AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (9.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Limitations and Strategies toward High-Performance Red Phosphorus Materials for Li/Na-Ion Batteries

Jin Bai1Zhaolin Li1Xinran Wang2,3( )Konrad Świerczek4Chuan Wu2,3( )Hailei Zhao1,5( )
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
Faculty of Energy and Fuels, AGH University of Krakow, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
Beijing Municipal Key Lab of New Energy Materials and Technology, Beijing 100083, China
Show Author Information

Abstract

Phosphorus, particularly the red phosphorus (RP) allotrope, has been extensively studied as an anode material in both lithium-ion batteries (LIBs) and emerging sodium-ion batteries (SIBs). RP is featured with high theoretical capacity (2,596 mA h g−1), suitable low redox potential (~0.7/0.4 V for LIBs/SIBs), abundant resources, and environmental friendliness. Despite its promises, the inherent poor electrical conductivity of RP (~10−14 S cm−1) and significant volume changes during charge/discharge processes (>300%) compromise its cycling stability. In order to address these issues, various countermeasures have been proposed, focusing on the incorporation of materials that provide high conductivity and mechanical strength in composite-type anodes. In addition, the interfacial instability, oxidation, and safety concerns and the low mass ratio of active material in the electrode need to be addressed. Herein, this review summarizes the up-to-date development in RP materials, outlines the challenges, and presents corresponding countermeasures aimed to enhance the electrochemical performance. It covers aspects such as the structural design of RP, the choice of the additive materials and electrolytes, rational electrode construction, etc. The review also discusses the future prospects of RP for LIBs/SIBs and aims to provide a different perspective on the challenges that must be overcome to fully exploit the potential of RP and meet commercial application requirements.

References

1

Shen X, Zhang XQ, Ding F, Huang JQ, Xu R, Chen X, Yan C, Su FY, Chen CM, Liu X, et al. Advanced electrode materials in lithium batteries: Retrospect and prospect. Energy Mater Adv. 2021;2021:Article 1205324.

2

Li Y, Zhang L, Wang X, Xia X, Xie D, Gu C, Tu J. High capacity and superior rate performances coexisting in carbon-based sodium-ion battery anode. Research. 2019;2019:6930294.

3

Dong S, Wang L, Huang X, Liang J, He X. Challenges and prospects of phosphorus-based anode materials for secondary batteries. Batter Supercaps. 2023;6(12):Article e202300265.

4

Chen X, Ge G, Wang W, Zhang B, Jiang J, Yang X, Li Y, Wang L, He X, Sun Y. In situ formation of ionically conductive nanointerphase on Si particles for stable battery anode. Sci China Chem. 2021;64:1417–1425.

5

Tu S, Zhang B, Zhang Y, Chen Z, Wang X, Zhan R, Ou Y, Wang W, Liu X, Duan X, et al. Fast-charging capability of graphite-based lithium-ion batteries enabled by li3p-based crystalline solid–electrolyte interphase. Nat Energy. 2023;8(12):1365–1374.

6

Fu Y, Wei Q, Zhang G, Sun S. Advanced phosphorus-based materials for lithium/sodium-ion batteries: Recent developments and future perspectives. Adv Energy Mater. 2018;8(13):Article 1703058.

7

Han X, Han J, Liu C, Sun J. Promise and challenge of phosphorus in science, technology, and application. Adv Func Mater. 2018;28(45):Article 1803471.

8

Zhao D, Zhang L, Fu C, Zhang J, Niu C. The lithium and sodium storage performances of phosphorus and its hierarchical structure. Nano Research. 2019;12:1–17.

9

Li Z, Zhao H. Recent developments of phosphorus-based anodes for sodium ion batteries. J. Mater. Chem. A. 2018;6:24013–24030.

10

Liu C, Han X, Cao Y, Zhang S, Zhang Y, Sun J. Topological construction of phosphorus and carbon composite and its application in energy storage. Energy Storage Mater. 2019;20:343–372.

11

Chang G, Zhao Y, Dong L, Wilkinson DP, Zhang L, Shao Q, Yan W, Sun X(A), Zhang J. A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries. J Mater Chem A. 2020;8:4996–5048.

