang Y, Wilson A, Willets K, Wuttig M, Xiong R, Ren S. Tunable electroresistance and electro-optic effects of transparent molecular ferroelectrics. Sci Adv. 2017;3:e1701008.
Ding R, Liu H, Zhang X, Xiao J, Kishor R, Sun H, Zhu B, Chen G, Cao F, Feng X, et al. Flexible piezoelectric nanocomposite generators based on formamidinium Lead halide perovskite nanoparticles. Adv Funct Mater. 2016;26:7708–7716.
Liu X, Zhang Q, Zhao D, Bai R, Ruan Y, Zhang B, Li F, Zhu M,Jie W, Xu Y. Improved crystallization quality of FAPbBr3 singlecrystals by a seeded solution method. ACS Appl Mater Interfaces. 2022;14:51130–51136.
You Y, Liao W, Zhao D, Ye H, Zhang Y, Zhou Q, Niu X, Wang J, Li P, Fu D, et al. An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science. 2017;357:306–309.
Zhao B, Chen Z, Cheng Z, Wang S, Yu T, Yang W, Li Y. Piezoelectric nanogenerators based on electrospun PVDF-coated mats composed of multilayer polymer-coated BaTiO3 nanowires. ACS Appl Nano Mater. 2022;5:8417–8428.
Du X, Zhou Z, Zhang Z, Yao L, Zhang Q, Yang H. Porous, multi-layered piezoelectric composites based on highly oriented PZT/PVDF electrospinning fibers for high-performance piezoelectric nanogenerators. J Adv Ceram. 2022;11:331–344.
Tian G, Deng W, Gao Y, Xiong D, Yan C, He X, Yang T, Jin L, Chu X, Zhang H, et al. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy. 2019;59:574–581.
Lu H, Zhang J, Yang L, Zhang Y, Wu Y, Zheng H. Enhanced output performance of piezoelectric nanogenerators by Tb-modified (BaCa)(ZrTi)O3 and 3D core/shell structure design with PVDF composite spinning for microenergy harvesting. ACS Appl Mater Interfaces. 2022;14:12243–12256.
Wu Y, Qu J, Daoud W, Wang L, Qi T. Flexible composite-nanofiber based piezo-triboelectric nanogenerators for wearable electronics. J Mater Chem A. 2019;7:13347.
Yan D, Wang J, Xiang J, Xing Y, Shao L. A flexoelectricity-enabled ultrahigh piezoelectric effect of a polymeric composite foam as a strain-gradient electric generator. Sci Adv. 2023;9:eadc8845.
Park G, Lee E, Jung S, Jeong S, Kim H, Choi Y, Lee S. Double nanocomposites-based piezoelectric nanogenerators for high-performance energy harvester. ACS Appl Energy Mater. 2022;5:8835–8843.
Su Y, Li W, Cheng X, Zhou Y, Yang S, Zhang X, Chen C, Yang T, Pan H, Xie G, et al. High-performance piezoelectric composites via β phase programming. Nat Commun. 2022;13:4867.
Xu Q, Wen J, Qin Y. Development and outlook of high output piezoelectric nanogenerators. Nano Energy. 2021;86:106080.
Gao Y, Wang Z. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 2007;7:8.
Wan C, Bowen C. Multiscale-structuring of polyvinylidene fluoride for energy harvesting: The impact of molecular-, micro- and macro-structure. J Mater Chem A. 2017;5:3091–3128.
Guan H, Yang R, Li W, Tao Y, Chen C, Tai H, Su Y, Wang Y, Jiang Y, Li W. Self-powered multifunctional flexible sensor for wearable biomonitoring. Sensors Actuators B Chem. 2023;377:132996.
Su Y, Liu Y, Li W, Xiao X, Chen C, Lu H, Yuan Z, Tai H, Jiang Y, Zou J, et al. Sensing–transducing coupled piezoelectric textiles for self-powered humidity detection and wearable biomonitoring. Mater Horiz. 2023;10:842–851.
