PDF (11.2 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
References
Show full outline
Hide outline
Review Article | Open Access

Progress of Advanced Cathode Materials of Rechargeable Aluminum-Ion Batteries

Dongwei Ma1,2Jiahui Li2He Li2Du Yuan3 ()Zhuoyu Ji2Maykel Manawan4,5Carlos Ponce de León Albarran6Chuan Wu7,8Jia Hong Pan1,2()
State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, PR China
College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410004, Hunan, PR China
Research Center for Advanced Material, National Research and Innovation Agency (BRIN), South Tangerang, 15314, Banten, Indonesia
Faculty of Defense Science and Technology, Republic of Indonesia Defense University, Bogor 16810, Indonesia
Department of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
Yangtze Delta Region Academy of Beijing Institute of Technolog, Jiaxing 314019, PR China
Show Author Information

Abstract

Given the increasing attention to the safety issues of lithium-ion batteries (LIBs) and the continuous rise in the price of lithium and its compounds, it is urgent to explore innovative electrochemical energy device alternatives to LIBs. Major efforts have been devoted to developing rechargeable aluminum-ion batteries (AIBs), owing to their low cost and high energy density derived from the 3-electron redox reaction. Moreover, the dendrite-free plating behavior with room-temperature ionic liquid electrolytes endows AIBs with great safety expectations. A marked hurdle persists in the quest for appropriate cathode materials that can effectively accommodate aluminum ion species in AIBs. This review aims to deliver an integrated overview of the state-of-the-art cathode materials for nonaqueous and aqueous AIBs, with a special emphasis on their underlying electrochemical interaction with electrolytes. The strategies adopted to improve the specific capacity and cyclic performances of AIBs are highlighted. Furthermore, future perspectives of AIBs are discussed.

References

1

Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J. Electrochemical energy storage for green grid. Chem Rev. 2011;111(5):3577–3613.

2

Eftekhari A. Lithium batteries for electric vehicles: From economy to research strategy. ACS Sustain Chem Eng. 2019;7(6):5602–5613.

3

Ma D, Li K, Pan JH. Ultraviolet-induced interfacial crystallization of uniform nanoporous biphasic TiO2 spheres for durable lithium-ion battery. ACS Appl Energy Mater. 2020;3(5):4186–4192.

4

Swain B. Recovery and recycling of lithium: A review. Sep Purif Technol. 2017;172:388–403.

5

Mahmoudzadeh Andwari A, Pesiridis A, Rajoo S, Martinez-Botas R, Esfahanian VA. Review of battery electric vehicle technology and readiness levels. Renew Sust Energ Rev. 2017;78:414–430.

6

Abada S, Marlair G, Lecocq A, Petit M, Sauvant-Moynot V, Huet F. Safety focused modeling of lithium-ion batteries: A review. J Power Sources. 2016;306:178–192.

7

Das SK. Graphene: A cathode material of choice for aluminum-ion batteries. Angew Chemie - Int Ed. 2018;57(51):16606–16617.

8

Ru Y, Zheng S, Xue H, Pang H. Potassium cobalt hexacyanoferrate nanocubic assemblies for high-performance aqueous aluminum ion batteries. Chem Eng J. 2020;382:Article 122853.

9

Wu F, Yang H, Bai Y, Wu C. Paving the path toward reliable cathode materials for aluminum-ion batteries. Adv Mater. 2019;31(16):1806510.

10

Kong Y. Thermal reductive perforation of graphene cathode for high-performance aluminum-ion batteries. Adv Funct Mater. 2021;31(17):1–9.

11

Wang D. H2-inhibited organic anodes for fast and long-life aqueous aluminum ion batteries with a 3.5-month calendar life. Small. 2022;18(22):2–9.

12

Hu Y. Aluminum-ion batteries: A portable and efficient solar-rechargeable battery with ultrafast photo-charge/discharge rate. Adv Energy Mater. 2019;9(28):1900872.

13

He S. A high-energy aqueous aluminum-manganese battery. Adv Funct Mater. 2019;29(45):1–9.

14

Elia GA, Kravchyk KV, Kovalenko MV, Chacón J, Holland A, Wills RGA. An overview and prospective on Al and Al-ion battery technologies. J Power Sources. 2021;481:Article 228870.

15

Kong L, Liu M, Huang H, Xu Y, Bu XH. Metal/covalent-organic framework based cathodes for metal-ion batteries. Adv Energy Mater. 2021;12(4):1–26.

16

Das S, Bhauriyal P, Pathak B. Polycyclic aromatic hydrocarbons as prospective cathodes for aluminum organic batteries. J Phys Chem C. 2021;125(1):49–57.

17

Das S, Manna SS, Pathak B. Recent trends in electrode and electrolyte design for aluminum batteries. ACS Omega. 2021;6(2):1043–1053.

18

Chen J, Zhu Q, Jiang L, Liu R, Yang Y, Tang M, Wang J, Wang H, Guo L. Rechargeable aqueous aluminum organic batteries. Angew Chemie. 2021;60(11):5858–5863.

