AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Sodiophilic V2O3-Inducing Layer for Long Lifespan and Dendrite-Free Sodium Metal Anodes

Kaizhi Chen1Xianming Xia1Huaguang Ma1Shitan Xu1Yu Yao2Xianhong Rui1( )Yan Yu2( )
Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
Show Author Information

Abstract

Because of the superiority of low cost and high theoretical capacity, sodium metal batteries are considered an attractive option for high energy storage. However, the uncontrollable and random deposition of Na tends to expedite the formation of Na dendrites and increases the risk of thermal runaway. The method of preplant sodiophilic sites can induce the lateral deposition of Na instead of sharp dendrite emergence. Here, we introduce the sodiophilic V2O3 particles to form a protective layer on Na surface (Na/V2O3). The high Na ion adsorption energy and low nucleation overpotential of Na/V2O3 facilitate the diffusion of Na ions and homogeneous Na deposition, which can work well in cubing dendrite development. Thus, the symmetrical cell (Na/V2O3||Na/V2O3) can stably operate for 670 h at 0.5 mA·cm−2/1 mAh·cm−2 with a smaller voltage hysteresis (less than 100 mV). Moreover, full cell constructed by coupling Na/V2O3 anode with Na3V2(PO4)3 cathode displays an outstanding rate performance, maintaining a high capacity of 70 mAh·g−1 at 30 C. On the basis of the design of sodiophilic protection layer, a dendrite-free, outstanding rate performance, and long lifespan sodium metal battery is realized.

References

1

Nishi Y. Lithium ion secondary batteries: Past 10 years and the future. J Power Sources. 2001;100(1–2):101–106.

2

Li M, Lu J, Chen Z, Amine K. 30 years of lithium-ion batteries. Adv Mater. 2018;30(33):1800561.

3

Zhang X, Chen S, Zhu J, Gao Y. A critical review of thermal runaway prediction and early-warning methods for lithium-ion batteries. Energy Mater Adv. 2023;4:0008.

4

Li M, Li Y, Cu Q, Li Y, Li H, Li Z, Li M, Liao H, Li G, Li G, et al. Hollow and hierarchical CuCo-LDH nanocatalyst for boosting sulfur electrochemistry in Li-S batteries. Energy Mater. Adv. 2023;4:0032.

5

Guo R, Zhang K, Zhao W, Hu Z, Li S, Zhong Y, Yang R, Wang X, Wang J, Wu C, et al. Interfacial challenges and strategies toward practical sulfide-based solid-state lithium batteries. Energy Mater. Adv. 2023;4:0022.

6

Scrosati B. History of lithium batteries. J Solid State Electrochem. 2011;15(7-8):1623–1630.

7

Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J. Electrochemical energy storage for green grid. Chem Rev. 2011;111(5):3577–3613.

8

Chayambuka K, Mulder G, Danilov DL, Notten PHL. From Li-ion batteries toward Na-ion chemistries: Challenges and opportunities. Adv Energy Mater. 2020;10(38):2001310.

9

Nayak PK, Yang L, Brehm W, Adelhelm P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew Chem Int Ed. 2018;57(1):102–120.

10

Chayambuka K, Mulder G, Danilov DL, Notten PHL. Sodium-ion battery materials and electrochemical properties reviewed. Adv Energy Mater. 2018;8(16):1800079.

11

Yang H, He F, Li M, Huang F, Chen Z, Shi P, Liu F, Jiang Y, He L, Gu M, et al. Design principles of sodium/potassium protection layer for high-power high-energy sodium/potassium-metal batteries in carbonate electrolytes: A case study of Na2Te/K2Te. Adv Mater. 2021;33(48):2106353.

12

Xia X, Xu S, Tang F, Yao Y, Wang L, Liu L, He S, Yang Y, Sun W, Xu C, et al. A multifunctional interphase layer enabling superior sodium-metal batteries under ambient temperature and −40 ℃. Adv Mater. 2021;35(11):e2209511.

13

Bao C, Wang B, Liu P, Wu H, Zhou Y, Wang D, Liu H, Dou S. Solid electrolyte interphases on sodium metal anodes. Adv Funct Mater. 2020;30(52):2004891.

