AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Unified Picture on Temperature Dependence of Lithium Dendrite Growth via Phase-Field Simulation

Yajie Li1Wei Zhao1Geng Zhang2( )Siqi Shi1,3( )
School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
Clean Combustion Research Center (CCRC), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
Materials Genome Institute, Shanghai University, Shanghai 200444, China
Show Author Information

Abstract

Lithium dendrite growth due to uneven electrodeposition may penetrate the separator and solid electrolyte, causing inner short circuit and potential thermal runaway. Despite great electrochemical phase-field simulation efforts devoted to exploring the dendrite growth mechanism under the temperature field, no unified picture has emerged. For example, it remains open how to understand the promotion, inhibition, and dual effects of increased temperature on dendrite growth when using different electrolyte types. Here, by comprehensively considering the temperature-dependent Li+ diffusion coefficient, electrochemical reaction coefficient, and initial temperature distribution in phase-field model, we propose that the activation–energy ratio, defined as the ratio of electrochemical reaction activation energy to electrolyte Li+ diffusion activation energy, can be used to quantify the effect of temperature on dendrite morphology. Specifically, we establish a mechanism diagram correlating the activation–energy ratio, uniform initial temperature, and maximum dendrite height, which unifies the seemingly contradictory simulation results. Furthermore, results based on nonuniform initial temperature distribution indicate that a positive temperature gradient along the discharging current facilitates uniform Li+ deposition and local hotspot should be avoided. These findings provide valuable insights into the temperature-dependent Li dendrite growth and contribute to the practical application of Li metal batteries.

References

1

Shen X, Liu H, Cheng X, Yan C, Huang J. Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Mater. 2018;12:161–175.

2

Zou P, Sui Y, Zhan H, Wang C, Xin H, Cheng H, Kang F, Yang C. Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields. Chem Rev. 2021;121(10):5986–6056.

3

Li Y, Sha L, Lv P, Qiu N, Zhao W, Chen B, Hu P, Zhang G. Influences of separator thickness and surface coating on lithium dendrite growth: A phase-field study. Materials. 2022;15(22):7912.

4

Shao Y, Xie Y, Yang Y, Cao J, Li X, Li W, Zhang Q, Cheng S, Cheng S, Wang X. Bilayer carbon-based structure with the promotion of homogenous nucleation for lithium metal anodes. Sci China Technol Sci. 2022;65:1558–1566.

5

Shen X, Zhang X, Ding F, Huang J, Xu R, Chen X, Yan C, Su F, Chen C, Liu X, et al. Advanced electrode materials in lithium batteries: Retrospect and prospect. Energy Mater Adv. 2021;2021:1205324.

6

Meng X, Lau KC, Zhou H, Ghosh SK, Benamara M, Zou M. Molecular layer deposition of crosslinked polymeric lithicone for superior lithium metal anodes. Energy Mater Adv. 2021;2021:9786201.

7

Harrison KL, Goriparti S, Merrill LC, Long DM, Warren B, Roberts SA, Perdue BR, Casias Z, Cuillier P, Boyce BL, et al. Effects of applied interfacial pressure on Li-metal cycling performance and morphology in 4 M LiFSI in DME. ACS Appl Mater Interfaces. 2021;13(27):31668–31679.

8

Shen K, Wang Z, Bi X, Ying Y, Zhang D, Jin C, Hou G, Cao H, Wu L, Zheng G, et al. Magnetic field-suppressed lithium dendrite growth for stable lithium-metal batteries. Adv Energy Mater. 2019;9(20):1900260.

9

Huang A, Liu H, Manor O, Liu P, Friend J. Enabling rapid charging lithium metal batteries via surface acoustic wave-driven electrolyte flow. Adv Mater. 2020;32(14):1907516.

10

Yu M, Ren X, Ma L, Wu Y. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging. Nat Commun. 2014;5:5111.

11

Chen Y, Dou X, Wang K, Han Y. Lithium dendrites inhibition via diffusion enhancement. Adv Energy Mater. 2019;9(17):1900019.

