AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Improving the Safety of HED LIBs by Co-Coating Separators with Ceramics and Solid-State Electrolytes

Tianhang Zhang1,2,3Bo Wang1,2,3Xiaopeng Qi1,2,3Zenghua Chang1,2,3Rennian Wang1,2,3Bing Yu1,2,3Rong Yang1,2,3Jiantao Wang1,2,3( )
National Power Battery Innovation Center, China GRINM Group Corporation Limited, Beijing 100088, China
China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China
General Research Institute for Nonferrous Metals, Beijing 100088, China
Show Author Information

Abstract

Internal short circuits because of deformation or melting down of separators have been recognized as a root cause for many thermal runaway (TR) events of high-energy-density (HED) lithium-ion batteries (LIBs). Ceramic coating of the polyolefin separators is a promising strategy but generally hinders ionic conduction. In this study, we demonstrate that co-coating the separators with boehmite ceramics and Li1.5Al0.5Ti1.5(PO4)3 (LATP) solid-state electrolytes could markedly improve the safety of LIBs while mitigating detrimental effects on electrochemical performance. We assembled HED (~350 Wh/kg) lithium-ion pouch cells with nickel-rich Li(Ni0.9CoxMn0.1-x)O2 cathodes, silicon-based/graphite blended anodes, and co-coated separators of varying thicknesses. It is found that LATP reacts with the organic liquid electrolytes and lithium to generate a robust solid-electrolyte-interface-filled LATP layer during the formation, which can prevent the thermal deformation of separators. During the thermal abusive tests, the battery's TR failure thresholds raised from 146.2 to 162.0 ℃. Correspondingly, the direct failure cause of the cell TR hurdled the separator malfunction to the thermochemical reactions of the nickel-rich cathodes. Additionally, pouch cells exhibited impressive electrochemical performance, maintaining a capacity retention of 87.99% after 500 cycles at 1C.

References

1

Zhang X, Chen S, Zhu J, Gao Y. A critical review of thermal runaway prediction and early warning methods for lithium-ion batteries. Energy Mater Adv. 2023;4:Article 0008.

2

Zhang L, Li X, Yang M, Chen W. High-safety separators for lithium-ion batteries and sodium-ion batteries: Advances and perspective. Energy Storage Mater. 2021;41:522–545.

3

Zhu J, Wierzbicki T, Li W. A review of safety-focused mechanical modeling of commercial lithium-ion batteries. J Power Sources. 2018;378:153–168.

4

Zavalis TG, Behm M, Lindbergh G. Investigation of short-circuit scenarios in a lithium-ion battery cell. J Electrochem Soc. 2012;159(6):A848–A859.

5

Ren D, Feng X, Lu L, Ouyang M, Zheng S, Li J, He X. An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery. J Power Sources. 2017;364:328–340.

6

Larsson F, Mellander B-E. Abuse by external heating, overcharge and short circuiting of commercial lithium-ion battery cells. J Electrochem Soc. 2014;161(10):A1611–A1617.

7

Gao X, Zhou Y-N, Han D, Zhou J, Zhou D, Tang W, Goodenough JB. Thermodynamic understanding of Li-dendrite formation. Joule. 2020;4(9):1864–1879.

8

Lyu P, Liu X, Qu J, Zhao J, Huo Y, Qu Z, Rao Z. Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Materials. 2020;31:195–220.

9

Liao C, Wang W, Han L, Mu X, Wu N, Wang J, Gui Z, Hu Y, Kan Y, Song L. A flame retardant sandwiched separator coated with ammonium polyphosphate wrapped by SiO2 on commercial polyolefin for high performance safety lithium metal batteries. Appl Mater Today. 2020;21:100793.

10

Wang C, Ma T, Liu X, Liu Z, Chang Z, Pang J. Effect of graphite morphology on the electrochemical and mechanical properties of SiOx/graphite composite anode. Batteries. 2023;9(2):78.

11

Duan J, Tang X, Dai H, Yang Y, Wu W, Wei X, Huang Y. Building safe lithium-ion batteries for electric vehicles: A review. Electrochem Energy Rev. 2019;3(1):1–42.

12

Wang J, Chen R, Yang L, Zan M, Chen P, Li Y, Li W, Yu H, Yu X, Huang X, et al. Raising the intrinsic safety of layered oxide cathodes by surface re-lithiation with LLZTO garnet-type solid electrolytes. Adv Mater. 2022;34(19):e2200655.

13

Liu P, Li Y, Mao B, Chen M, Huang Z, Wang Q. Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery. Appl Therm Eng. 2021;192:116949.