14

Lv X, Tang F, Xu S, Yao Y, Yuan Z, Liu L, He S, Yang Y, Sun W, Pan H, et al. Construction of inorganic/organic hybrid layer for stable Na metal anode operated under wide temperatures. Small. 2023;19(30):2300215.

15

Wang H, Matios E, Luo J, Li W. Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries. Chem Soc Rev. 2020;49(12):3783–3805.

16

Xiao J. How lithium dendrites form in liquid batteries. Science. 2019;366(6464):426–427.

17

Jana A, García RE. Lithium dendrite growth mechanisms in liquid electrolytes. Nano Energy. 2017;41:552–565.

18

Bai P, Li J, Brushett FR, Bazant MZ. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ Sci. 2016;9(10):3221–3229.

19

Liu S, Tang S, Zhang X, Wang A, Yang Q-H, Luo J. Porous Al current collector for dendrite-free Na metal anodes. Nano Lett. 2017;17(9):5862–5868.

20

Shi H, Yue M, Zhang CJ, Dong Y, Lu P, Zheng S, Huang H, Chen J, Wen P, Xu Z, et al. 3D flexible, conductive, and recyclable Ti3C2Tx MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode. ACS Nano. 2020;14(7):8678–8688.

21

Guo Y, Niu P, Liu Y, Ouyang Y, Li D, Zhai T, Li H, Cui Y. An autotransferable g-C3N4 Li+-modulating layer toward stable lithium anodes. Adv Mater. 2019;31(27):1900342.

22

Ju Z, Nai J, Wang Y, Liu T, Zheng J, Yuan H, Sheng O, Jin C, Zhang W, Jin Z, et al. Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy. Nat Commun. 2020;11(1):488.

23

Wang C, Zheng Y, Chen Z-N, Zhang R, He W, Li K, Yan S, Cui J, Fang X, Yan J, et al. Robust anode-free sodium metal batteries enabled by artificial sodium Formate Interface. Adv Energy Mater. 2023;13(22):2204125.

24

Huang G, Guo P, Wang J, Chen S, Liang J, Tao R, Tang S, Zhang X, Cheng S, Cao Y-C, et al. Lithiophilic V2O5 nanobelt arrays decorated 3D framework hosts for highly stable composite lithium metal anodes. Chem Eng J. 2020;384:Article 123313.

25

Zhu M, Wang G, Liu X, Guo B, Xu G, Huang Z, Wu M, Liu H-K, Dou S-X, Wu C. Dendrite-free sodium metal anodes enabled by a sodium benzenedithiolate-rich protection layer. Angew Chem Int Ed. 2020;59(16):6596–6600.

26

Wan M, Kang S, Wang L, Lee H-W, Zheng GW, Cui Y, Sun Y. Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nat Commun. 2020;11(1):1–10.

27

Liu S, Ji X, Yue J, Hou S, Wang P, Cui C, Chen J, Shao B, Li J, Han F, et al. High interfacial-energy interphase promoting safe lithium metal batteries. J Am Chem Soc. 2020;142(5):2438–2447.

28

Wang H, Matios E, Wang C, Luo J, Lu X, Hu X, Zhang Y, Li W. Tin nanoparticles embedded in a carbon buffer layer as preferential nucleation sites for stable sodium metal anodes. J Mater Chem A. 2019;7(41):23747–23755.

29

Wang G, Zhang Y, Guo B, Tang L, Xu G, Zhang Y, Wu M, Liu H-K, Dou S-X, Wu C. Core–shell C@Sb nanoparticles as a nucleation layer for high-performance sodium metal anodes. Nano Lett. 2020;20(6):4464–4471.

30

Mo L, Chen A-L, Ouyang Y, Zong W, Miao Y-E, Liu T. Asymmetric sodiophilic host based on a Ag-modified carbon fiber framework for dendrite-free sodium metal anodes. ACS Appl Mater Interfaces. 2021;13(41):48634–48642.

31

Xu Y, Matios E, Luo J, Li T, Lu X, Jiang S, Yue Q, Li W, Kang Y. SnO2 quantum dots enabled site-directed sodium deposition for stable sodium metal batteries. Nano Lett. 2021;21(1):816–822.

