PDF (11.8 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
References
Show full outline
Hide outline
Research Article | Open Access

Competitive Roles of Conductivity and Lithiophility in Composite Lithium Metal Anode

Wenbo Tang1Nailu Shen1Xiaosong Xiong1He Liu2()Xin Sun2Jiaxin Guo1Feng Jiang1Tao Wang1Yuan Ma1Yiren Zhong1Jiarui He1Zhi Zhu1Long Kong3Gulnur Kalimuldina4XinBing Cheng1,5()Yuping Wu1()
Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing 211189, Jiangsu, China
School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
Frontiers Science Center for Flexible Electronics and Xi’an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710129, China
Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave, 53, Astana 010000, Kazakhstan
Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang, Jiangsu 213300, China
Show Author Information

Abstract

For the three-dimensional conductive host, the uneven lithium deposition and the dependence on the pore structure and lithiophility are a great challenge for lithium metal anodes. Herein, we employed facial chemical etching techniques on brass foil to fabricate three-dimensional copper hosts with diverse pore structures and lithiophilities, thus intending to understand the lithium depositing mechanisms in porous hosts. The copper host with a more pronounced pore structure exhibits the lower polarization voltage induced by its large specific surface area, which reduces the local current density and provides a great deal of pathway for lithium ion diffusion. Meanwhile, it exhibits high nucleation overpotential and a short lifespan due to a reduced number of favorable lithium nucleation sites caused by the reduced lithiophilic zinc sites and a marked increase in the routes between nucleation sites. Therefore, the appropriate pore structure needs a consideration of efficient balance between the nucleation overpotential, the polarization voltage, and Coulombic efficiency. This insight underscores the pivotal role of well-suited pore structures in three-dimensional hosts, providing profound guidance for the efficient design of advanced host for lithium metal anode.

References

1

Bi C, Hou L, Li Z, Zhao M, Zhang X, Li B, Zhang Q, Huang J. Protecting lithium metal anodes in lithium-sulfur batteries: A review. Energy Mater Adv. 2023;4:10.

2

Meng YS, Srinivasan V, Xu K. Designing better electrolytes. Science. 2022;378(6624):eabq3750.

3

Jiang F, Yang S, Chen Z, Liu H, Yuan H, Liu L, Huang J, Cheng X, Zhang Q. Higher-order polysulfides induced thermal runaway for 1.0 ah lithium sulfur pouch cells. Particuology. 2023;79:10–17.

4

Wang Y, Zhang X, Zhou M, Huang J. Mechanism, quantitative characterization, and inhibition of corrosion in lithium batteries. Nano Res Energy. 2023;2(1):Article e9120046.

5

Cheng X, Yang S, Liu Z, Guo J, Jiang F, Jiang F, Xiong X, Tang W, Yuan H, Huang J, et al. Electrochemically and thermally stable inorganics-rich solid electrolyte interphase for robust lithium metal batteries. Adv Mater. 2023;36(1):e2307370.

6

Wu F, Dong J, Chen L, Chen G, Shi Q, Nie Y, Lu Y, Bao L, Li N, Song T, et al. Removing the intrinsic NiO phase and residual lithium for high-performance nickel-rich materials. Energy Mater Adv. 2023;4(23):0007.

7

Li Y, Zheng Y, Guo K, Zhao J, Li C. Mg-Li hybrid batteries: The combination of fast kinetics and reduced overpotential. Energy Mater Adv. 2022;2022:9840837.

8

Gao Y, Cui B, Wang J, Sun Z, Chen Q, Deng Y, Han X, Hu W. Improving Li reversibility in Li metal batteries through uniform dispersion of Ag nanoparticles on graphene. Rare Metals. 2022;41:3391–3400.

9

Wang Y, Zhan Y, Zhang X, Huang J. Advances in carbon-based composite anodes with gradients of lithiophilicity and conductivity used for stable lithium metal batteries. New Carbon Mater. 2023;38:623–637.

10

Lu C, Chen X. Learn from nature: Bio-inspired structure design for lithium-ion batteries. EcoMat. 2022;4(3):Article e12181.

11

Cheng X, Zhang R, Zhao C, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem Rev. 2017;117(15):10403–10473.

12

Gao Y, Yao N, Chen X, Yu L, Zhang R, Zhang Q. Data-driven insight into the reductive stability of ion–solvent complexes in lithium battery electrolytes. J Am Chem Soc. 2023;145(43):23764–23770.