Li H, Song H, Long M, Saeed G, Lim S. Mortise–tenon joint structured hydrophobic surface-functionalized barium titanate/polyvinylidene fluoride nanocomposites for printed self-powered wearable sensors. Nanoscale. 2021;13:2542.
Azimi S, Golabchi A, Nekookar A, Rabbani S, Amiri M, Asadi K, Abolhasani M. Self-powered cardiac pacemaker by piezoelectric polymer nanogenerator implant. Nano Energy. 2021;83:105781.
Zhang Y, Zhou L, Liu C, Gao X, Zhou Z, Duan S, Deng Q, Song L, Jiang H, Yu L, et al. Self-powered pacemaker based on all-in-one flexible piezoelectric nanogenerator. Nano Energy. 2022;99:107420.
Abbasipour M, Khajavi R, Akbarzadeh A. A comprehensive review on piezoelectric polymeric and ceramic nanogenerators. Adv Eng Mater. 2022;24:2101312.
Shi K, Chai B, Zou H, Shen P, Sun B, Jiang P, Shi Z, Huang X. Interface induced performance enhancement in flexible BaTiO3/PVDF-TrFE based piezoelectric nanogenerators. Nano Energy. 2021;80:105515.
Hong Y, Wang B, Long Z, Zhang Z, Pan Q, Liu S, Lou X,Yang Z. Hierarchically interconnected piezoceramic textile with a balanced performance in piezoelectricity, flexibility, toughness, and air permeability. Adv Funct Mater. 2021;31(42):2104737.
Jiang L, Yang Y, Chen R, Lu G, Li R, Li D, Humayun M, Shung K, Zhu J, Chen Y, et al. Flexible piezoelectric ultrasonic energy harvester array for bio-implantable wireless generator. Nano Energy. 2019;56:216–224.
Yang Y, Sun H, Yin D, Lu Z, Wei J, Xiong R, Shi J, Wang Z, Liu Z, Lei Q. High performance of polyimide/CaCu3Ti4O12@Ag hybrid films with enhanced dielectric permittivity and low dielectric loss. J Mater Chem A. 2015;3:4916–4921.
Park K, Lee M, Liu Y, Moon S, Hwang G, Zhu G, Kim J, Kim S,Kim D, Wang Z, et al. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv Mater. 2012;24:2999–2004.
Bera S, Guerin S, Yuan H, O’Donnell J, Reynolds N, Maraba O, Ji W, Shimon L, Cazade P, Tofail S, et al. Molecular engineering of piezoelectricity in collagen-mimicking peptide assemblies. Nat Commun. 2021;12:2634.
Vanderbilt D. Berry-phase theory of proper piezoelectric response. J Phys Chem Solids. 2000;61:147–151.
King-Smith R, Vanderbilt D. Theory of polarization of crystalline solids. Phys Rev B Condens Matter. 1992;47(3):1651–1654.
Vanderbilt D, King-Smith R. Electric polarization as a bulk quantity and its relation to surface charge. Phys Rev B Condens Matter. 1993;48(7):4442–4455.
Bernardini F, Fiorentini V, Vanderbilt D. Spontaneous polarization and piezoelectric constants of Ⅲ-Ⅴ nitrides. Phys Rev B. 1997;56:R10024–R10027.
Lee J, Park J, Cho E, Kim T, Han S, Kim T, Liu Y, Kim S, Roh C,Yoon H, et al. Reliable piezoelectricity in bilayer WSe2 for piezoelectric nanogenerators. Adv Mater. 2017;29:1606667.
Rouzhahong Y, Liang C, Li C, Li H, Wang B. Flexible piezoelectricity of two-dimensional materials governed by effective berry curvature. J Phys Chem Lett. 2021;12:8220–8228.
Wang S, Khan A, Teale S, Xu J, Parmar D, Zhao R, Grater L, Serles P, Zou Y, Filleter T, et al. Large piezoelectric response in a Jahn-teller distorted molecular metal halide. Nat Commun. 2022;14:1852.
Chamankar N, Khajavi R, Yousefi A, Rashidi A, Golestanifard F. A flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications. Ceram Int. 2020;46:19669–19681.