14

Parikh D, Jafta CJ, Thapaliya BP, Sharma J, Meyer HM, Silkowski C, Li J. Al2O3/TiO2 coated separators: Roll-to-roll processing and implications for improved battery safety and performance. J Power Sources. 2021;507:230259.

15

Wang Z, Chen J, Ye B, Pang P, Ma Z, Chen H, Nan J. A pore-controllable polyamine (PAI) layer-coated polyolefin (PE) separator for pouch lithium-ion batteries with enhanced safety. J Solid State Electrochem. 2020;24(4):843–853.

16

Deng Y, Song X, Ma Z, Zhang X, Shu D, Nan J. Al2O3/PVdF-HFP-CMC/PE separator prepared using aqueous slurry and post-hot-pressing method for polymer lithium-ion batteries with enhanced safety. Electrochim Acta. 2016;212:416–425.

17

Zhai P, Liu K, Wang Z, Shi L, Yuan S. Multifunctional separators for high-performance lithium ion batteries. J Power Sources. 2021;499:229973.

18

Su M, Huang G, Wang S, Wang Y, Wang H. High safety separators for rechargeable lithium batteries. Sci China Chem. 2021;64(7):1131–1156.

19

Li W, Li X, Yuan A, Xie X, Xia B. Al2O3/poly(ethylene terephthalate) composite separator for high-safety lithium-ion batteries. Ionics. 2016;22(11):2143–2149.

20

Dong N, Wang J, Chen N, Liu B, Tian G, Qi S, Sun G, Wu D. In situ reinforcing: ZrO2-armored hybrid polyimide separators for advanced and safe lithium-ion batteries. ACS Sustain Chem Eng. 2021;9(18):6250–6257.

21

Xiao W, Liu J, Yan C. Nanofiber/ZrO2-based mixed matrix separator for high safety/high-rate lithium–ion batteries. Chem Phys Lett. 2017;686:134–139.

22

Zhu X, Jiang X, Ai X, Yang H, Cao Y. TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries. J Membr Sci. 2016;504:97–103.

23

Han D-H, Zhang M, Lu P-X, Wan Y-L, Chen Q-L, Niu H-Y, Yu Z-W. A multifunctional separator with Mg(OH)2 nanoflake coatings for safe lithium-metal batteries. J Energy Chem. 2021;52:75–83.

24

Zhong G, Wang Y, Wang C, Wang Z, Guo S, Wang L, Liang X, Xiang H. An AlOOH-coated polyimide electrospun fibrous membrane as a high-safety lithium-ion battery separator. Ionics. 2018;25(6):2677–2684.

25

Ulusoy S, Gulen S, Aygun G, Ozyuzer L, Ozdemir M. Characterization of thin film Li0.5La0.5Ti1−xAlxO3 electrolyte for all-solid-state Li-ion batteries. Solid State Ionics. 2018;324:226–232.

26

Zhu J, Xiang Y, Zhao J, Wang H, Li Y, Zheng B, He H, Zhang Z, Huang J, Yang Y. Insights into the local structure, microstructure and ionic conductivity of silicon doped NASICON-type solid electrolyte Li1.3Al0.3Ti1.7P3O12. Energy Storage Mater. 2022;44:190–196.

27

Guo QY, Xu FL, Shen L, Deng SG, Wang ZY, Li MQ, Yao XY. 20 μm-Thick Li6.4La3Zr1.4Ta0.6O12-based flexible solid electrolytes for all-solid-state lithium batteries. Energy Mater Adv. 2022;2022:Article 9753506.

28

Yang M, Chen LQ, Li H, Wu F. Air/water stability problems and solutions for lithium batteries. Energy Mater Adv. 2022;2022:Article 9842651.

29

Reddy MV, Julien CM, Mauger A, Zaghib K. Sulfide and oxide inorganic solid electrolytes for all-solid-state Li batteries: A review. Nanomaterials. 2020;10(8):1606.

30

Jiang P, Du G, Cao J, Zhang X, Zou C, Liu Y, Lu X. Solid-state Li ion batteries with oxide solid electrolytes: Progress and perspective. Energy Technol. 2023;11(3):2201288.

31

Liu J, Liu Y, Yang W, Ren Q, Li F, Huang Z. Lithium ion battery separator with high performance and high safety enabled by tri-layered SiO2@PI/m-PE/SiO2@PI nanofiber composite membrane. J Power Sources. 2018;396:265–275.

32

Liang T, Cao J-H, Liang W-H, Li Q, He L, Wu D-Y. Asymmetrically coated LAGP/PP/PVDF–HFP composite separator film and its effect on the improvement of NCM battery performance. RSC Adv. 2019;9(70):41151–41160.

