PDF (10.8 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
References
Show full outline
Hide outline
Review Article | Open Access

Recent Advances and Perspectives of Covalent Organic Frameworks for Alkali-Ion Batteries

Tao Yang1Xijun Xu1()Yan Yang2Weizhen Fan3Yanxue Wu4Shaomin Ji1Jingwei Zhao3()Jun Liu2()Yanping Huo1,4()
College of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510641, China
Research and Development Center, Guangzhou Tinci Materials Technology Co. Ltd., Guangzhou 510765, China
Analytical & Testing Center, Guangdong University of Technology, Guangzhou 510006, PR China
Show Author Information

Abstract

Covalent organic frameworks (COFs), a novel class of crystalline porous materials constructed by covalent bonds, possess ordered porous structures via thermodynamically controlled polymerization reactions. Because of their structurally diverse, regular pore structures, high surface area, and thermal stability can be functionally tailored through different synthetic methods to meet the needs of various applications including for secondary batteries. This review summarized recent efforts that have been devoted to designing and synthesizing COF-based materials for battery applications, including electrode materials, electrolytes, and separators. Unique characteristics of COFs allow for the rational design of targeted functions, suppression of side reactions, and promotion of ion transport for batteries. This review clarified recent research progress on COF materials for lithium-ion batteries, lithium–sulfur batteries, sodium-ion batteries, potassium-ion batteries and so on. This review pointed out the structure and chemical properties of COFs, as well as new strategies to improve battery performance. Furthermore, we concluded the major challenges and future trends of COF materials in electrochemical applications. It is hoped that this review will provide meaningful guidance for the development of COFs for alkali-ion batteries.

References

1

Li F, Liu Z, Liao C, Xu X, Zhu M, Liu J. Gradient boracic polyanion doping-derived surface lattice modulation of high-voltage Ni-rich layered cathodes for high-energy-density Li-ion batteries. ACS Energy Lett. 2023;8(11):4903–4914.

2

Xu X, Liu J, Liu J, Ouyang L, Hu R, Wang H, Yang L, Zhu M. A general metal-organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries. Adv Funct Mater. 2018;28(16):1707573.

3

Xu X, Li F, Zhang D, Ji S, Huo Y, Liu J. Facile construction of CoSn/Co3Sn2@C nanocages as anode for superior lithium-/sodium-ion storage. Carbon Neutralization. 2023;2(1):54–62.

4

Liao Y, Xu X, Luo X, Ji S, Zhao J, Liu J, Huo Y. Recent progress in flame-retardant polymer electrolytes for solid-state lithium metal batteries. Batteries. 2023;9(9):439.

5

Zhang D, Liu Y, Sun Z, Liu Z, Xu X, Xi L, Ji S, Zhu M, Liu J. Eutectic-based polymer electrolyte with the enhanced lithium salt dissociation for high-performance lithium metal batteries. Angew Chem Int Ed. 2023;62(44):Article e202310006.

6

Peng C, Xu X, Li F, Xi L, Zeng J, Song X, Wan X, Zhao J, Liu J. Recent progress of promising cathode candidates for sodium-ion batteries: Current issues, strategy, challenge, and prospects. Small Struct. 2023;4(10):2300150.

7

Xu X, Li F, Zhang D, Liu Z, Zuo S, Zeng Z, Liu J. Self-sacrifice template construction of uniform yolk–shell ZnS@C for superior alkali-ion storage. Adv Sci. 2022;9(14):e2200247.

8

Yoon M, Dong Y, Hwang J, Sung J, Cha H, Ahn K, Huang Y, Kang SJ, Li J, Cho J. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat Energy. 2021;6(4):362–371.

9

Li J, Lin C, Weng M, Qiu Y, Chen P, Yang K, Huang W, Hong Y, Li J, Zhang M, et al. Structural origin of the high-voltage instability of lithium cobalt oxide. Nat Nanotechnol. 2021;16(5):599–605.

10

Huang Y, Dong Y, Li S, Lee J, Wang C, Zhu Z, Xue W, Li Y, Li J. Lithium manganese spinel cathodes for lithium-ion batteries. Adv Energy Mater. 2021;11(2):2000997.

11

Thackeray MM, Amine K. LiMn2O4 spinel and substituted cathodes. Nat Energy. 2021;6(5):566–566.

12

Manthiram A, Goodenough JB. Layered lithium cobalt oxide cathodes. Nat Energy. 2021;6(3):323–323.

13

Sakaushi K, Antonietti M. Carbon- and nitrogen-based organic frameworks. Acc Chem Res. 2015;48(6):1591–1600.

14

Grey CP, Tarascon JM. Sustainability and in situ monitoring in battery development. Nat Mater. 2017;16(1):45–56.

15

Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7(1):19–29.