Tiwari V, Srivastava G. Enhanced dielectric and piezoelectric properties of 0–3 PZT/PVDF composites. J Polym Res. 2016;23:38.
Alluri N, Saravanakumar B, Kim S. Flexible, hybrid piezoelectric film (BaTi (1−x)ZrxO3)/PVDF nanogenerator as a self-powered fluid velocity sensor. ACS Appl Mater Interfaces. 2015;7:18.
Chen J, Li J, Cheng C, Chiu C. Piezoelectric property enhancement of PZT/poly(vinylidenefluoride-co-trifluoroethylene) hybrid films for flexible piezoelectric energy harvesters. ACS Omega. 2022;7:793–803.
Siddiqui S, Kim D, Roh E, Duy L, Trung T, Nguyen M, Lee N. A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system. Nano Energy. 2016;30:434–442.
Siddiqui S, Kim D, Duy L, Nguyen M, Muhammad S, Yoon W, Lee N. High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy. 2015;15:177–185.
Alluri N, Chandrasekhar A, Vivekananthan V, Purusothaman Y, Selvarajan S, Jeong J, Kim S. Scavenging biomechanical energy using high-performance, flexible BaTiO3 nanocube/PDMS composite films. ACS Sustain Chem Eng. 2017;5:4730–4738.
Liu Y, Yang T, Zhang B, Williams T, Lin Y, Li L, Zhou Y, Lu W, Kim S, Chen L, et al. Structural insight in the interfacial effect in ferroelectric polymer nanocomposites. Adv Mater. 2020;32:2005431.
Mayeen A, M. S. K, Jayalakshmy MS, Thomas S, Rouxel D,Philip J, Bhowmik R, Kalarikkal M. Dopamine functionalization of BaTiO3: An effective strategy for the enhancement of electrical, magnetoelectric and thermal properties of BaTiO3-PVDF–TrFE nanocomposite. Dalton Trans. 2018;47:2039–2051.
Guan X, Xu B, Gong J. Hierarchically architected polydopamine modified BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors. Nano Energy. 2020;70:104516.
Su Y, Li W, Yuan L, Chen C, Pan H, Xie G, Conta G, Ferrier S, Zhao X, Chen G, et al. Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy. 2021;89:106321.
Shuai C, Liu G, Yang Y, Qi F, Peng S, Yang W, He C, Wang G, Qian G. A strawberry-like Ag-decorated barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold. Nano Energy. 2020;74:104825.
Zhou Z, Zhang Z, Zhang Q, Yang H, Zhu Y, Wang Y, Chen L. Controllable core−shell BaTiO3@carbon nanoparticle-enabled P(VDF-TrFE) composites: A cost-effective approach to high-performance piezoelectric nanogenerators. ACS Appl Mater Interfaces. 2020;12:1567–1576.
Zhou Z, Du X, Zhang Z, Luo J, Niu S, Shen D, Wang Y, Yang H,Zhang Q, Dong S. Interface modulated 0-D piezoceramic nanoparticles/PDMS based piezoelectric composites for highly efficient energy harvesting application. Nano Energy. 2021;82:105709.
Lee E, Kim T, Kim S, Jeong S, Choi Y, Lee S. High-performance piezoelectric nanogenerators based on chemically-reinforced composites. Energy Environ Sci. 2018;11:1425–1430.
Patra A, Pal A, Sen S. Polyvinylpyrrolidone modified barium zirconate titanate/polyvinylidene fluoride nanocomposites as self-powered sensor. Ceram Int. 2018;44:11196–11203.
Park K, Jeong C, Ryu J, Hwang G, Lee K. Flexible and large-area nanocomposite generators based on lead zirconate titanate particles and carbon nanotubes. Adv Energy Mater. 2013;3:1539–1544.
Jeong C, Park K, Ryu J, Hwang G, Lee K. Large-area and flexible lead-free nanocomposite generator using alkaline niobate particles and metal nanorod filler. Adv Funct Mater. 2014;24:2620–2629.
