Current inorganic solid electrolyte membranes generally suffer thick thickness of hundreds micrometers as well as low ionic conductivity, which limits the energy density and cycle life of all-solid-state lithium batteries. In this work, wet coating is employed to fabricate the Li6PS5Cl solid electrolyte thin membrane. The interaction among solvents containing different functional groups with the Li6PS5Cl electrolyte was explored. A new polymeric binder is synthesized by polymerization of dimethyl aminoethyl methacrylate (DMAEMA), polyethylene glycol diacrylate (PEGDA), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), showing excellent stability to Li6PS5Cl solid electrolyte particles and high tensile strength of 1.46 MPa. Thus, a 40-μm-thick freestanding Li6PS5Cl membrane with 90 wt% Li6PS5Cl content is realized through in situ photo-polymerization, possessing a relatively high room temperature ionic conductivity of 1.23 mS cm−1. Moreover, the all-solid-state battery-based Li6PS5Cl membrane exhibits superior cycling stability after 1,000 cycles with a capacity retention of 76.92% at 0.2 C under 60 ℃. When the mass load of the active material LiCoO2 increases to 15.2 mg cm−2, the all-solid-state cell still delivers a high initial discharge capacity of 123.0 mAh g−1 (1.87 mAh cm−2) with a capacity retention rate of 89.93% after 200 cycles.
Zhou D, He YB, Liu RL, Liu M, Du HD, Li BH, Cai Q, Yang QH, Kang FY. In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries. Adv Energy Mater. 2015;5(15):1500353.
Cano ZP, Banham D, Ye SY, Hintennach A, Lu J, Fowler M, Chen Z. Batteries and fuel cells for emerging electric vehicle markets. Nat Energy. 2018;3:279–289.
Tanaka Y, Ueno K, Mizuno K, Takeuchi K, Asano T, Sakai A. New oxyhalide solid electrolytes with high lithium ionic conductivity > 10 mS cm–1 for all-solid-state batteries. Angew Chem Int Ed. 2023;62(13):Article e202217581.
Sheng J, Zhang Q, Liu M, Han Z, Li C, Sun C, Chen B, Zhong X, Qiu L, Zhou G. Stabilized solid electrolyte interphase induced by ultrathin boron nitride membranes for safe lithium metal batteries. Nano Lett. 2021;21:8447–8454.
Xu R, Yue J, Liu S, Tu J, Han F, Liu P, Wang C. Cathode-supported all-solid-state lithium-sulfur batteries with high cell-level energy density. ACS Energy Lett. 2019;4(5):1073–1079.
Zhang K, Wu F, Wang X, Zheng L, Yang X, Zhao H, Sun Y, Zhao W, Bai Y, Wu C. An ion-dipole-reinforced polyether electrolyte with ion-solvation cages enabling high–voltage-tolerant and ion-conductive solid-state lithium metal batteries. Adv Funct Mater. 2022;32(5):2107764.
Wu F, Zhang K, Liu Y, Gao H, Bai Y, Wang X, Wu C. Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects. Energy Storage Mater. 2020;33:26–54.
Wu J, Shen L, Zhang Z, Liu G, Wang Z, Zhou D, Wan H, Xu X, Yao X. All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes. Electrochem Energ Rev. 2020;4:101–135.
Chen S, Xie D, Liu G, Mwizerwa JP, Zhang Q, Zhao Y, Xu X, Yao X. Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application. Energy Storage Mater. 2018;14:58–74.
Yu C, Zhao F, Luo J, Zhang L, Sun X. Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics. Nano Energy. 2021;83:Article 105858.
Guo R, Zhang K, Zhao W, Hu Z, Li S, Zhong Y, Yang R, Wang X, Wang J, Wu C, et al. Interfacial challenges and strategies toward practical sulfide-based solid-state lithium batteries. Energy Mater Adv. 2023;4:0022.
Wu JY, Yuan LX, Zhang WX, Li Z, Xie XL, Huang YH. Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ Sci. 2021;14:12–36.
Randau S, Weber DA, Kotz O, Koerver R, Braun P, Weber A, Ivers-Tiffee E, Adermann T, Kulisch J, Zeier WG, et al. Benchmarking the performance of all-solid-state lithium batteries. Nat Energy. 2020;5:259–270.
Zhang Z, Wu L, Zhou D, Weng W, Yao X. Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries. Nano Lett. 2021;21:5233–5239.
Liu G, Shi J, Zhu M, Weng W, Shen L, Yang J, Yao X. Ultra-thin free-standing sulfide solid electrolyte film for cell-level high all-solid-state lithium batteries. Energy Storage Mater. 2021;38:249–254.