16

Javed MS, Mateen A, Hussain I, Ahmad A, Mubashir M, Khan S, Assiri MA, Eldin SM, Shah SSA, Han W. Recent progress in the design of advanced MXene/metal oxides-hybrid materials for energy storage devices. Energy Stor Mater. 2022;53:827–872.

17

Chen Y, Fan K, Gao Y, Wang C. Challenges and perspectives of organic multivalent metal-ion batteries. Adv Mater. 2022;34(52):e2200662.

18

Zhang A, Wang C, Fan W, Zhao J, Huo Y, Xu X. Anhydride type film-forming electrolyte additives for high-temperature LiNi0.6Co0.2Mn0.2O2//graphite pouch cells. Prog Nat Sci Mater. 2023;33(3):320–327.

19

Song X, Xu X, Liu J. Application of metal/covalent organic frameworks in separators for metal-ion batteries. ChemNanoMat. 2023;9(10):Article e202300246.

20

Wu Y, Shen J, Sun Z, Yang Y, Li F, Ji S, Zhu M, Liu J. Nine-electron transfer of binder synergistic π-d conjugated coordination polymers as high-performance lithium storage materials. Angew Chem Int Ed. 2023;135(4):Article e202215864.

21

Zhang K, Kirlikovali KO, Varma RS, Jin Z, Jang HW, Farha OK, Shokouhimehr M. Covalent organic frameworks: Emerging organic solid materials for energy and electrochemical applications. ACS Appl Mater Interfaces. 2020;12(25):27821–27852.

22

Sun T, Xie J, Guo W, Li D-S, Zhang Q. Covalent–organic frameworks: Advanced organic electrode materials for rechargeable batteries. Adv Energy Mater. 2020;10(19):1904199.

23

Jeong K, Park S, Jung GY, Kim SH, Lee YH, Kwak SK, Lee SY. Solvent-free, single lithium-ion conducting covalent organic frameworks. J Am Chem Soc. 2019;141(14):5880–5885.

24

Mao M, Luo C, Pollard TP, Hou S, Gao T, Fan X, Cui C, Yue J, Tong Y, Yang G, et al. A pyrazine-based polymer for fast-charge batteries. Angew Chem Int Ed. 2019;58(49):17820–17826.

25

Wang Z, Jin W, Huang X, Lu G, Li Y. Covalent organic frameworks as electrode materials for metal ion batteries: A current review. Chem Rec. 2020;20(10):1198–1219.

26

Zhu D, Xu G, Barnes M, Li Y, Tseng CP, Zhang Z, Zhang J-J, Zhu Y, Khalil S, Rahman MM, et al. Covalent organic frameworks for batteries. Adv Funct Mater. 2021;31(32):2100505.

27

Bao R, Xiang Z, Qiao Z, Yang Y, Zhang Y, Cao D, Wang S. Designing thiophene-enriched fully conjugated 3D covalent organic framework as metal-free oxygen reduction catalyst for hydrogen fuel cells. Angew Chem Int Ed. 2023;62(4):Article e202216751.

28

Sun W, Zhou C, Fan Y, He Y, Zhang H, Quan Z, Kong H, Fu F, Qin J, Shen Y, et al. Ion Co-storage in porous organic frameworks through on-site coulomb interactions for high energy and power density batteries. Angew Chem Int Ed. 2023;62(13):Article e202300158.

29

Wang S, Wang Q, Shao P, Han Y, Gao X, Ma L, Yuan S, Ma X, Zhou J, Feng X, et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J Am Chem Soc. 2017;139(12):4258–4261.

30

Wu M, Zhao Y, Zhao R, Zhu J, Liu J, Zhang Y, Li C, Ma Y, Zhang H, Chen Y. Chemical design for both molecular and morphology optimization toward high-performance lithium-ion batteries cathode material based on covalent organic framework. Adv Funct Mater. 2022;32(11):2107703.

31

Qin K, Holguin K, Huang J, Mohammadiroudbari M, Chen F, Yang Z, Xu G, Luo C. A fast-charging and high-temperature all-organic rechargeable potassium battery. Adv Sci. 2022;9(34):2106116.

32

Chen X, Zhang H, Ci C, Sun W, Wang Y. Few-layered boronic ester based covalent organic frameworks/carbon nanotube composites for high-performance K-organic batteries. ACS Nano. 2019;13(3):3600–3607.

33

Park J, Lee M, Feng D, Huang Z, Hinckley AC, Yakovenko A, Zou X, Cui Y, Bao Z. Stabilization of hexaaminobenzene in a 2D conductive metal–organic framework for high power sodium storage. J Am Chem Soc. 2018;140(32):10315–10323.