13

Xu X, Jiang F, Yang S, Xiao Y, Liu H, Liu F, Liu L, Cheng X. Dual-layer vermiculite nanosheet based hybrid film to suppress dendrite growth in lithium metal batteries. J Energy Chem. 2022;69:205–210.

14

Zhang Q, Zhang X, Yuan H, Huang J. Thermally stable and nonflammable electrolytes for lithium metal batteries: Progress and perspectives. Small Sci. 2021;1(10):2170025.

15

Chi S, Wang Q, Han B, Luo C, Jiang Y, Wang J, Wang C, Yu Y, Deng Y. Lithiophilic Zn sites in porous CuZn alloy induced uniform Li nucleation and dendrite-free Li metal deposition. Nano Lett. 2020;20(4):2724–2732.

16

Li Q, Liu Y, Zhang Z, Chen J, Yang Z, Deng Q, Mumyatov AV, Troshin PA, He G, Hu N. Construction of dynamic alloy interfaces for uniform Li deposition in Li-metal batteries. Energy Environ Mater. 2023; Article e12618.

17

Meng X, Lau KC, Zhou H, Ghosh SK, Benamara M, Zou M. Molecular layer deposition of crosslinked polymeric lithicone for superior lithium metal anodes. Energy Mater Adv. 2021;2021:9786201.

18

Li M, Wang C, Davey K, Li J, Li G, Zhang S, Mao J, Guo Z. Recent progress in electrolyte design for advanced lithium metal batteries. SmartMat. 2023;4(1):Article e1185.

19

Fan X, Tebyetekerwa M, Wu Y, Gaddam R, Zhao X. Magnesium/lithium hybrid batteries based on SnS2-MoS2 with reversible conversion reactions. Energy Mater Adv. 2022;2022(8):14.

20

Ye L, Liao M, Cheng X, Zhou X, Zhao Y, Yang Y, Tang C, Sun H, Gao Y, Wang B, et al. Lithium-metal anodes working at 60 mA cm−2 and 60 mAh cm−2 through nanoscale lithium-ion adsorbing. Angew Chem Int Ed. 2021;60:17419–17425.

21

Liang J, Sun S, Yao N, Zheng Z, Zhang Q, Li B, Zhang X, Huang J. Regulating the electrolyte solvation structure by weakening the solvating power of solvents for stable lithium metal batteries. Sci China Chem. 2023;66:3620–3627.

22

Liu X, Zhang Q, Ma Y, Chi Z, Yin H, Liu J, Huang J, Guo Z, Wang L. MnO2 nanosheet modified N, P co-doping carbon nanofibers on carbon cloth as lithiophilic host to construct high-performance anodes for Li metal batteries. J Energy Chem. 2022;69:270–281.

23

Luo T, Zhao Q, Liu Y, Meng W, Sun Q, Dai L, Liu S, Wang L. High-rate and dendrite-free liquid alloy anode for high energy potassium metal batteries. EcoMat. 2022;4(5):Article e12203.

24

Fan L, Zhuang HL, Zhang W, Fu Y, Liao Z, Lu Y. Stable lithium electrodeposition at ultra-high current densities enabled by 3D PMF/Li composite anode. Adv Energy Mater. 2018;8(15):1703360.

25

Yang S, Yao N, Jiang F, Xie J, Sun S, Chen X, Yuan H, Cheng X, Huang J, Zhang Q. Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells. Angew Chem Int Ed. 2022;61(51):Article e202214545.

26

Liu H, Sun X, Cheng X, Guo C, Yu F, Bao W, Wang T, Li J, Zhang Q. Working principles of lithium metal anode in pouch cells. Adv Energy Mater. 2022;12(47):2202518.

27

Lucero N, Vilcarino D, Datta D, Zhao M. The roles of MXenes in developing advanced lithium metal anodes. J Energy Chem. 2022;69:132–149.

28

Run L, Yi F, Chuan Z, An H, Bo Z, Miao H, Jia C, Zhong Y, Yu P, Jian L. Air-stable protective layers for lithium anode achieving safe lithium metal batteries. Small Methods. 2023;7(1):2201177.

29

Jiang F, Yang S, Cheng X, Yuan H, Liu L, Huang J, Zhang Q. An interface-contact regulation renders thermally safe lithium metal batteries. eTransportation. 2023;15(48):Article 100211.

