AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (19.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Construct NiSe/NiO Heterostructures on NiSe Anode to Induce Fast Kinetics for Sodium-Ion Batteries

Yu Li1( )Ripeng Zhang1Ji Qian1Yuteng Gong1Huanyu Li1Chuan Wu1,2Ying Bai1Feng Wu1,2
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, PR China
Show Author Information

Abstract

It is of great significance to design and innovate electrode materials with unique structures to effectively optimize the electrochemical properties of the secondary battery. Herein, inspired by neuron networks, an ingenious synthesis is proposed to fabricate NiSe with multidimensional micro-nano structures, followed by in situ construction of NiSe/NiO heterostructures via a temporary calcination. The major structure of bulk NiSe synthesized by the solvothermal method is 3-dimensional micron cluster spherical particles interwoven by uniform one-dimensional nanofibers. Such structures possess the synergistic advantages of nano and micro materials. After a temporary calcination in air, NiSe/NiO heterostructures should be formed in the bulk NiSe, which provides a built-in electric field to enhance diffusion kinetics of sodium ions. This special neural-like network and heterojunction structures ensure the excellent structural stability combined with rapid kinetics of the electrode, releasing 310.9 mAh g−1 reversible capacity after 2,000 cycles at 10 A g−1. Furthermore, the electrochemical storage and ion transport mechanisms are elaborated by electrochemical analysis and theoretical calculation in more detail.

References

1

Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: A battery of choices. Science, 2011,334(6058):928–935.

2

Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001,414(6861):359–367.

3

Homann C, Krukewitt L, Frenzel F, Grauel B, Wuerth C, Resch-Genger U, Haase M. NaYF4:Yb,Er/NaYF4 core/shell nanocrystals with high upconversion luminescence quantum yield. Angew Chem Int Ed Engl, 2018,57(28):8765–8769.

4

Li L, Zheng Y, Zhang S, Yang J, Shao Z, Guo Z. Recent progress on sodium ion batteries: Potential high-performance anodes. Energy Environ Sci, 2018,11(9):2310–2340.

5

Deng J, Luo W, Chou S, Liu H, Dou S. Sodium-ion batteries: From academic research to practical commercialization. Adv Energy Mater, 2018,8(4):Article 1701428.

6

Zhang F, Shen Y, Shao M, Zhang Y, Zheng B, Wu J, Zhang W, Zhu A, Huo F, Li S. SnSe2 nanoparticles chemically embedded in a carbon shell for high-rate sodium-ion storage. ACS Appl Mater Interfaces, 2020,12(2):2346–2353.

7

Dong S, Su Q, Jiao W, Ding S, Zhang M, Du G, Xu B. FeSe2 microspheres coated with carbon layers as anode materials for sodium-ion batteries. J Alloys Compd, 2020,842(25):Article 155888.

8

Wu C, Jiang Y, Kopold P, Van Aken PA, Maier J, Yu Y. Peapod-like carbon-encapsulated cobalt chalcogenide nanowires as cycle-stable and high-rate materials for sodium-ion anodes. Adv Mater, 2016,28(33):7276–7283.

9

Li Y, Xu Y, Wang Z, Bai Y, Zhang K, Dong R, Gao Y, Ni Q, Wu F, Liu Y, et al. Stable carbon-selenium bonds for enhanced performance in tremella-like 2D chalcogenide battery anode. Adv Energy Mater, 2018,8(23):Article 1800927.

10

Wei Z, Wang L, Zhuo M, Ni W, Wang H, Ma J. Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. J Mater Chem A, 2018,6(26):12185–12214.

11

Zhang F, Xia C, Zhu J, Ahmed B, Liang H, Velusamy D, Schwingenschloegl U, Alshareef HN. SnSe2 2D anodes for advanced sodium ion batteries. Adv Energy Mater, 2016,6(22):Article 1601188.

12

Lin H, Li M, Yang X, Yu D, Zeng Y, Wang C, Chen G, Du F. Nanosheets-assembled CuSe crystal pillar as a stable and high-power anode for sodium-ion and potassium-ion batteries. Adv Energy Mater, 2019,9(20):Article 1900323.

13

Tang Y, Zhao Z, Hao X, Wei Y, Zhang H, Dong Y, Wang Y, Pan X, Hou Y, Wang X, et al. Cellular carbon-wrapped FeSe2 nanocavities with ultrathin walls and multiple rooms for ion diffusion-confined ultrafast sodium storage. J Mater Chem A, 2019,7(9):4469–4479.

14

Wang H, Wang X, Li Q, Li H, Xu J, Li X, Zhao H, Tang Y, Zhao G, Li H, et al. Constructing three-dimensional porous carbon framework embedded with FeSe2 nanoparticles as an anode material for rechargeable batteries. ACS Appl Mater Interfaces, 2018,10(45):38862–38871.

15

Chen S, Huang S, Zhang Y, Fan S, Yan D, Shang Y, Pam M, Ge Q, Shi Y, Yang H. Constructing stress-release layer on Fe7Se8-based composite for highly stable sodium-storage. Nano Energy, 2020(69):Article 104389.

16

Li Y, Wu C, Bai Y, Liu L, Wang H, Wu F, Zhang N, Zou YF. Hierarchical mesoporous lithium-rich Li[Li0.2Ni0.2Mn0.6]O2 cathode material synthesized via ice templating for lithium-ion battery. ACS Appl Mater Interfaces, 2016,8(29):18832–18840.