34

Xu S, Wang G, Biswal BP, Addicoat M, Paasch S, Sheng W, Zhuang X, Brunner E, Heine T, Berger R, et al. A nitrogen-rich 2D sp2 -carbon-linked conjugated polymer framework as a high-performance cathode for lithium-ion batteries. Angew Chem Int Ed Engl. 2019;58(3):849–853.

35

Gao X, Dong Y, Li S, Zhou J, Wang L, Wang B. MOFs and COFs for batteries and supercapacitors. Electrochem Energy Rev. 2020;3(1):81–126.

36

Yu S-Y, Mahmood J, Noh H-J, Seo J-M, Jung S-M, Shin S-H, Im Y-K, Jeon I-Y, Baek J-B. Direct synthesis of a covalent triazine-based framework from aromatic amides. Angew Chem Int Ed. 2018;57(28):8438–8442.

37

Zeng L, Zhou T, Xu X, Li F, Shen J, Zhang D, Liu J, Zhu M. General construction of lithiophilic 3D skeleton for dendrite-free lithium metal anode via a versatile MOF-derived route. Sci China Mater. 2022;65(2):337–348.

38

Olajire AA. Recent advances in the synthesis of covalent organic frameworks for CO2 capture. J CO2 Util. 2017;17:137–161.

39

Zhao X, Pachfule P, Thomas A. Covalent organic frameworks (COFs) for electrochemical applications. Chem Soc Rev. 2021;50(12):6871–6913.

40

Sasmal HS, Kumar Mahato A, Majumder P, Banerjee R. Landscaping covalent organic framework nanomorphologies. J Am Chem Soc. 2022;144(26):11482–11498.

41

Deng N, Liu Y, Yu W, Kang J, Li Q, Gao H, Zhang L, Kang W, Liu Y, Cheng B. Rational design and preparation of covalent organic frameworks and their functional mechanism analysis for lithium-ion and lithium sulfur/selenium cells. Energy Storage Mater. 2022;46:29–67.

42

Zhou J, Wang B. Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chem Soc Rev. 2017;46(22):6927–6945.

43

Ma H, Liu B, Li B, Zhang L, Li Y-G, Tan H-Q, Zang H-Y, Zhu G. Cationic covalent organic frameworks: A simple platform of anionic exchange for porosity tuning and proton conduction. J Am Chem Soc. 2016;138(18):5897–5903.

44

Liu R, Tan KT, Gong Y, Chen Y, Li Z, Xie S, He T, Lu Z, Yang H, Jiang D. Covalent organic frameworks: An ideal platform for designing ordered materials and advanced applications. Chem Soc Rev. 2021;50(1):120–242.

45

Chen H, Tu H, Hu C, Liu Y, Dong D, Sun Y, Dai Y, Wang S, Qian H, Lin Z, et al. Cationic covalent organic framework nanosheets for fast Li-ion conduction. J Am Chem Soc. 2018;140(3):896–899.

46

Kandambeth S, Mallick A, Lukose B, Mane MV, Heine T, Banerjee R. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J Am Chem Soc. 2012;134(48):19524–19527.

47

Lohse MS, Bein T. Covalent organic frameworks: Structures, synthesis, and applications. Adv Funct Mater. 2018;28(33):1705553.

48

Ding M, Cai X, Jiang HL. Improving MOF stability: Approaches and applications. Chem Sci. 2019;10(44):10209–10230.

49

Wang H, Zeng Z, Xu P, Li L, Zeng G, Xiao R, Tang Z, Huang D, Tang L, Lai C, et al. Recent progress in covalent organic framework thin films: Fabrications, applications and perspectives. Chem Soc Rev. 2019;48(2):488–516.

50

Xu F, Jin S, Zhong H, Wu D, Yang X, Chen X, Wei H, Fu R, Jiang D. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Sci Rep. 2015;5(1):8225.

51

Wu C, Hu M, Yan X, Shan G, Liu J, Yang J, Xu Y. Azo-linked covalent triazine-based framework as organic cathodes for ultrastable capacitor-type lithium-ion batteries. Energy Storage Mater. 2021;36:347–354.

52

Liu J, Lyu P, Zhang Y, Nachtigall P, Xu Y. New layered triazine framework/exfoliated 2D polymer with superior sodium-storage properties. Adv Mater. 2018;30(11):1705401.

53

Sheng L, Wang L, Wang J, Xu H, He X. Accelerated lithium-ion conduction in covalent organic frameworks. Chem Commun. 2020;56(72):10465–10468.

54

Ding SY, Gao J, Wang Q, Zhang Y, Song WG, Su CY, Wang W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J Am Chem Soc. 2011;133(49):19816–19822.

55

Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. Science. 2005;310(5751):1166–1170.

56

El-Kaderi HM, Hunt JR, Mendoza-Cortés JL, Côté AP, Taylor RE, O’Keeffe M, Yaghi OM. Designed synthesis of 3D covalent organic frameworks. Science. 2007;316(5822):268–272.