30

Chen R, Nolan AM, Lu J, Wang J, Yu X, Mo Y, Chen L, Huang X, Li H. The thermal stability of lithium solid electrolytes with metallic lithium. Joule. 2020;4(4):812–821.

31

Ke Z, Feng W, Kun Z, Su W, Xin W, Ming G, Yu S, Dong C, Ying B, Hua X, et al. Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode. Energy Storage Mater. 2021;41:485–494.

32

Xu X, Cheng X, Jiang F, Yang S, Ren D, Shi P, Hsu H, Yuan H, Huang J, Ouyang M, et al. Dendrite-accelerated thermal runaway mechanisms of lithium metal pouch batteries. SusMat. 2022;2(4):435–444.

33

Jiang F, Cheng X, Yang S, Xie J, Yuan H, Liu L, Huang J, Zhang Q. Thermoresponsive electrolytes for safe lithium-metal batteries. Adv Mater. 2023;35(12):2209114.

34

Guo Q, Xu F, Shen L, Deng S, Wang Z, Li M, Yao X. 20 μm-Thick Li6.4La3Zr1.4Ta0.6O12-based flexible solid electrolytes for all-solid-state lithium batteries. Energy Mater Adv. 2022;2022:8.

35

Zhang J, Fu Q, Li P, Linghu R, Fan X, Lin H, Bian J, Han S, Sun G, Kong L. Lithium polysulfide solvation and speciation in the aprotic lithium-sulfur batteries. Particuology. 2024;89:238–245.

36

Holoubek J, Kim K, Yin Y, Wu Z, Liu H, Li M, Chen A, Gao H, Cai G, Pascal TA, et al. Electrolyte design implications of ion-pairing in low-temperature Li metal batteries. Energy Environ Sci. 2022;15(1):1647–1658.

37

Liu Y, Tao X, Wang Y, Jiang C, Ma C, Sheng O, Lu G, Lou XWD. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science. 2022;375(6582):739–745.

38

Li J, Dai L, Wang Z, Wang H, Xie L, Chen J, Yan C, Yuan H, Wang H, Chen C. Cellulose nanofiber separator for suppressing shuttle effect and Li dendrite formation in lithium-sulfur batteries. J Energy Chem. 2022;67:736–744.

39

Ke Q, Xu Q, Lai X, Yang X, Gao H, Wang Z, Qiu Y. Ultralong-life lithium metal batteries enabled by decorating robust hybrid interphases on 3D layered frameworks. Chin Chem Lett. 2023;34:Article 107602.

40

Duan J, Chen J, Wang F, Zhang J, Fan X, Wang L, Song Y, Xia W, Zhao Y, Kong L. Ambiently fostering solid electrolyte interphase for low-temperature lithium metal batteries. J Energy Chem. 2023;87:473–478.

41

Hu A, Chen W, Du X, Hu Y, Lei T, Wang H, Xue L, Li Y, Sun H, Yan Y, et al. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ Sci. 2021;14(7):4115–4124.

42

Liu S, Ma Y, Zhou Z, Lou S, Huo H, Zuo P, Wang J, Du C, Yin G, Gao Y. Inducing uniform lithium nucleation by integrated lithium-rich li-in anode with lithiophilic 3D framework. Energy Storage Mater. 2020;33:423–431.

43

Yun Q, He Y, Lv W, Zhao Y, Li B, Kang F, Yang Q. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv Mater. 2016;28(32):6932–6939.

44

Wang X, Sun C, Wu Z. Recent progress of dendrite-free stable zinc anodes for advanced zinc-based rechargeable batteries: Fundamentals, challenges, and perspectives. SusMat. 2023;3(2):180–206.

45

Wu N, Zhang Q, Guo Y, Zhou L, Zhang L, Wu M, Wang W, Yin Y, Sheng P, Xin S. Boron-doped three-dimensional MXene host for durable lithium-metal anode. Rare Metals. 2022;41(10):2217–2222.

46

Pei A, Zheng G, Shi F, Li Y, Cui Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 2017;17(2):1132–1139.

47

Chi S, Liu Y, Song W, Fan L, Zhang Q. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode. Adv Funct Mater. 2017;27(24):1700348.

48

Chu F, Hu J, Tian J, Zhou X, Li Z, Li C. In situ plating of porous mg network layer to reinforce anode dendrite suppression in Li-metal batteries. ACS Appl Mater Inter. 2018;10(15):12678–12689.