12

Chen B, Yang Y, Chen A, Zhang X, Saddique J, Tang M, Yu H. Sodium-ion battery anode construction with SnPx crystal domain in amorphous phosphorus matrix. Energy Mater Adv. 2021;2021:Article 9795825.

13

Bachhuber F, von Appen J, Dronskowski R, Schmidt P, Nilges T, Pfitzner A, Weihrich R. The extended stability range of phosphorus allotropes. Angew Chem Int Ed Engl. 2014;53(43):11629–11633.

14

Liu H, Du Y, Deng Y, Ye PD. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem Soc Rev. 2015;44:2732–2743.

15

Yang X, Nohira T. A new concept for producing white phosphorus: Electrolysis of dissolved phosphate in molten chloride. ACS Sustain Chem Eng. 2020;8(36):13784–13792.

16

Dorozhkin SV. Calcium phosphates and human beings. J Chem Educ. 2006;83(5):713–719.

17
Averbuch-Pouchot M-T, Durif A. Topics in phosphate chemistry. Singapore: World Scientific; 1996.
18

Tian H, Wang J, Lai G, Dou Y, Gao J, Duan Z, Feng X, Wu Q, He X, Yao L, et al. Renaissance of elemental phosphorus materials: Properties, synthesis, and applications in sustainable energy and environment. Chem Soc Rev. 2023;52:5388–5484.

19

Zhang S, Qian H, Liu Z, Ju H, Lu ZY, Zhang H, Chi L, Cui S. Towards unveiling the exact molecular structure of amorphous red phosphorus by single-molecule studies. Angew Chem Int Ed Engl. 2019;58(6):1659–1663.

20

Schieferecke J, Worley D. Analysis of red phosphorus using a pyrolysis gas chromatograph/mass spectrometer. J Anal Appl Pyrolysis. 2004;71(1):47–50.

21

Li W, Yang Z, Jiang Y, Yu Z, Gu L, Yu Y. Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. Carbon. 2014;78:455–462.

22

Li W, Yang Z, Li M, Jiang Y, Wei X, Zhong X, Gu L, Yu Y. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett. 2016;16(3):1546–1553.

23

Xue Y, Zhang Q, Zhang T, Fu L. Black phosphorus: Properties, synthesis, and applications in energy conversion and storage. ChemNanoMat. 2017;3(6):352–361.

24

Lin S, Li Y, Qian J, Lau SP. Emerging opportunities for black phosphorus in energy applications. Mater Today Energy. 2019;12:1–25.

25

Song J, Yu Z, Gordin ML, Hu S, Yi R, Tang D, Walter T, Regula M, Choi D, Li X, et al. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett. 2014;14(11):6329–6335.

26

Song J, Yu Z, Gordin ML, Li X, Peng H, Wang D. Advanced sodium-ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube and crosslinked polymer binder. ACS Nano. 2015;9(12):11933–11941.

27

Wu X, Zhao W, Wang H, Qi X, Xing Z, Zhuang Q, Ju Z. Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries. J Power Sources. 2018;378:460–467.

28

Xu J, Jeon I-Y, Ma J, Dou Y, Kim S-J, Seo J-M, Liu H, Dou S, Baek J-B, Dai L. Understanding of the capacity contribution of carbon in phosphorus-carbon composites for high-performance anodes in lithium ion batteries. Nano Res. 2017;10:1268–1281.

29

Capone I, Hurlbutt K, Naylor AJ, Xiao AW, Pasta M. Effect of the particle-size distribution on the electrochemical performance of a red phosphorus–carbon composite anode for sodium-ion batteries. Energy Fuels. 2019;33(5):4651–4658.

30

Pei L, Zhao Q, Chen C, Liang J, Chen J. Phosphorus nanoparticles encapsulated in graphene scrolls as a high-performance anode for sodium-ion batteries. ChemElectroChem. 2015;2(11):1652–1655.

31

Liu Y, Zhang N, Liu X, Chen C, Fan LZ, Jiao L. Red phosphorus nanoparticles embedded in porous N-doped carbon nanofibers as high-performance anode for sodium-ion batteries. Energy Storage Mater. 2017;9:170–178.