57

Kuhn P, Antonietti M, Thomas A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem Int Ed. 2008;47(18):3450–3453.

58

Shi QX, Pei HJ, You N, Wu J, Xiang X, Xia Q, Xie XL, Jin SB, Ye YS. Large-scaled covalent triazine framework modified separator as efficient inhibit polysulfide shuttling in Li-S batteries. Chem Eng J. 2019;375:Article 121977.

59

Gong W, Ouyang Y, Guo S, Xiao Y, Zeng Q, Li D, Xie Y, Zhang Q, Huang S. Covalent organic framework with multi-cationic molecular chains for gate mechanism controlled superionic conduction in all-solid-state batteries. Angew Chem Int Ed. 2023;62(25):Article e202302505.

60

Wu S, Yao Y, Nie X, Yu Z, Yu Y, Huang F. Interfacial engineering of binder-free Janus separator with ultra-thin multifunctional layer for simultaneous enhancement of both metallic Li anode and sulfur cathode. Small. 2022;18(28):2202651.

61

Liao H, Ding H, Li B, Ai X, Wang C. Covalent-organic frameworks: Potential host materials for sulfur impregnation in lithium–sulfur batteries. J Mater Chem A. 2014;2(23):8854–8858.

62

Li M, Lu J, Chen Z, Amine K. 30 years of lithium-ion batteries. Adv Mater. 2018;30(33):1800561.

63

Lin Y, Cui H, Liu C, Li R, Wang S, Qu G, Wei Z, Yang Y, Wang Y, Tang Z, et al. A covalent organic framework as a long-life and high-rate anode suitable for both aqueous acidic and alkaline batteries. Angew Chem Int Ed. 2023;62(14):Article e202218745.

64

Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem Rev. 2017;117(15):10403–10473.

65

Zhang JG, Xu W, Xiao J, Cao X, Liu J. Lithium metal anodes with nonaqueous electrolytes. Chem Rev. 2020;120(24):13312–13348.

66

Guo J, Jiang D. Covalent organic frameworks for heterogeneous catalysis: Principle, current status, and challenges. ACS Cent Sci. 2020;6(6):869–879.

67

Zhao Z, Chen W, Impeng S, Li M, Wang R, Liu Y, Zhang L, Dong L, Unruangsri J, Peng C, et al. Covalent organic framework-based ultrathin crystalline porous film: Manipulating uniformity of fluoride distribution for stabilizing lithium metal anode. J Mater Chem A. 2020;8(6):3459–3467.

68

Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017;12(3):194–206.

69

Polczyk T, Nagai A. Covalent organic framework-based electrolytes for lithium solid-state batteries—Recent progress. Batteries. 2023;9(9):469.

70

Yang Z, Wang T, Chen H, Suo X, Halstenberg P, Lyu H, Jiang W, Mahurin SM, Popovs I, Dai S. Surpassing the organic cathode performance for lithium-ion batteries with robust fluorinated covalent quinazoline networks. ACS Energy Lett. 2021;6(1):41–51.

71

Wang W, Kale VS, Cao Z, Lei Y, Kandambeth S, Zou G, Zhu Y, Abouhamad E, Shekhah O, Cavallo L, et al. Molecular engineering of covalent organic framework cathodes for enhanced zinc-ion batteries. Adv Mater. 2021;33(39):2103617.

72

Cao Y, Fang H, Guo C, Sun W, Xu Y, Wu Y, Wang Y. Alkynyl boosted high-performance lithium storage and mechanism in covalent phenanthroline framework. Angew Chem Int Ed. 2023;62(30):Article e202302143.

73

Cao Y, Sun Y, Guo C, Sun W, Wu Y, Xu Y, Liu T, Wang Y. Dendritic sp carbon-conjugated benzothiadiazole-based polymers with synergistic multi-active groups for high-performance lithium organic batteries. Angew Chem Int Ed. 2024;63(1):Article e202316208.

74

Dahn JR, Zheng T, Liu Y, Xue JS. Mechanisms for lithium insertion in carbonaceous materials. Science. 1995;270(5236):590–593.

75

Zhou P, Papanek P, Bindra C, Lee R, Fischer JE. High capacity carbon anode materials: Structure, hydrogen effect, and stability. J Power Sources. 1997;68(2):296–300.

76

He J, Wang N, Cui Z, Du H, Fu L, Huang C, Yang Z, Shen X, Yi Y, Tu Z, et al. Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries. Nat Commun. 2017;8(1):1172.

77

Xia S-B, Cai Y-Q, Yao L-F, Shi J-Y, Cheng F-X, Liu J-J, He Z-j, Zheng J-C. Nitrogen-rich two-dimensional π-conjugated porous covalent quinazoline polymer for lithium storage. Energy Storage Mater. 2022;50:225–233.