33

Xu R, Lin X, Huang X, Xie J, Jiang C, Lei C. Boehmite-coated microporous membrane for enhanced electrochemical performance and dimensional stability of lithium-ion batteries. J Solid State Electrochem. 2017;22(3):739–747.

34

Ishii K, Uchikoshi T, Miyoshi S, Ode M, Ohno T, Takada K. Reactivity evaluation of NASICON-type solid electrolyte LATP, LAGP and Olivine-type cathode LCP. Mater Lett. 2022;324:132736.

35

Shi J, Xia Y, Han S, Fang L, Pan M, Xu X, Liu Z. Lithium ion conductive Li1.5Al0.5Ge1.5(PO4)3 based inorganic–organic composite separator with enhanced thermal stability and excellent electrochemical performances in 5V lithium ion batteries. J Power Sources. 2015;273:389–395.

36

Yan Z, Pan H-Y, Wang J-Y, Chen R-S, Li Q, Luo F, Yu X-Q, Li H. Enhancing cycle stability of Li metal anode by using polymer separators coated with Ti-containing solid electrolytes. Rare Metals. 2020;40(6):1357–1365.

37

Liu Y, Sun Q, Zhao Y, Wang B, Kaghazchi P, Adair KR, Li R, Zhang C, Liu J, Kuo L-Y, et al. Stabilizing the Interface of NASICON solid electrolyte against Li metal with atomic layer deposition. ACS Appl Mater Interfaces. 2018;10(37):31240–31248.

38

Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta. 2010;55(22):6332–6341.

39

Hao X, Zhao Q, Su S, Zhang S, Ma J, Shen L, Yu Q, Zhao L, Liu Y, Kang F, et al. Constructing multifunctional interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li metal by magnetron sputtering for highly stable solid-state lithium metal batteries. Adv Energy Mater. 2019;9(34):1901604.

40

Zhu J, Zhao J, Xiang Y, Lin M, Wang H, Zheng B, He H, Wu Q, Huang JY, Yang Y. Chemomechanical failure mechanism study in NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid-state lithium batteries. Chem Mater. 2020;32(12):4998–5008.

41

Qi X, Liu B, Pang J, Yun F, Wang R, Cui Y, Wang C, Doyle-Davis K, Xing C, Fang S, et al. Unveiling micro internal short circuit mechanism in a 60 ah high-energy-density Li-ion pouch cell. Nano Energy. 2021;84:105908.

42

Ren D, Feng X, Liu L, Hsu H, Lu L, Wang L, He X, Ouyang M. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition. Energy Storage Mater. 2021;34:563–573.

43

Lei Z, Maotao Z, Xiaoming X, Junkui G. Thermal runaway characteristics on NCM lithium-ion batteries triggered by local heating under different heat dissipation conditions. Appl Therm Eng. 2019;159:113847.

44

Yang C, Tong H, Luo C, Yuan S, Chen G, Yang Y. Boehmite particle coating modified microporous polyethylene membrane: A promising separator for lithium ion batteries. J Power Sources. 2017;348:80–86.

45

Chen R, Nolan AM, Lu J, Wang J, Yu X, Mo Y, Chen L, Huang X, Li H. The thermal stability of lithium solid electrolytes with metallic lithium. Joule. 2020;4(4):812–821.

46
Shen X, Zhang X-Q, Ding F, Huang J-Q, Xu R, Chen X, Yan C, Su F-Y, Chen C-M, Liu X, & Zhang Q. Advanced Electrode Materials in Lithium Batteries: Retrospect and Prospect. Energy Material Advances. 2021. https://doi.org/10.34133/2021/1205324
47

Kim HJ, Choi S, Lee SJ, Seo MW, Lee JG, Deniz E, Lee YJ, Kim EK, Choi JW. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett. 2015;16(1):282–288.

48

Dong H, Wang J, Ding H, Wang P, Song R, Zhang N, Li F, Li S. The mosaic structure design to improve the anchoring strength of SiOx@C@Graphite anode. Mater Today Chem. 2021;22:100599.

Energy Material Advances
Article number: 0085
Cite this article:
Zhang T, Wang B, Qi X, et al. Improving the Safety of HED LIBs by Co-Coating Separators with Ceramics and Solid-State Electrolytes. Energy Material Advances, 2024, 5: 0085. https://doi.org/10.34133/energymatadv.0085

68

Views

5

Downloads

6

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 29 December 2023
Accepted: 17 February 2024
Published: 20 March 2024
© 2024 Tianhang Zhang et al. Exclusive licensee Beijing Institute of Technology Press. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return