32

Yu Z, Song J, Wang D, Wang D. Advanced anode for sodium-ion battery with promising long cycling stability achieved by tuning phosphorus-carbon nanostructures. Nano Energy. 2017;40:550–558.

33

Li W, Hu S, Luo X, Li Z, Sun X, Li M, Liu F, Yu Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater. 2017;29(16):Article 1605820.

34

Liu D, Huang X, Qu D, Zheng D, Wang G, Harris J, Si J, Ding T, Chen J, Qu D. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy. 2018;52:1–10.

35

Tian W, Wang L, Huo K, He X. Red phosphorus filled biomass carbon as high-capacity and long-life anode for sodium-ion batteries. J. Power Sources. 2019;430:60–66.

36

Sun Y, Wang L, Li Y, Li Y, Lee HR, Pei A, He X, Cui Y. Design of red phosphorus nanostructured electrode for fast-charging lithium-ion batteries with high energy density. Joule. 2019;3(4):1080–1093.

37

Yao S, Cui J, Huang J, Huang J-Q, Chong WG, Qin L, Mai Y-W, Kim J-K. Rational assembly of hollow microporous carbon spheres as p hosts for long-life sodium-ion batteries. Adv Energy Mater. 2018;8(7):Article 1702267.

38

Liu B, Zhang Q, Li L, Jin Z, Wang C, Zhang L, Su ZM. Encapsulating red phosphorus in ultralarge pore volume hierarchical porous carbon nanospheres for lithium/sodium-ion half/full batteries. ACS Nano. 2019;13(11):13513–13523.

39

Liang X, Chang C, Guo W, Jiang X, Xiong C, Pu X. Red phosphorus/onion-like mesoporous carbon composite as high-performance anode for sodium-ion battery. ChemElectroChem. 2019;6(22):5721–5727.

40

Wu K, Xu G, Pan D, Wu M. Red phosphorus confined in MOF-derived N-doped carbon-based composite polyhedrons on carbon nanotubes for high-areal-capacity lithium storage. Chem Eng J. 2020;385:Article 123456.

41

Zhao D, Zhang J, Fu C, Huang J, Xiao D, Yuen MMF, Niu C. Enhanced cycling stability of ring-shaped phosphorus inside multi-walled carbon nanotubes as anodes for lithium-ion batteries. J Mater Chem A. 2018;6:2540–2548.

42

Huang X, Sui X, Ji W, Wang Y, Qu D, Chen J. From phosphorus nanorods/C to yolk–shell P@ hollow C for potassium-ion batteries: High capacity with stable cycling performance. J Mater Chem A. 2020;8:7641–7646.

43

Qin G, Liu Y, Liu F, Sun X, Hou L, Liu B, Yuan C. Magnetic field assisted construction of hollow red p nanospheres confined in hierarchical n-doped carbon nanosheets/nanotubes 3d framework for efficient potassium storage. Adv Energy Mater. 2021;11(4):Article 2003429.

44

Zhang Y, Rui X, Tang Y, Liu Y, Wei J, Chen S, Leow WR, Li W, Liu Y, Deng J, et al. Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries. Adv Energy Mater. 2016;6(10):Article 1502409.

45

Zeng G, Hu X, Zhou B, Chen J, Cao C, Wen Z. Engineering graphene with red phosphorus quantum dots for superior hybrid anodes of sodium-ion batteries. Nanoscale. 2017;9:14722–14729.

46

Zhu J, Liu Z, Wang W, Yue L, Li W, Zhang H, Zhao L, Zheng H, Wang J, Li Y. Green, template-less synthesis of honeycomb-like porous micron-sized red phosphorus for high-performance lithium storage. ACS Nano. 2021;15(1):1880–1892.

47

Chang W-C, Tseng K-W, Tuan H-Y. Solution synthesis of iodine-doped red phosphorus nanoparticles for lithium-ion battery anodes. Nano Lett. 2017;17(2):1240–1247.

48

Zhou J, Liu X, Cai W, Zhu Y, Liang J, Zhang K, Lan Y, Jiang Z, Wang G, Qian Y. Wet-chemical synthesis of hollow red-phosphorus nanospheres with porous shells as anodes for high-performance lithium-ion and sodium-ion batteries. Adv Mater. 2017;29(29):Article 1700214.