12

Wang J, Huang W, Pei A, Li Y, Shi F, Yu X, Cui Y. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat Energy. 2019;4(8):664–670.

13

Gao X, Zhou YN, Han D, Zhou J, Zhou D, Tang W, Goodenough JB. Thermodynamic understanding of Li-dendrite formation. Joule. 2020;4(9):1864–1879.

14

Hagopian A, Doublet ML, Filhol JS. Thermodynamic origin of dendrite growth in metal anode batteries. Energy Environ Sci. 2020;13(12):5186–5197.

15

Sun T, Shen T, Zheng Y, Ren D, Zhu W, Li J, Wang Y, Kuang K, Rui X, Wang S, et al. Modeling the inhomogeneous lithium plating in lithium-ion batteries induced by non-uniform temperature distribution. Electrochim Acta. 2022;425:140701.

16

Zhu Y, Xie J, Pei A, Liu B, Wu Y, Lin D, Li J, Wang H, Chen H, Xu J, et al. Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries. Nat Commun. 2019;10(1):2067.

17

Atkinson RW, Carter R, Love CT. Operational strategy to stabilize lithium metal anodes by applied thermal gradient. Energy Storage Mater. 2019;22:18–28.

18

Li P, Li C, Yang Y, Zhang C, Wang R, Liu Y, Wang Y, Luo J, Dong X, Xia Y. Synergistic effects of salt concentration and working temperature towards dendrite-free lithium deposition. Research. 2019;2019:1–9.

19

Nishida T, Nishikawa K, Rosso M, Fukunaka Y. Optical observation of Li dendrite growth in ionic liquid. Electrochim Acta. 2013;100:333–341.

20

Hong L, Ren H, Wang Y, Liu Y, Xiang H. Designing on solvent composition of dual-salt low concentration electrolyte for inhibiting lithium dendrite growth at −20 ℃. Electrochim Acta. 2022;414:140238.

21

Maraschky A, Akolkar R. Temperature dependence of dendritic lithium electrodeposition: A mechanistic study of the role of transport limitations within the SEI. J Electrochem Soc. 2020;167(6):062563.

22

Hundekar P, Basu S, Pan J, Bartolucci SF, Narayanan S, Yang Z, Koratkar N. Exploiting self-heat in a lithium metal battery for dendrite healing. Energy Storage Mater. 2019;20:291–298.

23

Zhang W, Weng M, Zhang M, Ye Y, Chen Z, Li S, Li S, Pan F, Wang L. Revealing morphology evolution of lithium dendrites by large-scale simulation based on machine learning force field. Adv Energy Mater. 2022;13(4):2202892.

24

Vishnugopi BS, Hao F, Verma A, Mukherjee PP. Double-edged effect of temperature on lithium dendrites. ACS Appl Mater Interfaces. 2020;12(21):23931–23938.

25

Wang Q, Zhang G, Li Y, Hong Z, Wang D, Shi S. Application of phase-field method in rechargeable batteries. npj Comput Mater. 2020;6:176.

26

Li Y, Zhang G, Chen B, Zhao W, Sha L, Wang D, Yu J, Shi S. Understanding the separator pore size inhibition effect on lithium dendrite via phase-field simulations. Chin Chem Lett. 2022;33(6):3287–3290.

27

Xu X, Liu Y, Hwang JY, Kapitanova OO, Song Z, Sun YK, Matic A, Xiong S. Role of Li-ion depletion on electrode surface: Underlying mechanism for electrodeposition behavior of lithium metal anode. Adv Energy Mater. 2020;10(44):2002390.

28

Liu Y, Xu X, Kapitanova OO, Evdokimov PV, Song Z, Matic A, Xiong S. Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Adv Energy Mater. 2022;12(9):2103589.

29

Yan H, Bie Y, Cui X, Xiong G, Chen L. A computational investigation of thermal effect on lithium dendrite growth. Energy Conv Manag. 2018;161:193–204.

30

Hong Z, Viswanathan V. Prospect of thermal shock induced healing of lithium dendrite. ACS Energy Lett. 2019;4(5):1012–1019.

