Simultaneously improving electrical conductivity and Seebeck coefficient of carbon nanotubes to enhance their thermoelectric properties still poses substantial challenges. To enhance the thermoelectric properties of single-walled carbon nanotubes (SWCNTs), a physical blending method is employed to fabricate aniline tetramer nanowires/SWCNTs films (ANIT-NW/SWCNTs) by a simple blend of ANIT-NW and SWCNTs. The intertwining of ANIT-NW and SWCNTs creates a dense 3-dimensional network structure, establishing tight connections between SWCNTs bundles and ANIT-NW. The incorporation of ANIT-NW yields simultaneous enhancements in electrical conductivity and Seebeck coefficient, which is achieved by markedly increasing carrier mobility and reducing carrier concentration, respectively. The resulting power factor (PF) of ANIT-NW/SWCNTs reaches an impressive value of 146.7 μW·m−1·K−2. Furthermore, by utilizing ANIT-NW/SWCNTs as p-type legs and polyethyleneimine/SWCNTs as n-type legs, a thermoelectric module comprising 5 pairs of legs is constructed. This module exhibits an open-circuit voltage of 22 mV and an output power of 2.94 μW when subjected to a temperature difference of 50 K, while being loaded with a 60-Ω resistor. Therefore, these findings demonstrate the potential applications of ANIT-NW/SWCNTs films for flexible thermoelectric materials.
Huang X, Deng L, Liu F, Zhang Q, Chen G. Effect of crystalline microstructure evolution on thermoelectric performance of PEDOT:PSS films. Energy Mater Adv. 2021;2021:Article 1572537.
Li X, Chen C, Yin L, Wang X, Mao J, Cao F, Zhang Q. Realizing an excellent conversion efficiency of 14.5% in the Mg3Sb2/GeTe–based thermoelectric module for waste heat recovery. Energy Environ Sci. 2023;16(12):6147–6154.
Sarbajna A, Rösch AG, Franke L, Lemmer U, Mallick M. Inorganic-based printed thermoelectric materials and devices. Adv Eng Mater. 2023;25(2):2200980.
Hu Y, Zhang Y, Chen G. Flexible films of tourmaline thermoelectric composite via acid treatment and embedding single-walled carbon nanotubes. Compos Commun. 2022;34:Article 101240.
McEuen PL, Park JY. Electron transport in single–walled carbon nanotubes. MRS Bull. 2004;29(4):272–275.
Zeng Z, Wang G, Wolan BF, Wu N, Wang C, Zhao S, Yue S, Li B, He W, Liu J, et al. Printable aligned single-walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nano–Micro Lett. 2022;14:179.
Kohlmeyer RR, Lor M, Deng J, Liu H, Chen J. Preparation of stable carbon nanotube aerogels with high electrical conductivity and porosity. Carbon. 2011;49(7):2352–2361.
Kim S, Mo JH, Jang KS. Solution-processed carbon nanotube buckypapers for foldable thermoelectric generators. ACS Appl Mater Interfaces. 2019;11(39):35675–35682.
Kördel C, Setaro A, Bluemmel P, Popeney CS, Reich S, Haag R. Controlled reversible debundling of single–walled carbon nanotubes by photo–switchable dendritic surfactants. Nanoscale. 2012;4(10):3029–3031.
Jang JG, Hong JI. Alkyl chain engineering for enhancing the thermoelectric performance of single–walled carbon nanotubes−small organic molecule hybrid. ACS Appl Energy Mater. 2022;5(11):13871–13876.
Wang Y, Chen Z, Huang H, Wang D, Liu D, Wang L. Organic radical compound and carbon nanotube composites with enhanced electrical conductivity towards high-performance p-type and n-type thermoelectric materials. J Mater Chem A. 2020;8(46):24675–24684.
Li P, Guo H, Xu H. Environmentally friendly ionic side chain organic small molecule/single-walled carbon nanotube composites have high TE performance. J Mater Sci. 2022;57:18524–18534.
Wang Q, Moriyama H. A stable electroactive monolayer composed of soluble single-walled carbon nanotubes on ITO. B Chem Soc JPN. 2009;82(6):743–749.
Almadori Y, Alvarez L, Arenal R, Babaa R, Michel T, Le Parc R, Bantignies JL, Jouselme B, Palacin S, Hermet P, et al. Charge transfer in conjugated oligomers encapsulated into carbon nanotubes. Phys. Status Solidi B. 2011;248(11):2560–2563.
Alvarez L, Almadori Y, Arenal R, Babaa R, Michel T, Le Parc R, Bantignies JL, Jousselme B, Palacin S, Hermet P, et al. Charge transfer evidence between carbon nanotubes and encapsulated conjugated oligomers. J Phys Chem C. 2011;115(24):11898–11905.
Cheng X, Zhang Y, Wu Y, Fu P, Lin Z, Du F, Cheng C. Thermally sensitive N–type thermoelectric aniline oligomer-block-polyethylene glycol–block–aniline oligomer ABA triblock copolymers. Macromol Chem Phys. 2018;219(9):1700635.
Zhang Y, Chen S, Zhang H, Ding X, Fu P, Du F. Fabrication of conjugated triblock copolymer/single-walled carbon nanotubes composite films with enhanced thermoelectric performance. Compos Commun. 2021;27:Article 100883.
Du F, Zhang H, Tian G, Chen S, Xiao J, Fu P, Zhang Y. Enhanced thermoelectric performance of single-walled carbon nanotubes films assembled with aniline tetramer. J Mater Sci. 2022;57:14041–14051.