49

Liu S, Xu H, Bian X, Feng J, Liu J, Yang Y, Yuan C, An Y, Fan R, Ci L. Nanoporous red phosphorus on reduced graphene oxide as superior anode for sodium-ion batteries. ACS Nano. 2018;12(7):7380–7387.

50

Liu S, Xu H, Bian X, Feng J, Liu J, Yang Y, Yuan C, An Y, Fan R, Ci L. Hollow nanoporous red phosphorus as an advanced anode for sodium-ion batteries. J Mater Chem A. 2018;6(27):12992–12998.

51

Li T, Lin N, Han Y, Yi Z, Zhou J, Qian Y. Metallothermic reduction of molten adduct [PCl4+][AlCl4 ] at 50 ℃ to amorphous phosphorus or crystallized phosphides. ACS Applied Materials & Interfaces. 2018;10(49):42469–42474.

52

Santhoshkumar P, Shaji N, Nanthagopal M, Park JW, Senthil C, Lee CW. Multichannel red phosphorus with a nanoporous architecture: A novel anode material for sodium-ion batteries. Journal of Power Sources. 2020;470:Article 228459.

53

Zhu L, Zhu Z, Zhou J, Qian Y. Kirkendall effect modulated hollow red phosphorus nanospheres for high performance sodium-ion battery anodes. Chemical Communications. 2020;56(79):11795–11798.

54

Liu W, Ju S, Yu X. Phosphorus-amine-based synthesis of nanoscale red phosphorus for application to sodium-ion batteries. ACS Nano. 2020;14(1):974–984.

55

Liu W, Du L, Ju S, Cheng X, Wu Q, Hu Z, Yu X. Encapsulation of red phosphorus in carbon nanocages with ultrahigh content for high-capacity and long cycle life sodium-ion batteries. ACS Nano. 2021;15(3):5679–5688.

56

Li J, Jin H, Yuan Y, Lu H, Su C, Fan D, Li Y, Wang J, Lu J, Wang S. Encapsulating phosphorus inside carbon nanotubes via a solution approach for advanced lithium ion host. Nano Energy. 2019;58:23–29.

57

Yan C, Zhao H, Li J, Jin H, Liu L, Wu W, Wang J, Lei Y, Wang S. Mild-temperature solution-assisted encapsulation of phosphorus into zif-8 derived porous carbon as lithium-ion battery anode. Small. 2020;16(11):1907141.

58

Sun J, Lee H-W, Pasta M, Sun Y, Liu W, Li Y, Lee HR, Liu N, Cui Y. Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries. Energy Storage Materials. 2016;4:130–136.

59

Yuan T, Ruan J, Peng C, Sun H, Pang Y, Yang J, Ma ZF, Zheng S. 3D red phosphorus/sheared CNT sponge for high performance lithium-ion battery anodes. Energy Stor Mater. 2018;13:267–273.

60

Li M, Carter R, Oakes L, Douglas A, Muralidharan N, Pint CL. Role of carbon defects in the reversible alloying states of red phosphorus composite anodes for efficient sodium ion batteries. Journal of Materials Chemistry A. 2017;5(11):5266–5272.

61

Wu Y, Liu Z, Zhong X, Cheng X, Fan Z, Yu Y. Amorphous red phosphorus embedded in sandwiched porous carbon enabling superior sodium storage performances. Small. 2018;14(12):1703472.

62

Kim Y, Park Y, Choi A, Choi NS, Kim J, Lee J, Ryu JH, Oh SM, Lee KT. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Advanced Materials. 2013;25(22):3045–3049.

63

Qian J, Qiao D, Ai X, Cao Y, Yang H. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chemical Communications. 2012;48(71):8931–8933.

64

Qian J, Wu X, Cao Y, Ai X, Yang H. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angewandte Chemie. 2013;125(17):4731–4734.

65

Wang D, Zhou C, Cao B, Xu Y, Zhang D, Li A, Zhou J, Ma Z, Chen X, Song H. One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries. Energy Storage Materials. 2020;24:312–318.

66

Fan Z, Wang Y, Zhang S, Xu K, Wu J, Chen S, Liang J, Shi A, Wang Z. A submicron Si@C core-shell intertwined with carbon nanowires and graphene nanosheet as a high-performance anode material for lithium ion battery. Energy Stor Mater. 2021;39:1–10.