31

Jeon J, Yoon GH, Vegge T, Chang J. Phase-field investigation of lithium electrodeposition at different applied overpotentials and operating temperatures. ACS Appl Mater Interfaces. 2022;14(13):15275–15286.

32

Li Y, Sha L, Zhang G, Chen B, Zhao W, Wang YP, Shi S. Phase-field simulation tending to depict practical electrodeposition process in lithium-based batteries. Chin Chem Lett. 2023;34(2):107993.

33

Akolkar R. Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature. J Power Sources. 2014;246:84–89.

34

Aryanfar A, Brooks DJ, Colussi AJ, Merinov BV, Goddard WA, Hoffmann MR 3rd. Thermal relaxation of lithium dendrites. Phys Chem Chem Phys. 2015;17(12):8000–8005.

35

Kondo Y, Abe T, Yamada Y. Kinetics of interfacial ion transfer in lithium-ion batteries: Mechanism understanding and improvement strategies. ACS Appl Mater Interfaces. 2022;14(20):22706–22718.

36

Jow TR, Delp SA, Allen JL, Jones JP, Smart MC. Factors limiting Li+ charge transfer kinetics in Li-ion batteries. J Electrochem Soc. 2018;165(2):361–367.

37

Yao Y, Chen X, Yao N, Gao J, Xu G, Ding J, Song CL, Cai W, Yan C, Zhang Q. Unlocking charge transfer limitations for extreme fast charging of Li-ion batteries. Angew Chem Int Ed. 2023;62(4):202214828.

38

Zhang S. A review on electrolyte additives for lithium-ion batteries. J Power Sources. 2006;162(2):1379–1394.

39

Cheng L, Curtiss LA, Zavadil KR, Gewirth AA, Shao Y, Gallagher KG. Sparingly solvating electrolytes for high energy density lithium–sulfur batteries. ACS Energy Lett. 2016;1(3):503–509.

40

Chen X, Yao Y, Yan C, Zhang R, Cheng X, Zhang Q. A diffusion-reaction competition mechanism to tailor lithium deposition for lithium-metal batteries. Angew Chem Int Ed. 2020;59(20):7743–7747.

41

Yan K, Wang J, Zhao S, Zhou D, Sun B, Cui Y, Wang G. Temperature-dependent nucleation and growth of dendrite-free lithium metal anodes. Angew Chem Int Ed. 2019;58(33):11364–11368.

42

Cao X, Lu Y, Song X, Yuan Z, Wang F. Perspective of unstable solid electrolyte interphase induced lithium dendrite growth: Role of thermal effect. Electrochim Acta. 2023;439:141722.

43

Adair KR, Banis MN, Zhao Y, Bond T, Li R, Sun X. Temperature-dependent chemical and physical microstructure of Li metal anodes revealed through synchrotron-based imaging techniques. Adv Mater. 2020;32(32):2002550.

44

Chen L, Zhang H, Liang L, Liu Z, Qi Y, Lu P, Chen J, Chen L. Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model. J Power Sources. 2015;300:376–385.

45

Shen X, Zhang R, Shi P, Chen X, Zhang Q. How does external pressure shape Li dendrites in Li metal batteries? Adv Energy Mater. 2021;11(10):2003416.

46

Qiao D, Liu X, Dou R, Wen Z, Zhou W, Liu L. Quantitative analysis of the inhibition effect of rising temperature and pulse charging on lithium dendrite growth. J Energy Storage. 2022;49:104137.

Energy Material Advances
Article number: 0053
Cite this article:
Li Y, Zhao W, Zhang G, et al. Unified Picture on Temperature Dependence of Lithium Dendrite Growth via Phase-Field Simulation. Energy Material Advances, 2023, 4: 0053. https://doi.org/10.34133/energymatadv.0053

65

Views

1

Downloads

5

Crossref

3

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 27 July 2023
Accepted: 22 August 2023
Published: 12 September 2023
© 2023 Yajie Li et al. Exclusive licensee Beijing Institute of Technology Press. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return