AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Initiating High-Voltage Multielectron Reactions in NASICON Cathodes for Aqueous Zinc/Sodium Batteries

Jiasheng Yue1,Shuqiang Li1,Shi Chen1Jingjing Yang1Xueying Lu1Yu Li1Ran Zhao1( )Chuan Wu1,2( )Ying Bai1,2( )
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, PR China

†These authors contributed equally to this work.

Show Author Information

Abstract

Sodium superionic conductor (NASICON) is a class of compounds with robust polyanionic frameworks and high thermal stability, which are regarded as prospective cathodes candidates for secondary batteries. However, NASICON cathodes typically have low discharge plateaus and low practical capacities in aqueous electrolytes. Here, Na3V1.75Fe0.25(PO4)2F3 is investigated as a cathode material for the aqueous zinc/sodium batteries. While the addition of F helps with the improvement of NASICON structural stability, the low-cost Fe substitution has a positive impact on the capacity increment, reaction voltage increases, and cycling stability improvement. Because the Fe3+ substitution could induce a change in the spin magnetic moments of the 3d orbitals of the VO4F2 and FeO4F2 octahedra, the 2-electron reaction of V is activated, which are V4+/V3+ and V5+/V4+ redox couples. As a result, the novel Na3V1.75Fe0.25(PO4)2F3 cathode delivers a high operating voltage of 1.7 V, a high energy density of 209 W·h·kg−1 and stable lifespan (83.5% capacity retention after 6,000 cycles at 1 A·g−1) in the aqueous zinc/sodium batteries. This research demonstrates the practicality of activating multielectron reactions to optimize the electrochemical properties of NASICON cathodes for aqueous secondary batteries.

References

1

Dunn B, Kamath H, Tarascon J-M. Electrical energy storage for the grid: A battery of choices. Science. 2011;334(6058):928–935.

2

Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7(1):19–29.

3

Goodenough JB, Park K-S. The Li-ion rechargeable battery: A perspective. J Am Chem Soc. 2013;135(4):1167–1176.

4

Shen X, Zhang X-Q, Ding F, Huang J-Q, Xu R, Chen X, Yan C, Su F-Y, Chen C-M, Liu X, et al. Advanced electrode materials in lithium batteries: Retrospect and prospect. Energy Mater Adv. 2021;2021:1205324.

5

Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Energy. 2016;1:16119.

6

Xia C, Guo J, Lei Y, Liang H, Zhao C, Alshareef HN. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv Mater. 2018;30(5):1705580.

7

Yan M, He P, Chen Y, Wang S, Wei Q, Zhao K, Xu X, An Q, Shuang Y, Shao Y, et al. Water-lubricated intercalation in V2O5 center dot nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv Mater. 2018;30(1):1703725.

8

Fang G, Zhu C, Chen M, Zhou J, Tang B, Cao X, Zheng X, Pan A, Liang S. Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv Funct Mater. 2019;29(15):1808375.

9

Deng W, Li Z, Ye Y, Zhou Z, Li Y, Zhang M, Yuan X, Hu J, Zhao W, Huang Z, et al. Zn2+ induced phase transformation of K2MnFe(CN)6 boosts highly stable zinc-ion storage. Adv Energy Mater. 2021;11(31):2003639.

10

Chen L, An Q, Mai L. Recent advances and prospects of cathode materials for rechargeable aqueous zinc-ion batteries. Adv Mater Interfaces. 2019;6(17):1900387.

11

Gu S, Haoyi Y, Yuan Y, Gao Y, Zhu N, Wu F, Bai Y, Wu C. Solvent effects on kinetics and electrochemical performances of rechargeable aluminum batteries. Energy Mater Adv. 2022;2022:9790472.

12

Tang Z, Chen W, Lyu Z, Chen Q. Size-dependent reaction mechanism of λ-MnO2 particles as cathodes in aqueous zinc-ion batteries. Energy Mater Adv. 2022;2022:9765710.

13

Jian Z, Yuan C, Han W, Lu X, Gu L, Xi X, Hu Y-S, Li H,Chen W, Chen D, et al. Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries. Adv Funct Mater. 2014;24(27):4265–4272.

14

Hu P, Zou Z, Sun X, Wang D, Ma J, Kong Q, Xiao D, Gu L, Zhou X, Zhao J, et al. Uncovering the potential of M1-site-activated NASICON cathodes for Zn-ion batteries. Adv Mater. 2020;32(14):1907526.

15

Zhang X, Chen H, Liu W, Xiao N, Zhang Q, Rui X, Huang S. A long-cycling aqueous zinc-ion pouch cell: NASICON-type material and surface modification. Chem-an Asian J. 2020;15(9):1430–1435.