67

Wang L, He X, Li J, Sun W, Gao J, Guo J, Jiang C. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angewandte Chemie. 2012;124(36):9168–9171.

68

Bai A, Wang L, Li J, He X, Wang J, Wang J. Composite of graphite/phosphorus as anode for lithium-ion batteries. J Power Sour. 2015;289:100–104.

69

Li L, Zhang D, Deng J, Gou Y, Fang J, Cui H, Zhao Y, Cao M. Carbon-based materials for fast charging lithium-ion batteries. Carbon. 2021;183:721–734.

70

Li J, Wang L, Ren Y, Zhang Y, Wang Y, Hu A, He X. Distinctive slit-shaped porous carbon encapsulating phosphorus as a promising anode material for lithium batteries. Ionics. 2016;22(2):167–172.

71

Wang Y, Tian L, Yao Z, Li F, Li S, Ye S. Enhanced reversibility of red phosphorus/active carbon composite as anode for lithium ion batteries. Electrochimica Acta. 2015;163:71–76.

72

Wu N, Yao HR, Yin YX, Guo YG. Improving the electrochemical properties of the red P anode in Na-ion batteries via the space confinement of carbon nanopores. Journal of Materials Chemistry A. 2015;3(48):24221–24225.

73

Li WJ, Chou SL, Wang JZ, Liu HK, Dou SX. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Letters. 2013;13(11):5480–5484.

74

Zhu Y, Wen Y, Fan X, Gao T, Han F, Luo C, Liou SC, Wang C. Red phosphorus–single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano. 2015;9(3):3254–3264.

75

Wang L, Guo H, Wang W, Teng K, Xu Z, Chen C, Li C, Yang C, Hu C. Preparation of sandwich-like phosphorus/reduced graphene oxide composites as anode materials for lithium-ion batteries. Electrochim Acta. 2016;211:499–506.

76

Zhou J, Jiang Z, Niu S, Zhu S, Zhou J, Zhu Y, Liang J, Han D, Xu K, Zhu L, et al. Self-standing hierarchical P/CNTs@rGO with unprecedented capacity and stability for lithium and sodium storage. Chem. 2018;4(2):372–385.

77

Sun L, Zhang Y, Zhang D, Liu J, Zhang Y. Amorphous red phosphorus anchored on carbon nanotubes as high performance electrodes for lithium ion batteries. Nano Research. 2018;11(5):2733–2745.

78

Yue Z, Gupta T, Wang F, Li C, Kumar R, Yang Z, Koratkar N. Utilizing a graphene matrix to overcome the intrinsic limitations of red phosphorus as an anode material in lithium-ion batteries. Carbon. 2018;127:588–595.

79

Wu Y, Xing F, Xu R, Cheng X, Li D, Zhou X, Zhang Q, Yu Y. Spatially confining and chemically bonding amorphous red phosphorus in the nitrogen doped porous carbon tubes leading to superior sodium storage performance. Journal of Materials Chemistry A. 2019;7(14):8581–8588.

80

Feng N, Liang X, Pu X, Li M, Liu M, Cong Z, Sun J, Song W, Hu W. Rational design of red phosphorus/reduced graphene oxide composites for stable sodium ion storage. J Alloys Comp. 2019;775:1270–1276.

81

Sun L, Zhang Y, Zhang D, Zhang Y. Amorphous red phosphorus nanosheets anchored on graphene layers as high performance anodes for lithium ion batteries. Nanoscale. 2017;9(46):18552–18560.

82

Sun X, Li W, Zhong X, Yu Y. Superior sodium storage in phosphorus@porous multichannel flexible freestanding carbon nanofibers. Energy Stor Mater. 2017;9:112–118.

83

Cheng J, Zhang G, Wang P, Wang CY, Yin YX, Li YK, Cao FF, Guo YG. Confined red phosphorus in edible fungus slag-derived porous carbon as an improved anode material in sodium-ion batteries. ACS Appl Mater Interf. 2019;11(51):47948–47955.

84

Liu W, Yuan X, Yu X. A core–shell structure of polydopamine-coated phosphorus–carbon nanotube composite for high-performance sodium-ion batteries. Nanoscale. 2018;10(35):16675–16682.