17

Xu X, Zhou Y, You H, Min H, Wu X, Zang W, Hao J, Feng Z, Liu X, Yang H. Engineering nano-NiS2 embedded in graphitized carbon skeleton in hollow spherical structure as stable anode material for reversible Li+ storage. Appl Surf Sci, 2022,605(15):Article 154758.

18

Zhang R, Lv C, Bao S, Gao J, Xie Y, Zheng F, Liu X, Wen Y, Xu B. Rationally engineering a hierarchical porous carbon and reduced graphene oxide supported magnetite composite with boosted lithium-ion storage performances. J Colloid Interface Sci, 2022(628):154–165.

19

Yang Y, Shi W, Leng S, Cheng H. Multidimensional antimony nanomaterials tailored by electrochemical engineering for advanced sodium-ion and potassium-ion batteries. J Colloid Interface Sci, 2022(628):41–52.

20

Li Y, Bai Y, Bi X, Qian J, Ma L, Tian J, Wu C, Wu F, Lu J, Amine K. An effectively activated hierarchical nano-/microspherical Li1.2Ni0.2Mn0.6O2 cathode for long-life and high-rate lithium-ion batteries. ChemSusChem, 2016,9(7):728–735.

21

Liu Y, Weiss N, Duan X, Cheng C, Huang Y, Duan X. Van der Waals heterostructures and devices. Nat Rev Mater, 2016,1(9):Article 16042.

22

Zheng Y, Zhou TF, Zhang CF, Mao JF, Liu HK, Guo ZP. Boosted charge transfer in SnS/SnO2 heterostructures: Toward high rate capability for sodium-ion batteries. Angew Chem-Int Ed, 2016,55(10):3408–3413.

23

Cao L, Gao X, Zhang B, Ou X, Zhang J, Luo W. Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano, 2020,14(3):3610–3620.

24

Gao X, Kuai Y, Xu Z, Cao Y, Wang N, Hirano S, Nuli Y, Wang J, Yang J. SnSe2/FeSe2 nanocubes capsulated in nitrogen-doped carbon realizing stable sodium-ion storage at ultrahigh rate. Small Methods, 2021,5(9):Article 2100437.

25

Wang S, Zhao L, Li J, Tian X, Wu X, Feng L. High valence state of Ni and Mo synergism in NiS2-MoS2 hetero-nanorods catalyst with layered surface structure for urea electrocatalysis. J Energy Chem, 2022(66):483–492.

26

Guo C, Zhang W, Liu Y, He J, Yang S, Liu M, Wang Q, Cuo Z. Constructing CoO/Co3S4 heterostructures embedded in N-doped carbon frameworks for high-performance sodium-ion batteries. Adv Funct Mater, 2019,29(29):Article 1901925.

27

Liu Y, Wang X. Reduced graphene oxides decorated NiSe nanoparticles as high-performance electrodes for Na/Li storage. Materials, 2019,12(22):Article 3709.

28

Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996,6(1):15–50.

29

Blochl P. Projector augmented-wave method. Phys Rev B, 1994,50(24):17953–17979.

30

Perdew J, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1997,78(7):1396–1396.

31

Wei S, Zunger A. Calculated natural band offsets of all Ⅱ-Ⅵ and ill-V semiconductors: Chemical trends and the role of cation d orbitals. Appl Phys Lett, 1998,72(16):2011–2013.

32

Li Y, Walsh A, Chen S, Yin W, Yang J, Li J, Da Silva J, Gong X, Wei S. Revised ab initio natural band offsets of all group Ⅳ, Ⅱ-Ⅵ, and Ⅲ-Ⅴ semiconductors. Appl Phys Lett, 2009,94(21):Article 212109.

33

Yuan S, Zhu Y, Wang S, Sun T, Zhang X, Wang Q. Micro/nano-structured electrode materials for sodium-ion batteries. J Electrochem, 2016,22(5):464–476.

34

Park G, Hong J, Park S, Kang Y. Strategy for synthesizing mesoporous NiO polyhedra with empty nanovoids via oxidation of NiSe polyhedra by nanoscale Kirkendall diffusion and their superior lithium-ion storage performance. Appl Surf Sci, 2019,464(15):597–605.

35

Xiao S, Li X, Zhang W, Xiang Y, Li T, Niu X, Chen JS, Yan Q. Bilateral interfaces in In2Se3-CoIn2-CoSe2 heterostructures for high-rate reversible sodium storage. ACS Nano, 2021,15(8):13307–13318.

36

Li Y, Qian J, Zhang M, Wang S, Wang Z, Li M, Bai Y, An Q, Xu H, Wu F, et al. Co-construction of sulfur vacancies and heterojunctions in tungsten disulfide to induce fast electronic/ionic diffusion kinetics for sodium-ion batteries. Adv Mater, 2020,32(47):Article 2005802.

37

Yan D, Xiao S, Li X, Jiang J, He Q, Li H, Qin J, Wu R, Niu X, Chen JS. NiS2/FeS heterostructured nanoflowers for high-performance sodium storage. Energy Mater Adv, 2023(4):Article 0012.

Energy Material Advances
Article number: 0044
Cite this article:
Li Y, Zhang R, Qian J, et al. Construct NiSe/NiO Heterostructures on NiSe Anode to Induce Fast Kinetics for Sodium-Ion Batteries. Energy Material Advances, 2023, 4: 0044. https://doi.org/10.34133/energymatadv.0044

49

Views

0

Downloads

21

Crossref

24

Web of Science

22

Scopus

0

CSCD

Altmetrics

Received: 15 May 2023
Accepted: 30 June 2023
Published: 24 July 2023
© 2023 Yu Li et al. Exclusive licensee Beijing Institute of Technology Press. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return