Taborowska P, Wasiak T, Sahlman M, Lundström M, Janas D. Carbon nanotube-based thermoelectric modules enhanced by ZnO nanowires. Materials. 2022;15(5):1924.
Gupta S, Meek R. Highly efficient thermo-electrochemical energy harvesting from graphene-carbon nanotube ‘hybrid’ aerogels. Appl Phys A. 2020;126(9):Article 704.
Zhao L, Sun X, Lei Z, Zhao J, Wu J, Li Q, Zhang A. Thermoelectric behavior of aerogels based on graphene and multi–walled carbon nanotube nanocomposites. Compos Part B–Eng. 2015;83:317–322.
Fu H, Du Z, Zou W, Li H, Zhang C. Carbon nanotube reinforced polypyrrole nanowire network as a high–performance supercapacitor electrode. J Mater Chem A. 2013;1(47):14943–14950.
Woo JS, Han JT, Jung S, Jang JI, Kim HY, Jeong HJ, Jeong SY, Baeg KJ, Lee GW. Electrically robust metal nanowire network formation by in situ interconnection with single walled carbon nanotubes. Sci Rep. 2014;4:4804.
Wang Y, Tran HD, Liao L, Duan X, Kaner RB. Nanoscale morphology, dimensional control, and electrical properties of oligoanilines. J Am Chem Soc. 2010;132(30):10365–10373.
Lyu W, Feng JT, Yan W, Faul CFJ. Self-assembly of tetra(aniline) nanowires in acidic aqueous media with ultrasonic irradiation. J Mater Chem C. 2015;3(45):11945–11952.
Li Y, He W, Feng J, Jing X. Self-assembly of aniline oligomers in aqueous medium. Colloid Polym Sci. 2012;290:817–828.
Thangavelu S, Murali A, Sharanya M, Jaisankar S, Mandal A. Studies on biodegradable polyurethane-SWCNTs nanocomposite films by covalent approach: Physicochemical, electric and mechanical properties. Appl Surf Sci. 2018;449:745–754.
Xia Z, Tian G, Xian-Yu W, Huang X, Fu P, Zhang Y, Du F. Enhancement effect of the C60 derivative on the thermoelectric properties of n-type single–walled carbon nanotube-based films. ACS Appl Mater Interfaces. 2022;14(49):54969–54980.
Trchová M, Morávková Z, Bláha M, Stejskal J. Raman spectroscopy of polyaniline and oligoaniline thin films. Electrochim Acta. 2014;122:28–38.
Bavastrello V, Terencio T, Nicolini C. Synthesis and characterization of polyaniline derivatives and related carbon nanotubes nanocomposites–study of optical properties and band gap calculation. Polymer. 2011;52(1):46–54.
Rafique S, Abdullah S, Mahmoud W, Al-Ghamdi A, Sulaiman K. Stability enhancement in organic solar cells by incorporating V2O5 nanoparticles in the hole transport layer. RSC Adv. 2016;6(55):50043–50052.
Yao J, Peng X, Liu Z, Zhang Y, Fu P, Li H, Lin Z, Du F. Enhanced thermoelectric properties of bilayer-like structural graphene quantum dots/single–walled carbon nanotubes hybrids. ACS Appl Mater Interfaces. 2020;12(35):39145–39153.
Wu R, Yuan H, Liu C, Lan JL, Yang X, Lin YH. Flexible PANI/SWCNT thermoelectric films with ultrahigh electrical conductivity. RSC Adv. 2018;8(46):26011–26019.
Li P, Zhao Y, Li H, Liu S, Liang Y, Cheng X, He C. Facile green strategy for improving thermoelectric performance of carbon nanotube/polyaniline composites by ethanol treatmen. Compos Sci Technol. 2020;189:Article 108023.
Feng L, Wu R, Liu C, Lan J, Lin Y, Yang X. Facile green vacuum-assisted method for polyaniline/SWCNT hybrid films with enhanced thermoelectric performance by interfacial morphology control. ACS Appl Energy Mater. 2021;4(4):4081–4089.
Li H, Liu Y, Li P, Liu S, Du F, He C. Enhanced thermoelectric performance of carbon nanotubes/polyaniline composites by multiple interface engineering. ACS Appl Mater Interfaces. 2021;13(5):6650–6658.
Yu P, Wu R, Liu C, Lan J, Lin Y, Yang X. Polyaniline/SWCNT composite films prepared via the solvent-induced strategy for flexible energy harvesting. Sustain Energ Fuels. 2023;7(1):172–180.
Luo Q, Wu X, Wang E, Guo C. Compositing nanostructured polyaniline with single-walled carbon nanotubes for high thermoelectric performance. Int J Energ Res. 2023;2023:6989497.
Wang S, Liu F, Gao C, Wan T, Wang L, Wang L, Wang L. Enhancement of the thermoelectric property of nanostructured polyaniline/carbon nanotube composites by introducing pyrrole unit onto polyaniline backbone via a sustainable method. Chem Eng J. 2019;370:322–329.
Lu W, Luo Q, Yin S, Wu X, Guo C. Aniline-pyrrole copolymer/SWCNT thermoelectric composites from electrochemical polymerization. Compos Commun. 2021;27:Article 100860.
Lu W, Yin S, Wu X, Luo Q, Wang E, Cui L, Guo C. Aniline–pyrrole copolymers formed on single-walled carbon nanotubes with enhanced thermoelectric performance. J Mater Chem C. 2021;9(8):2898–2903.