85

Xu T, Li D, Chen S, Sun Y, Zhang H, Xia Y, Yang D. Nanoconfinement of red phosphorus nanoparticles in seaweed-derived hierarchical porous carbonaceous fibers for enhanced lithium ion storage. Chem Eng J. 2018;345:604–610.

86

Yuan D, Cheng J, Qu G, Li X, Ni W, Wang B, Liu H. Amorphous red phosphorous embedded in carbon nanotubes scaffold as promising anode materials for lithium-ion batteries. J Power Sour. 2016;301:131–137.

87

Ruan B, Wang J, Shi D, Xu Y, Chou S, Liu H, Wang J. A phosphorus/n-doped carbon nanofiber composite as an anode material for sodium-ion batteries. J Mater Chem A. 2015;3(37):19011–19017.

88

Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional transition metal carbides. ACS Nano. 2012;6(2):1322–1331.

89

Zhang S, Li X-Y, Yang W, Tian H, Han Z, Ying H, Wang G, Han WQ. Novel synthesis of red phosphorus nanodot/Ti3C2Tx Mxenes from low-cost Ti3SiC2 max phases for superior lithium- and sodium-ion batteries. ACS Appl Mater Interf. 2019;11(45):42086–42093.

90

Zhang S, Ying H, Guo R, Yang WT, Han WQ. Vapor deposition red phosphorus to prepare nitrogen-doped Ti3C2Tx Mxenes composites for lithium-ion batteries. J Phys Chem Lett. 2019;10(21):6446–6454.

91

Zhang T, Jiang X, Li G, Yao Q, Lee JY. A red-phosphorous-assisted ball-milling synthesis of few-layered Ti3C2Tx (mxene) nanodot composite. ChemNanoMat. 2018;4(1):56–60.

92

Ruan J, Yuan T, Pang Y, Xu X, Yang J, Hu W, Zhong C, Ma ZF, Bi X, Zheng S. Red phosphorus-embedded cross-link-structural carbon films as flexible anodes for highly reversible li-ion storage. ACS Appl Mater Interf. 2017;9(41):36261–36268.

93

Rabiei Baboukani A, Khakpour I, Adelowo E, Drozd V, Shang W, Wang C. High-performance red phosphorus-sulfurized polyacrylonitrile composite by electrostatic spray deposition for lithium-ion batteries. Electrochim Acta. 2020;345:Article 136227.

94

Hu Y, Li B, Jiao X, Zhang C, Dai X, Song J. Stable cycling of phosphorus anode for sodium-ion batteries through chemical bonding with sulfurized polyacrylonitrile. Adv Funct Mater. 2018;28(23):1801010.

95

Liu S, Feng J, Bian X, Liu J, Xu H, An Y. A controlled red phosphorus@Ni–P core@shell nanostructure as an ultralong cycle-life and superior high-rate anode for sodium-ion batteries. Energy Environ Sci. 2017;10(5):1222–1233.

96

Walter M, Erni R, Kovalenko MV. Inexpensive antimony nanocrystals and their composites with red phosphorus as high-performance anode materials for Na-ion batteries. Sci Rep. 2015;5(1):8418.

97

Xiao J, Cai Z, Muhmood T, Hu X, Lin S, Hu X. Tailoring ordered porous carbon embedded with Cu clusters for high-energy and long-lasting phosphorus anode. Small. 2022;18(11):2106930.

98
Chin LC, Yi YH, Chang WC, Tuan HY Significantly improved performance of red phosphorus sodium-ion anodes with the addition of iron. Electrochim Acta, 2018, 266: 178–184. D
99

Kim S-O, Manthiram A. High-performance red P-based P–TiP2–C nanocomposite anode for lithium-ion and sodium-ion storage. Chem Mater, 2016, 28(16): 5935–5942.

100

Han X, Zhang Z, Han M, Cui Y, Sun J. Fabrication of red phosphorus anode for fast-charging lithium-ion batteries based on tin/tip2-enhanced interfacial kinetics. Energy Stor Mater. 2020;26:147–156.