78

Zhao J, Zhou M, Chen J, Tao L, Zhang Q, Li Z, Zhong S, Fu H, Wang H, Wu L. Phthalocyanine-based covalent organic frameworks as novel anode materials for high-performance lithium-ion/sodium-ion batteries. Chem Eng J. 2021;425:Article 131630.

79

Lei Z, Yang Q, Xu Y, Guo S, Sun W, Liu H, Lv LP, Zhang Y, Wang Y. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nat Commun. 2018;9(1):576.

80

Yang H, Zhang S, Han L, Zhang Z, Xue Z, Gao J, Li Y, Huang C, Yi Y, Liu H, et al. High conductive two-dimensional covalent organic framework for lithium storage with large capacity. ACS Appl Mater Interfaces. 2016;8(8):5366–5375.

81

Peng C, Ning GH, Su J, Zhong G, Tang W, Tian B, Su C, Yu D, Zu L, Yang J, et al. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nat Energy. 2017;2(7):17074.

82

Bai L, Gao Q, Zhao Y. Two fully conjugated covalent organic frameworks as anode materials for lithium ion batteries. J Mater Chem A. 2016;4(37):14106–14110.

83

Zhou R, Huang Y, Li Z, Kang S, Wang X, Liu S. Piperazine-based two-dimensional covalent organic framework for high performance anodic lithium storage. Energy Storage Mater. 2021;40:124–138.

84

Wu M, Zhao Y, Zhang H, Zhu J, Ma Y, Li C, Zhang Y, Chen Y. A 2D covalent organic framework with ultra-large interlayer distance as high-rate anode material for lithium-ion batteries. Nano Res. 2022;15(11):9779–9784.

85

Luo Z, Liu L, Ning J, Lei K, Lu Y, Li F, Chen J. A microporous covalent–organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew Chem In Ed. 2018;57(30):9443–9446.

86

Yao C-J, Wu Z, Xie J, Yu F, Guo W, Xu ZJ, Li D-S, Zhang S, Zhang Q. Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery. ChemSusChem. 2020;13(9):2457–2463.

87

Vitaku E, Gannett CN, Carpenter KL, Shen L, Abruña HD, Dichtel WR. Phenazine-based covalent organic framework cathode materials with high energy and power densities. J Am Chem Soc. 2020;142(1):16–20.

88

Singh V, Kim J, Kang B, Moon J, Kim S, Kim WY, Byon HR. Thiazole-linked covalent organic framework promoting fast two-electron transfer for lithium-organic batteries. Adv Energy Mater. 2021;11(17):2003735.

89

Wu M, Zhao Y, Sun B, Sun Z, Li C, Han Y, Xu L, Ge Z, Ren Y, Zhang M, et al. A 2D covalent organic framework as a high-performance cathode material for lithium-ion batteries. Nano Energy. 2020;70:Article 104498.

90

Yang X, Gong L, Liu X, Zhang P, Li B, Qi D, Wang K, He F, Jiang J. Mesoporous polyimide-linked covalent organic framework with multiple redox-active sites for high-performance cathodic Li storage. Angew Chem Int Ed. 2022;61(31):Article e202207043.

91

Wang G, Chandrasekhar N, Biswal BP, Becker D, Paasch S, Brunner E, Addicoat M, Yu M, Berger R, Feng X. A crystalline, 2D polyarylimide cathode for ultrastable and ultrafast Li storage. Adv Mater. 2019;31(28):e1901478.

92

Gao H, Zhu Q, Neale AR, Bahri M, Wang X, Yang H, Liu L, Clowes R, Browning ND, Sprick RS, et al. Integrated covalent organic framework/carbon nanotube composite as Li-ion positive electrode with ultra-high rate performance. Adv Energy Mater. 2021;11(39):2101880.

93

Wang K, Yang L, Wang X, Guo L, Cheng G, Zhang C, Jin S, Tan B, Cooper A. Covalent triazine frameworks via a low-temperature polycondensation approach. Angew Chem Int Ed Engl. 2017;56(45):14149–14153.

94

Liu Y, Tao X, Wang Y, Jiang C, Ma C, Sheng O, Lu G, Lou XWD, David). Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science. 2022;375(6582):739–745.

95

Dong D, Zhang H, Zhou B, Sun Y, Zhang H, Cao M, Li J, Zhou H, Qian H, Lin Z, et al. Porous covalent organic frameworks for high transference number polymer-based electrolytes. Chem Commun. 2019;55(10):1458–1461.

96

Li X, Hou Q, Huang W, Xu HS, Wang X, Yu W, Li R, Zhang K, Wang L, Chen Z, et al. Solution-processable covalent organic framework electrolytes for all-solid-state Li–organic batteries. ACS Energy Lett. 2020;5(11):3498–3506.