32

Li H, Yamaguchi T, Matsumoto S, Hoshikawa H, Kumagai T, Okamoto NL, Ichitsubo T. Circumventing huge volume strain in alloy anodes of lithium batteries. Nat Commun. 2020;11(1):1584.

33

Hirai K, Ichitsubo T, Uda T, Miyazaki A, Yagi S, Matsubara E. Effects of volume strain due to Li–Sn compound formation on electrode potential in lithium-ion batteries. Acta Mater. 2008;56(7):1539–1545.

34

Liu H, Cheng X-B, Huang J-Q, Kaskel S, Chou S, Park HS, Zhang Q. Alloy anodes for rechargeable alkali-metal batteries: Progress and challenge. ACS Mater Lett. 2019;1(2):217–229.

35

Liu Y, Zhang S, Qin X, Kang F, Chen G, Li B. In-plane highly dispersed Cu2O nanoparticles for seeded lithium deposition. Nano Lett. 2019;19(7):4601–4607.

36

Wang J, Lian R, Zhao S, Zheng L, Huang Y, Wei M, Mathur S, Hong Z. Ultrastable sodium metal plating/striping by engineering heterogeneous nucleation on TiO2 nanotube arrays. Chem Eng J. 2022;431:Article 134272.

37

Qian X, Fan X, Peng Y, Xue P, Sun C, Shi X, Lai C, Liang J. Polysiloxane cross-linked mechanically stable MXene-based lithium host for ultrastable lithium metal anodes with ultrahigh current densities and capacities. Adv Funct Mater. 2021;31(6):2008044.

38

Ma Y, Jing Y, Gu Y, Qi P, Lian Y, Yang C, Abdul Razzaq A, Zhao X, Peng Y, Zeng X, et al. Redox-driven lithium perfusion to fabricate Li@Ni–foam composites for high lithium-loading 3D anodes. ACS Appl Mater Interfaces. 2020;12(8):9355–9364.

39

Tang S, Zhang Y-Y, Zhang X-G, Li J-T, Wang X-Y, Yan J-W, Wu D-Y, Zheng M-S, Dong Q-F, Mao B-W. Stable Na plating and stripping electrochemistry promoted by in situ construction of an alloy-based sodiophilic interphase. Adv Mater. 2019;31(16):1807495.

40

Han Y, Sang Z, Liu D, Zhang T, Feng J, Si W, Dou SX, Liang J, Hou F. Lithiophilic and conductive V2O3/VN nanosheets as regulating layer for high-rate, high-areal capacity and dendrite-free lithium metal anodes. Chem Eng J. 2021;420:Article 129787.

41

Sun Y, Jiang S, Bi W, Wu C, Xie Y. Highly ordered lamellar V2O3-based hybrid nanorods towards superior aqueous lithium-ion battery performance. J Power Sources. 2011;196(20):8644–8650.

42

Liu P, Zhu K, Gao Y, Luo H, Lu L. Recent progress in the applications of vanadium-based oxides on energy storage: From low-dimensional nanomaterials synthesis to 3D micro/nanostructures and free-standing electrodes fabrication. Adv Energy Mater. 2017;7(23):1700547.

43

Sarkar A, Sinha AK, Mitra S. Nanostructured vanadium tri-oxides, as a long life and high performance anode for sodium-ion battery. Electrochim Acta. 2019;299:914–925.

44

Cohn AP, Muralidharan N, Carter R, Share K, Pint CL. Anode-free sodium battery through in situ plating of sodium metal. Nano Lett. 2017;17(2):1296–1301.

45

Yan K, Lu Z, Lee H-W, Xiong F, Hsu P-C, Li Y, Zhao J, Chu S, Cui Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat Energy. 2016;1:16010.

Energy Material Advances
Article number: 0063
Cite this article:
Chen K, Xia X, Ma H, et al. Sodiophilic V2O3-Inducing Layer for Long Lifespan and Dendrite-Free Sodium Metal Anodes. Energy Material Advances, 2023, 4: 0063. https://doi.org/10.34133/energymatadv.0063

41

Views

0

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 28 June 2023
Accepted: 18 September 2023
Published: 11 October 2023
© 2023 Kaizhi Chen et al. Exclusive licensee Beijing Institute of Technology Press. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return