Xu S, Yeh Y, Poirier G, McAlpine M, Register R, Yao N. Flexible piezoelectric PMN−PT nanowire-based nanocomposite and device. Nano Lett. 2013;13:2393–2398.
Niu J, Li C, Pan M, Liu X, Hu P. Large mechanical-to-electric output originated from optimized configuration in P(VDF-TrFE)-based nanocomposite fibrous membrane as wearable nanogenerator. Compos Sci Technol. 2022;220:109266.
Zhao Q, He G, Di J, Song W, Hou Z, Tan P, Wang D, Cao M. Flexible semitransparent energy harvester with high pressure sensitivity and power density based on laterally aligned PZT single-crystal nanowires. Appl Mater Interfaces. 2017;9:24696–24703.
Malakooti M, Julé F, Sodano H. Printed nanocomposite energy harvesters with controlled alignment of barium titanate nanowires. Appl Mater Interfaces. 2018;10:38359–38367.
Charoonsuk T, Sriphan S, Nawanil C, Chanlek N, Vittayakorn W, Vittayakorn N. Tetragonal BaTiO3 nanowires: A template-free salt-flux-assisted synthesis and its piezoelectric response based on mechanical energy harvesting. J Mater Chem C. 2019;7:8277.
Yan J, Jeong Y. Roles of carbon nanotube and BaTiO3 nanofiber in the electrical, dielectric and piezoelectric properties of flexible nanocomposite generators. Compos Sci Technol. 2017;144:1–10.
Jeong C, Baek C, Kingon A, Park K, Kim S. Lead-free perovskite nanowire-employed piezopolymer for highly efficient flexible nanocomposite energy harvester. Small. 2018;14:1704022.
Li W, Yang T, Liu C, Huang Y, Chen C, Pan H, Xie G, Tai H, Jiang Y, Wu Y, et al. Optimizing piezoelectric nanocomposites by high-throughput phase-field simulation and machine learning. Adv Sci. 2022;2105550.
Yan J, Jeong Y. High performance flexible piezoelectric nanogenerators based on BaTiO3 nanofibers in different alignment modes. Appl Mater Interfaces. 2016;8:15700–15709.
Gu L, Cui N, Cheng L, Xu Q, Bai S, Yuan M, Wu W, Liu J, Zhao Y, Ma F, et al. Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. Nano Lett. 2013;13:91–94.
Hong Y, Wang B, Lin W, Jin L, Liu S, Luo X, Pan J, Wang W, Yang Z. Highly anisotropic and flexible piezoceramic kirigami for preventing joint disorders. Sci Adv. 2021;7:eabf0795.
Lu H, Shi H, Chen G, Wu Y, Zhang J, Yang L, Zhang Y, Zheng H. High-performance flexible piezoelectric nanogenerator based on specific 3D Nano BCZT@Ag hetero-structure design for the application of self-powered wireless sensor system. Small. 2021;17:2101333.
Xie M, Zhang Y, Krasny M, Bowen C, Khanbareh H, Gathercole N. Flexible and active self-powered pressure, shear sensors based on freeze casting ceramic–polymer composites. Energy Environ Sci. 2018;11:2929–2927.
Zhang Y, Jeong C, Wang J, Sun H, Li F, Zhang G, Chen L,Zhang S, Chen W, Wang Q. Flexible energy harvesting polymer composites based on biofibril-templated 3-dimensional interconnected piezoceramics. Nano Energy. 2018;50:35–42.
Zhang G, Zhao P, Zhang X, Han K, Zhao T, Zhang Y, Jeong C, Jiang S, Zhang S, Wang Q. Flexible three-dimensional interconnected piezoelectric ceramic foam based composites for highly efficient concurrent mechanical and thermal energy harvesting. Energy Environ Sci. 2018;11:2046–2056.
Hong Y, Jin L, Wang B, Liao J, He B, Yang T, Long Z, Li P, Zhang Z, Liu S, et al. A wood-templated unidirectional piezoceramic composite for transmuscular ultrasonic wireless power transfer. Energy Environ Sci. 2021;14:6574–6585.