97

Li Z, Liu Z-W, Mu Z-J, Cao C, Li Z, Wang T-X, Li Y, Ding X, Han B-H, Feng W. Cationic covalent organic framework based all-solid-state electrolytes. Mater Chem Front. 2020;4(4):1164–1173.

98

Hu Y, Dunlap N, Wan S, Lu S, Huang S, Sellinger I, Ortiz M, Jin Y, Lee SH, Zhang W. Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity. J Am Chem Soc. 2019;141(18):7518–7525.

99

Li X, Tian Y, Shen L, Qu Z, Ma T, Sun F, Liu X, Zhang C, Shen J, Li X, et al. Electrolyte interphase built from anionic covalent organic frameworks for lithium dendrite suppression. Adv Funct Mater. 2021;31(22):2009718.

100

Xu Y, Gao L, Liu Q, Liu Q, Chen Z, Zhao W, Kong X, Wu HB. Segmental molecular dynamics boosts Li-ion conduction in metal-organic solid electrolytes for Li-metal batteries. Energy Storage Mater. 2023;54:854–862.

101

Zhao L, Peng Y, Ran F. Constructing mutual-philic electrode/non-liquid electrolyte interfaces in electrochemical energy storage systems: Reasons, progress, and perspectives. Energy Storage Mater. 2023;58:48–73.

102

Zhang G, Hong Y-L, Nishiyama Y, Bai S, Kitagawa S, Horike S. Accumulation of glassy poly(ethylene oxide) anchored in a covalent organic framework as a solid-state Li+ electrolyte. J Am Chem Soc. 2019;141(3):1227–1234.

103

Li H, Xu X, Li F, Zhao J, Ji S, Liu J, Huo Y. Defects-abundant Ga2O3 nanobricks enabled multifunctional solid polymer electrolyte for superior lithium-metal batteries. Chem Eur J. 2023;29(24):Article e202204035.

104

Cheng Z, Lu L, Zhang S, Liu H, Xing T, Lin Y, Ren H, Li Z, Zhi L, Wu M. Amphoteric covalent organic framework as single Li+ superionic conductor in all-solid-state. Nano Res. 2023;16(1):528–535.

105

Xuan Y, Wang Y, He B, Bian S, Liu J, Xu B, Zhang G. Covalent organic framework-derived quasi-solid electrolyte for low-temperature lithium-ion battery. Chem Mater. 2022;34(20):9104–9110.

106

Zhang J, Luo D, Xiao H, Zhao H, Ding B, Dou H, Zhang X. Post-synthetic covalent organic framework to improve the performance of solid-state Li+ electrolytes. ACS Appl Mater Interfaces. 2023;15(29):34704–34710.

107

Zhou T, Zhao Y, Choi JW, Coskun A. Lithium-salt mediated synthesis of a covalent triazine framework for highly stable lithium metal batteries. Angew Chem Int Ed. 2019;58(47):16795–16799.

108

Lin Z, Wang Y, Li Y, Liu Y, Zhong S, Xie M, Yan F, Zhang Z, Peng J, Li J, et al. Regulating solvation structure in gel polymer electrolytes with covalent organic frameworks for lithium metal batteries. Energy Storage Mater. 2022;53:917–926.

109

Hu P, Chen W, Wang Y, Chen T, Qian X, Li W, Chen J, Fu J. Fatigue-Free and Skin-like Supramolecular Ion-Conductive Elastomeric Interphases for Stable Lithium Metal Batteries. ACS Nano 2023;17(16):16239–16251

110

Yang Y, Zhang C, Zhao G, An Q, Mei Z, Sun Y, Xu Q, Wang X, Guo H. Regulating theelectron structure of covalent organic frameworks by strongelectron-withdrawing nitro to construct specific Li+ oriented channel. Adv Energy Mater. 2023;13(26):2300725.

111

Chen D, Huang S, Zhong L, Wang S, Xiao M, Han D, Meng Y. In situ preparation of thin and rigid COF film on Li anode as artificial solid electrolyte interphase layer resisting Li dendrite puncture. Adv Funct Mater. 2020;30(7):1907717.

112

Lagadec MF, Zahn R, Wood V. Characterization and performance evaluation of lithium-ion battery separators. Nat Energy. 2018;4(1):16–25.

113

Sheng L, Wang Q, Liu X, Cui H, Wang X, Xu Y, Li Z, Wang L, Chen Z, Xu GL, et al. Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator. Nat Commun. 2022;13(1):172.

114

Ying Y, Tong M, Ning S, Ravi SK, Peh SB, Tan SC, Pennycook SJ, Zhao D. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. J Am Chem Soc. 2020;142(9):4472–4480.

115

Sun W, Zhang J, Xie M, Lu D, Zhao Z, Li Y, Cheng Z, Zhang S, Chen H. Ultrathin aramid/COF heterolayered membrane for solid-state Li-metal batteries. Nano Lett. 2020;20(11):8120–8126.