Kim DH, Lee Y-H, Song YB, Kwak H, Lee S-Y, Jung YS. Thin and flexible solid electrolyte membranes with ultrahigh thermal stability derived from solution-processable Li argyrodites for all-solid-state Li-ion batteries. ACS Energy Lett. 2020;5(3):718–727.
Lee J, Lee K, Lee T, Kim H, Kim K, Cho W, Coskun A, Char K, Choi JW. In situ deprotection of polymeric binders for solution-processible sulfide-based all-solid-state batteries. Adv Mater. 2020;32(37):2001702.
Lee K, Lee J, Choi S, Char K, Choi JW. Thiol-ene click reaction for fine polarity tuning of polymeric binders in solution-processed all-solid-state batteries. ACS Energy Lett. 2019;4:94–101.
Chen H, Ling M, Hencz L, Ling HY, Li G, Lin Z, Liu G, Zhang S. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem Rev. 2018;118:8936–8982.
Guo Q, Xu F, Shen L, Deng S, Wang Z, Li M, Yao X. 20 μm-thick Li6.4La3Zr1.4Ta0.6O12-based flexible solid electrolytes for all-solid-state lithium batteries. Energy Mater Adv. 2022;9753506.
Shen L, Deng S, Jiang R, Liu G, Yang J, Yao X. Flexible composite solid electrolyte with 80 wt% Na3.4Zr1.9Zn0.1Si2.2P0.8O12 for solid-state sodium batteries. Energy Storage Mater. 2022;46:175–181.
Zhang K, Wu F, Wang X, Weng S, Yang X, Zhao H, Guo R, Sun Y, Zhao W, Song T, et al. 8.5 μm-thick flexible-rigid hybrid solid–electrolyte/lithium integration for air-stable and interface-compatible all-solid-state lithium metal batteries. Adv Energy Mater. 2022;12(24):2200368.
Wang S, Zhang X, Liu S, Xin C, Xue C, Richter F, Li L, Fan L, Lin Y, Shen Y, et al. High-conductivity free-standing Li6PS5Cl/poly(vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries. J Mater. 2020;6(1):70–76.
Nikodimos Y, Huang C-J, Taklu BW, Su W-N, Hwang BJ. Chemical stability of sulfide solid-state electrolytes: Stability toward humid air and compatibility with solvents and binders. Energy Environ Sci. 2022;15:991–1033.
Cao D, Li Q, Sun X, Wang Y, Zhao X, Cakmak E, Liang W, Anderson A, Ozcan S, Zhu H. Amphipathic binder integrating ultrathin and highly ion-conductive sulfide membrane for cell-level high-energy-density all-solid-state batteries. Adv Mater. 2021;33(52):2105505.
Zhao X, Xiang P, Wu J, Liu Z, Shen L, Liu G, Tian Z, Chen L, Yao X. Toluene tolerated Li9.88GeP1.96Sb0.04S11.88Cl0.12 solid electrolyte toward ultrathin membranes for all-solid-state lithium batteries. Nano Lett. 2022;23(1):227–234.
Zou F, Manthiram A. A review of the design of advanced binders for high-performance batteries. Adv Energy Mater. 2020;10(45):2002508.
Gutmann V, Mayer U. Donorstärken von halogenid- und pseudohalogenidionen. Monatsh Chem. 1968;99:1383–1389.
Yamamoto M, Terauchi Y, Sakuda A, Takahashi M. Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities. Sci Rep. 2018;8:1212.
Fu C, Wong BM, Bozhilov KN, Guo J. Solid state lithiation-delithiation of sulphur in sub-nano confinement: A new concept for designing lithium-sulphur batteries. Chem Sci. 2016;7:1224–1232.
Fu C, Xu L, Aquino FW, Gobet VCAM, Greenbaum SG, Xu K, Wong BM, Guo J. Correlating Li+-solvation structure and its electrochemical reaction kinetics with sulfur in subnano confinement. J Phys Chem Lett. 2018;9(7):1739–1745.
Hatz A-K, Calaminus R, Feijoo J, Treber F, Blahusch J, Lenz T, Reichel M, Karaghiosoff K, Vargas-Barbosa NM, Lotsch BV. Chemical stability and ionic conductivity of LGPS-type solid electrolyte tetra-Li7SiPS8 after solvent treatment. ACS Appl Energy Mater. 2021;4(9):9932–9943.
Deng T, Ji X, Zhao Y, Cao L, Li S, Hwang S, Luo C, Wang P, Jia H, Fan X, et al. Tuning the anode-electrolyte Interface chemistry for garnet-based solid-state Li metal batteries. Adv Mater. 2020;32(23):Article e2000030.
Bates J, Dudney N, Gruzalski G, Zuhr R, Choudhury A, Luck C, Robertson J. Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics. 1992;53(Pt. 1):647–654.