49

Park JM, Jana M, Baek SH, Kang T, Xiong P, Park JH, Kim JS, Zeraati AS, Shekhirev M, Braun PV, et al. MXene ink hosting zinc anode for high performance aqueous zinc metal batteries. J Energy Chem. 2023;76:187–194.

50

Huang G, Han J, Zhang F, Wang Z, Kashani H, Watanabe K, Chen M. Lithiophilic 3D nanoporous nitrogen-doped graphene for dendrite-free and ultrahigh-rate lithium-metal anodes. Adv Mater. 2019;31(2):1805334.

51

An Y, Fei H, Zeng G, Xu X, Ci L, Xi B, Xiong S, Feng J, Qian Y. Vacuum distillation derived 3D porous current collector for stable lithium–metal batteries. Nano Energy. 2018;47:503–511.

52

Li Q, Zhu S, Lu Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv Funct Mater. 2017;27(18):1606422.

53

Wei T, Lu J, Zhang P, Yang G, Sun C, Zhou Y, Zhuang Q, Tang Y. Metal–organic framework-derived Co3O4 modified nickel foam-based dendrite-free anode for robust lithium metal batteries. Chin Chem Lett. 2023;34:Article 107947.

54

Ke X, Cheng Y, Liu J, Liu L, Wang N, Liu J, Zhi C, Shi Z, Guo Z. Hierarchically bicontinuous porous copper as advanced 3D skeleton for stable lithium storage. ACS Appl Mater Inter. 2018;10(16):13552–13561.

55

Zhang R, Wen S, Wang N, Qin K, Liu E, Shi C, Zhao N. N-doped graphene modified 3D porous cu current collector toward microscale homogeneous Li deposition for Li metal anodes. Adv Energy Mater. 2018;8:1800914.

56

Zhou S, Fu C, Chang Z, Zhang Y, Xu D, He Q, Chai S, Meng X, Feng M, Zhang Y, et al. Conductivity gradient modulator induced highly reversible Li anodes in carbonate electrolytes for high-voltage lithium-metal batteries. Energy Storage Mater. 2022;47:482–490.

57

Cao W, Chen W, Lu M, Zhang C, Tian D, Wang L, Yu F. In situ generation of Li3N concentration gradient in 3D carbon-based lithium anodes towards highly-stable lithium metal batteries. J Energy Chem. 2023;76:648–656.

58

Li Y, Li Y, Zhang L, Tao H, Li Q, Zhang J, Yang X. Lithiophilicity: The key to efficient lithium metal anodes for lithium batteries. J Energy Chem. 2023;77:123–136.

59

Wang Y, Tan J, Li Z, Ma L, Liu Z, Ye M, Shen J. Recent progress on enhancing the lithiophilicity of hosts for dendrite-free lithium metal batteries. Energy Storage Mater. 2022;53(32):156–182.

60

Zhan Y, Shi P, Jin C, Xiao Y, Zhou M, Bi C, Li B, Zhang X, Huang J. Regulating the two-stage accumulation mechanism of inactive lithium for practical composite lithium metal anodes. Adv Funct Mater. 2022;32(43):2206834.

61

Yan K, Lu Z, Lee H, Xiong F, Hsu P, Li Y, Zhao J, Chu S, Cui Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat Energy. 2016;1(3):16010.

62

Liao J, Zhang S, Bai T, Ji F, Li D, Cheng J, Zhang H, Lu J, Gao Q, Ci L. A ZnO decorated 3D copper foam as a lithiophilic host to construct composite lithium metal anodes for Li–O2 batteries. Rare Metals. 2023;42(13):1969–1982.

63

Zhang D, Dai A, Wu M, Shen K, Xiao T, Hou G, Lu J, Tang Y. Lithiophilic 3D porous CuZn current collector for stable lithium metal batteries. ACS Energy Lett. 2020;5:180–186.

64

Chun Y, Hua X, Wei P, Kun F, Bo L, Jian R, Jia D, Cheng W, Pastel G, Liang H. An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Adv Mater. 2019;31(3):1804815.

Energy Material Advances
Article number: 0084
Cite this article:
Tang W, Shen N, Xiong X, et al. Competitive Roles of Conductivity and Lithiophility in Composite Lithium Metal Anode. Energy Material Advances, 2024, 5: 0084. https://doi.org/10.34133/energymatadv.0084
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return