116

Guo Z, Zhang Y, Dong Y, Li J, Li S, Shao P, Feng X, Wang B. Fast ion transport pathway provided by polyethylene glycol confined in covalent organic frameworks. J Am Chem Soc. 2019;141(5):1923–1927.

117

Yang Y, Yao S, Liang Z, Wen Y, Liu Z, Wu Y, Liu J, Zhu M. A self-supporting covalent organic framework separator with desolvation effect for high energy density lithium metal batteries. ACS Energy Lett. 2022;7(2):885–896.

118

Manigrasso J, Chillón I, Genna V, Vidossich P, Somarowthu S, Pyle AM, De Vivo M, Marcia M. Visualizing group Ⅱ intron dynamics between the first and second steps of splicing. Nat Commun. 2020;11(1):2837.

119

Wang C, Li W, Jin Y, Liu J, Wang H, Zhang Q. Functional separator enabled by covalent organic frameworks for high-performance Li metal batteries. Small. 2023;19(28):2300023.

120

Yao S, Yang Y, Liang Z, Chen J, Ding J, Li F, Liu J, Xi L, Zhu M, Liu J. A dual−functional cationic covalent organic frameworks modified separator for high energy lithium metal batteries. Adv Funct Mater. 2023;33(13):2212466.

121

Hwang J-Y, Myung S-T, Sun Y-K. Recent progress in rechargeable potassium batteries. Adv Funct Mater. 2018;28(43):1802938.

122

Zuo X, Zhu J, Müller-Buschbaum P, Cheng YJ. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy. 2017;31:113–143.

123

Zheng Y, Liu J, Huang D, Chen H, Hou X. Prepare and optimize NASICON-type Na4MnAl(PO4)3 as low cost cathode for sodium ion batteries. Surf Interfaces. 2022;32:Article 102151.

124

Zhang Z, Wang R, Zeng J, Shi K, Zhu C, Yan X. Size effects in sodium ion batteries. Adv Funct Mater. 2021;31(52):2106047.

125

Shan Y, He Y, Gu Y, Sun Y, Yang N, Jiang H, Wang F, Li C, Jiang D-e, Liu H, et al. Sodium storage in triazine-based molecular organic electrodes: The importance of hydroxyl substituents. Chem Eng J. 2022;430:Article 133055.

126

Li J, Jing X, Li Q, Li S, Gao X, Feng X, Wang B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem Soc Rev. 2020;49(11):3565–3604.

127

Shehab MK, Weeraratne KS, Huang T, Lao KU, El-Kaderi HM. Exceptional sodium-ion storage by an aza-covalent organic framework for high energy and power density sodium-ion batteries. ACS Appl Mater Interfaces. 2021;13(13):15083–15091.

128

Tong Z, Wang H, Kang T, Wu Y, Guan Z, Zhang F, Tang Y, Lee C-S. Ionic covalent organic frameworks with tailored anionic redox chemistry and selective ion transport for high-performance Na-ion cathodes. J Energy Chem. 2022;75:441–447.

129

Vedachalam S, Sekar P, Nithya C, Murugesh N, Karvembu R. Dopant-free main group elements supported covalent organic–inorganic hybrid conducting polymer for sodium-ion battery application. ACS Appl Energy Mater. 2022;5(1):557–566.

130

Qiu X, Wang X, He Y, Liang J, Liang K, Tardy BL, Richardson JJ, Hu M, Wu H, Zhang Y, et al. Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries. Sci Adv. 2021;7(37):eabh3482.

131

Haldar S, Kaleeswaran D, Rase D, Roy K, Ogale S, Vaidhyanathan R. Tuning the electronic energy level of covalent organic frameworks for crafting high-rate Na-ion battery anode. Nanoscale Horiz. 2020;5(8):1264–1273.

132

Shi R, Liu L, Lu Y, Wang C, Li Y, Li L, Yan Z, Chen J. Nitrogen-rich covalent organic frameworks with multiple carbonyls for high-performance sodium batteries. Nat Commun. 2020;11(1):178.

133

Rajagopalan R, Tang Y, Ji X, Jia C, Wang H. Advancements and challenges in potassium ion batteries: A comprehensive review. Adv Funct Mater. 2020;30(12):1909486.

134

Duan J, Wang W, Zou D, Liu J, Li N, Weng J, Xu L-P, Guan Y, Zhang Y, Zhou P. Construction of a few-layered COF@CNT composite as an ultrahigh rate cathode for low-cost K-ion batteries. ACS Appl Mater Interfaces. 2022;14(27):31234–31244.