16

Tong T, Tian Z, Chen W, Linghu Y, Li D, Tian Z, Wang Y, Chen Y, Guo L. Unveiling Zn substitution and carbon nanotubes enwrapping in Na3V2(PO4)3 with high performance for sodium ion batteries: Experimental and theoretical study. Electrochim Acta. 2022;411:140073.

17

Xu J, Chen J, Tao L, Tian Z, Zhou S, Zhao N, Wong C-P. Investigation of Na3V2(PO4)2O2F as a sodium ion battery cathode material: Influences of morphology and voltage window. Nano Energy. 2019;60:510–519.

18

Gao H, Goodenough JB. An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3. Angew Chem-Intl Ed. 2016;55(41):12768–12772.

19

Wang S, Jiao S, Tian D, Chen H-S, Jiao H, Tu J, Liu Y, Fang D-N. A novel ultrafast rechargeable multi-ions battery. Adv Mater. 2017;29(16):1606349.

20

Zhou Y, Zhang Z, Zhao Y, Liu J, Lam K-H, Zheng X, Lou H, Hou X. Cost-effective, long-term aqueous rechargeable hybrid sodium/zinc batteries based on Zn anode and Na3MnTi(PO4)3 cathode. Chem Eng J. 2021;425:130459.

21

Li W, Jing X, Jiang K, Wang D. Observation of structural decomposition of Na3V2(PO4)3 and Na3V2(PO4)2F3 as cathodes for aqueous Zn-ion batteries. Acs Appli Energy Mater. 2021;4(3):2797–2807.

22

Chen M, Hua W, Xiao J, Zhang J, Lau VW-h, Park M, Lee G-H, Lee S, Wang W, Peng J, et al. Activating a multielectron reaction of NASICON-structured cathodes toward high energy density for sodium-ion batteries. J Am Chem Soc. 2021;143(43):18091–18102.

23

Singh B, Wang Z, Park S, Gautam GS, Chotard J-N, Croguennec L, Carlier D, Cheetham AK, Masquelier C, Canepa P. A chemical map of NaSICON electrode materials for sodium-ion batteries. J Mater Chem A. 2021;9(1):281–292.

24

Wu Z, Ye F, Liu Q, Pang R, Liu Y, Jiang L, Tang Z, Hu L. Simultaneous incorporation of V and Mn element into polyanionic NASICON for high energy-density and long-lifespan Zn-ion storage. Adv Energy Mater. 2022;12(23):2200654.

25

Gu Z-Y, Guo J-Z, Cao J-M, Wang X-T, Zhao X-X, Zheng X-Y, Li W-H, Sun Z-H, Liang H-J, Wu X-L. An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density. Adv Mater. 2022;34(14):2110108.

26

Xu C, Zhao J, Wang E, Liu X, Shen X, Rong X, Zheng Q, Ren G, Zhang N, Liu X, et al. A novel NASICON-typed Na4VMn0.5Fe0.5(PO4)3 cathode for high-performance Na-ion batteries. Adv Energy Mater. 2021;11(22):2100729.

27

Wang K, Li H, Guo G, Zheng L, Passerini S, Zhang H. Enabling multi-electron reactions in NASICON positive electrodes for aqueous zinc-metal batteries. Acs Energy Lett. 2023;8(4):1671–1679.

28

Palomares V, Iturrondobeitia A, Sanchez-Fontecoba P, Goonetilleke D, Sharma N, Lezama L, Rojo T. Iron-doped sodium-vanadium fluorophosphates: Na3V2-yO2-yFey(PO4)2F1+y (y < 0.3). Inorg Chem. 2020;59(1):854–862.

29

Zhao R, Yang J, Han X, Wang Y, Ni Q, Hu Z, Wu C, Bai Y. Stabilizing Zn metal anodes via cation/anion regulation toward high energy density Zn-ion batteries. Adv Energy Mater. 2023;13(8):2203542.

30

Li G, Yang Z, Jiang Y, Jin C, Huang W, Ding X, Huang Y. Towards polyvalent ion batteries: A zinc-ion battery based on NASICON structured Na3V2(PO4)3. Nano Energy. 2016;25:211–217.

31

Rajagopalan R, Chen B, Zhang Z, Wu X-L, Du Y, Huang Y, Li B, Zong Y, Wang J, Nam G-H, et al. Improved reversibility of Fe3+/Fe4+ redox couple in sodium super ion conductor type Na3Fe2(PO4)3 for sodium-ion batteries. Adv Mater. 2017;29(12):1605694.