101

Li W, Han C, Gu Q, Chou S, Liu HK, Dou SX. Three-dimensional electronic network assisted by tin conductive pillars and chemical adsorption to boost the electrochemical performance of red phosphorus. ACS Nano. 2020;14(4):4609–4617.

102

Yabuuchi N, Matsuura Y, Ishikawa T, Kuze S, Son JY, Cui YT, Oji H, Komaba S. Phosphorus electrodes in sodium cells: Small volume expansion by sodiation and the surface-stabilization mechanism in aprotic solvent. ChemElectroChem. 2014;1(3):580–589.

103

Dahbi M, Fukunishi M, Horiba T, Yabuuchi N, Yasuno S, Komaba S. High performance red phosphorus electrode in ionic liquid-based electrolyte for Na-ion batteries. J Power Sour. 2017;363:404–412.

104

Zhang J, Zhang K, Yang J, Wing-hei Lau V, Lee GH, Park M, Kang YM. Engineering solid electrolyte interphase on red phosphorus for long-term and high-capacity sodium storage. Chem Mater. 2020;32(1):448–458.

105

Song J, Peng X, Liu D, Li H, Wu M, Fang K, Zhu X, Xiang X, Tang H. On-site conversion reaction enables ion-conducting surface on red phosphorus/carbon anode for durable and fast sodium-ion batteries. J Energy Mater. 2023;80:381–391.

106

Fang K, Liu D, Xiang X, Zhu X, Tang H, Qu D, Xie Z, Li J, Qu D. Air-stable red phosphorus anode for potassium/sodium-ion batteries enabled through dual-protection design. Nano Energy. 2020;69:Article 104451.

107

Liang S, Li N, Wang H, Jing M, Wang W, Hu Y, Xu Z, Liu L, Li F. “Rebar-reinforced concrete” carbon nanotubes/carbon black@phosphorus multilevel architecture from one-pot ball milling as anode materials. Ceramics Intl. 2019;45(1):1331–1338.

108

Xiao W, Sun Q, Banis MN, Wang B, Li W, Li M, Lushington A, Li R, Li X, Sham TK, et al. Understanding the critical role of binders in phosphorus/carbon anode for sodium-ion batteries through unexpected mechanism. Adv Funct Mater. 2020;2020:2000060.

109

Ma X, Chen L, Ren X, Hou G, Chen L, Zhang L, Liu B, Ai Q, Zhang L, Si P, et al. High-performance red phosphorus/carbon nanofibers/graphene free-standing paper anode for sodium ion batteries. J Mater Chem A. 2018;6(4):1574–1581.

110

Tu S, Lu Z, Zheng M, Chen Z, Wang X, Cai Z, Chen C, Wang L, Li C, Seh ZW, et al. Single-layer-particle electrode design for practical fast-charging lithium-ion batteries. Adv Mater. 2022;34(39):2202892.

111

Lan D, Li Q. Manipulating local chemistry of phosphorus for high-performance sodium ion battery anode applications. ACS Appl Energy Mater. 2018;2(1):661–667.

112

Zhao X, Shen L, Zhang N, Yang J, Liu G, Wu J, Yao X. Stable binder boosting sulfide solid electrolyte thin membrane for all-solid-state lithium batteries. Energy Mater Adv. 2024;2024:0074.

113

Zhu N, Zhang K, Wu F, Bai Y, Wu C. Ionic liquid-based electrolytes for aluminum/magnesium/sodium-ion batteries. Energy Mater Adv. 2021;2021:9204217.

114

Dong R, Wu F, Bai Y, Li Q, Yu X, Li Y, Ni Q, Wu C. Tailoring defects in hard carbon anode towards enhanced Na storage performance. Energy Mater Adv. 2022;2022:9896218.

Energy Material Advances
Article number: 0086
Cite this article:
Bai J, Li Z, Wang X, et al. Limitations and Strategies toward High-Performance Red Phosphorus Materials for Li/Na-Ion Batteries. Energy Material Advances, 2024, 5: 0086. https://doi.org/10.34133/energymatadv.0086

21

Views

0

Downloads

3

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 24 January 2024
Accepted: 21 February 2024
Published: 15 March 2024
© 2024 Jin Bai et al. Exclusive licensee Beijing Institute of Technology Press. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return