135

Luo LW, Zhang C, Xiong P, Zhao Y, Ma W, Chen Y, Zeng JH, Xu Y, Jiang JX. A redox-active conjugated microporous polymer cathode for high-performance lithium/potassium-organic batteries. Sci China Chem. 2021;64(1):72–81.

136

Wolfson ER, Schkeryantz L, Moscarello EM, Fernandez JP, Paszek J, Wu Y, Hadad CM, McGrier PL. Alkynyl-based covalent organic frameworks as high-performance anode materials for potassium-ion batteries. ACS Appl Mater Interfaces. 2021;13(35):41628–41636.

137

Zhang H, Sun W, Chen X, Wang Y. Few-layered fluorinated triazine-based covalent organic nanosheets for high-performance alkali organic batteries. ACS Nano. 2019;13(12):14252–14261.

138

Li S, Liu Y, Dai L, Li S, Wang B, Xie J, Li P. A stable covalent organic framework cathode enables ultra-long cycle life for alkali and multivalent metal rechargeable batteries. Energy Storage Mater. 2022;48:439–446.

139

Weeraratne KS, Alzharani AA, El-Kaderi HM. Redox-active porous organic polymers as novel electrode materials for green rechargeable sodium-ion batteries. ACS Appl Mater Interfaces. 2019;11(26):23520–23526.

140

Chen XL, Xie M, Zheng ZL, Luo X, Jin H, Chen YF, Yang GZ, Bin DS, Li D. Multiple accessible redox-active sites in a robust covalent organic framework for high-performance potassium storage. J Am Chem Soc. 2023;145(9):5105–5113.

141

Liang Z, Shen J, Xu X, Li F, Liu J, Yuan B, Yu Y, Zhu M. Advances in the development of single-atom catalysts for high-energy-density lithium–sulfur batteries. Adv Mater. 2022;34(30):2200102.

142

Kim J, Elabd A, Chung SY, Coskun A, Choi JW. Covalent triazine frameworks incorporating charged polypyrrole channels for high-performance lithium–sulfur batteries. Chem Mater. 2020;32(10):4185–4193.

143

Hu X, Jian J, Fang Z, Zhong L, Yuan Z, Yang M, Ren S, Zhang Q, Chen X, Yu D. Hierarchical assemblies of conjugated ultrathin COF nanosheets for high-sulfur-loading and long-lifespan lithium–sulfur batteries: Fully-exposed porphyrin matters. Energy Storage Mater. 2019;22:40–47.

144

Liang Y, Xia T, Chang Z, Xie W, Li Y, Li C, Fan R, Wang W, Sui Z, Chen Q. Boric acid functionalized triazine-based covalent organic frameworks with dual-function for selective adsorption and lithium-sulfur battery cathode. Chem Eng J. 2022;437:Article 135314.

145

Ai Q, Fang Q, Liang J, Xu X, Zhai T, Gao G, Guo H, Han G, Ci L, Lou J. Lithium-conducting covalent-organic-frameworks as artificial solid-electrolyte-interphase on silicon anode for high performance lithium ion batteries. Nano Energy. 2020;72:Article 104657.

146

Shen J, Xu X, Liu J, Wang Z, Zuo S, Liu Z, Zhang D, Liu J, Zhu M. Unraveling the catalytic activity of Fe–based compounds toward Li2Sx in Li–S chemical system from dp bands. Adv Energy Mater. 2021;11(26):2100673.

147

Xu Y, Zhou Y, Li T, Jiang S, Qian X, Yue Q, Kang Y. Multifunctional covalent organic frameworks for high capacity and dendrite-free lithium metal batteries. Energy Storage Mater. 2020;25:334–341.

148

Li M, Wang Y, Sun S, Yang Y, Gu G, Zhang Z. Rational design of an allyl-rich triazine-based covalent organic framework host used as efficient cathode materials for Li-S batteries. Chem Eng J. 2022;429:Article 132254.

149

Zhou C, Gong X, Feng Y, Lu J, Fu Y, Wang Z, Liu J. Constructing an artificial boundary to regulate solid electrolyte interface formation and synergistically enhance stability of nano-Si anodes. J Colloid Interface Sci. 2022;619:158–167.

150

Geng K, He T, Liu R, Dalapati S, Tan KT, Li Z, Tao S, Gong Y, Jiang Q, Jiang D. Covalent organic frameworks: Design, synthesis, and functions. Chem Rev. 2020;120(16):8814–8933.

151

Wu M, Zhou Z. Covalent organic frameworks as electrode materials for rechargeable metal-ion batteries. Interdiscip Mater. 2023;2(2):231–259.

Energy Material Advances
Article number: 0078
Cite this article:
Yang T, Xu X, Yang Y, et al. Recent Advances and Perspectives of Covalent Organic Frameworks for Alkali-Ion Batteries. Energy Material Advances, 2024, 5: 0078. https://doi.org/10.34133/energymatadv.0078
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return