32

Wan F, Zhang L, Dai X, Wang X, Niu Z, Chen J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat Commun. 2018;9:1656.

33

Patoux S, Rousse G, Leriche JB, Masquelier C. Structural and electrochemical studies of rhombohedral Na2TiM(PO4)3 and Li1.6Na0.4TiM(PO4)3 (M = Fe, Cr) phosphates. Chem Mater. 2003;15(10):2084–2093.

34

Slater MD, Kim D, Lee E, Johnson CS. Sodium-ion batteries. Adv Funct Mater. 2013;23(8):947–958.

35

Hu P, Zhu T, Wang X, Zhou X, Wei X, Yao X, Luo W, Shi C, Owusu KA, Zhou L, et al. Aqueous Zn//Zn(CF3SO3)2//Na3V2(PO4)3 batteries with simultaneous Zn2+/Na+ intercalation/de-intercalation. Nano Energy. 2019;58:492–498.

36

Ling R, Zhao S, Yang C, Qi W. Three-dimensional ordered microporous Na3V2(PO4)2F3@C/carbon cloth as high-rate and stable flexible cathodes for Na-ion and Zn-ion batteries. Appl Surf Sci. 2023;620:156875.

37

Li Q, Ma K, Hong C, Yang G, Wang C. Realizing excellent cycle stability of Zn/Na3V2(PO4)3 batteries by suppressing dissolution and structural degradation in non-aqueous Na/Zn dual-salt electrolytes. Sci China-Mater. 2021;64(6):1386–1395.

38

Wang C, Sun L, Li M, Zhou L, Cheng Y, Ao X, Zhang X, Wang L, Tian B, Fan HJ. Aqueous Zn2+/Na+ dual-salt batteries with stable discharge voltage and high columbic efficiency by systematic electrolyte regulation. Sci China-Chem. 2022;65(2):399–407.

39

Yu L, Liu S, Shao L, Wang X, Guan J, Shi X, Cai J, Sun Z. Self-supporting Na3V2(PO4)(3) as cathode for aqueous zinc ion batteries. Mater Lett. 2022;324:132637.

40

Li G, Yang Z, Jiang Y, Zhang W, Huang Y. Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage. J Power Sources. 2016;308:52–57.

41

Li W, Wang K, Zhou M, Zhan H, Cheng S, Jiang K. Advanced low-cost, high-voltage, long-life aqueous hybrid sodium/zinc batteries enabled by a dendrite-free zinc anode and concentrated electrolyte. ACS Appl Mater Interfaces. 2018;10(26):22059–22066.

42

Olson JZ, Lopez CM, Dickinson EJF. Differential analysis of galvanostatic cycle data from Li-ion batteries: Interpretative insights and graphical heuristics. Chem Mater. 2023;35(4):1487–1513.

43

Liu C, Li F, Ma L-P, Cheng H-M. Advanced materials for energy storage. Adv Mater. 2010;22(8):E28.

44

Song M, Tan H, Chao D, Fan HJ. Recent advances in Zn-ion batteries. Adv Funct Mater. 2018;28(41):1802564.

45

Cheng F, Liang J, Tao Z, Chen J. Functional materials for rechargeable batteries. Adv Mater. 2011;23(15):1695–1715.

46

Chen G, Huang Q, Wu T, Lu L. Polyanion sodium vanadium phosphate for next generation of sodium-ion batteries—A review. Adv Funct Mater. 2020;30(34):2001289.

47

Yang Q, Li Q, Liu Z, Wang D, Guo Y, Li X, Tang Y, Li H, Dong B, Zhi C. Dendrites in Zn-based batteries. Adv Mater. 2020;32(48):2001854.

48

He P, Zhang G, Liao X, Yan M, Xu X, An Q, Liu J, Mai L. Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv Energy Mater. 2018;8(10):1702463.

49

Zhao Y, Gao X, Gao H, Jin H, Goodenough JB. Three electron reversible redox reaction in sodium vanadium chromium phosphate as a high-energy-density cathode for sodium-ion batteries. Adv Funct Mater. 2020;30(10):1908680.

Energy Material Advances
Article number: 0050
Cite this article:
Yue J, Li S, Chen S, et al. Initiating High-Voltage Multielectron Reactions in NASICON Cathodes for Aqueous Zinc/Sodium Batteries. Energy Material Advances, 2023, 4: 0050. https://doi.org/10.34133/energymatadv.0050

30

Views

0

Downloads

19

Crossref

18

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 30 June 2023
Accepted: 10 August 2023
Published: 25 August 2023
© 2023 Jiasheng Yue et al. Exclusive licensee Beijing Institute of Technology Press. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return