19

Chiku M, Takeda H, Matsumura S, Higuchi E, Inoue H. Amorphous vanadium oxide/carbon composite positive electrode for rechargeable aluminum battery. ACS Appl Mater Interfaces. 2015;7(44):24385–24389.

20

Zhang Y, Liu S, Ji Y, Ma J, Yu H. Emerging nonaqueous aluminum-ion batteries: Challenges, status, and perspectives. Adv Mater. 2018;30(38):1706310.

21
Deltombe E, Pourbaix M. The Electrochemical behavior of Aluminum. 1958; 17–20 at (1958).
22

Fan L, Lu H, Leng J, Sun Z, Chen C. The effect of crystal orientation on the aluminum anodes of the aluminum e air batteries in alkaline electrolytes. J Power Sources. 2015;299:66–69.

23

Gao Y, Yan Z, Gray JL, He X, Wang D, Chen T, Huang Q, Li YC, Wang H, Kim SH, et al. Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat Mater. 2019;18:384–389.

24

Pinson MB, Bazant MZ. Theory of SEI formation in rechargeable batteries: Capacity fade, accelerated aging and lifetime prediction. J Electrochem Soc. 2013;160(2):A243–A250.

25

Verma P, Maire P, Novák P. Electrochimica Acta review article a review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta. 2010;55(22):6332–6341.

26

Cao X, Ren X, Zou L, Engelhard MH, Huang W, Wang H, Matthews BE, Lee H, Niu C, Arey BW, et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat Energy. 2019;4(9):796–805.

27

Hao J. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv Funct Mater. 2020;30(30):1–10.

28
YangQDo zinc dendrites exist in neutral zinc batteries: A developed electrohealing strategy to in situ rescue in-service batteriesAdv Mater2019314319

Yang Q. Do zinc dendrites exist in neutral zinc batteries: A developed electrohealing strategy to in situ rescue in-service batteries. Adv Mater. 2019;31(43):1–9.

10.1002/adma.201903778
29

Qiu H, du X, Zhao J, Wang Y, Ju J, Chen Z, Hu Z, Yan D, Zhou X, Cui G. Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat Commun. 2019;10(1):5374.

30

Yuan D, Manalastas W, Zhang L, Chan J, Meng S, Chen Y, Srinivasan M. Lignin @ Nafion membranes forming Zn solid – Electrolyte interfaces enhance the cycle life for rechargeable zincion batteries. ChemSusChem. 2019;12(21):1–13.

31

Holland A, McKerracher R, Cruden A, Wills R. Electrochemically treated TiO2 for enhanced performance in aqueous Al-ion batteries. Materials (Basel). 2018;11(11):17–19.

32

Kazazi M, Zafar ZA, Delshad M, Cervenka J, Chen C. TiO2/CNT nanocomposite as an improved anode material for aqueous rechargeable aluminum batteries. Solid State Ionics. 2018;320:64–69.

33

Holland A, Mckerracher RD, Cruden A, Wills RGA. An aluminium battery operating with an aqueous electrolyte. J Appl Electrochem. 2018;48(5):243–250.

34

Lahan H, Das SK. An approach to improve the Al3+ ion intercalation in anatase TiO2 nanoparticle for aqueous aluminum-ion battery. Ionics (Kiel). 2018;24(6):1855–1860.

35

Holland AW, McKerracher R, Cruden A, Wills RGA. TiO2 nanopowder as a high rate, long cycle life electrode in aqueous aluminium electrolyte. Mater Today Energy. 2018;10:208–213.

36

Liu S, Hu JJ, Yan NF, Pan GL, Li GR, Gao XP. Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries. Energy Environ Sci. 2012;5(12):9743–9746.

37

Cai Y, Kumar S, Chua R, Verma V, Yuan D, Kou Z, Ren H, Arora H. Bronze-type vanadium dioxide holey nanobelts as high performing cathode material for aqueous aluminium-ion batteries. J Mater Chem. 2020;8(25):12716–12722.

38

De P, Halder J, Priya S, Srivastava AK, Chandra A. Two-dimensional V2O5 nanosheets as an advanced cathode material for realizing low-cost aqueous aluminum-ion batteries. ACS Appl Energy Mater. 2023;6(2):753–762.

39

Sun S, Tang C, Jiang Y, Wang D, Chang X, Lei Y, Wang N, Zhu Y. Flexible and rechargeable electrochromic aluminium-ion battery based on tungsten oxide film electrode. Sol Energy Mater Sol Cells. 2020;207:Article 110332.

40

Wu C, Gu S, Zhang Q, Bai Y, Li M, Yuan Y, Wang H, Liu X, Yuan Y, Zhu N, et al. Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat Commun. 2019;10:73.

41

Yan C, Lv C, Wang L, Cui W, Zhang L, Dinh KN, Tan H, Wu C, Wu T, Ren Y, et al. Architecting a stable high-energy aqueous Al-ion battery. J Am Chem Soc. 2020;142(36):15295–15304.

42

Liu S, Pan GL, Li GR, Gao XP. Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries. J Mater Chem A. 2015;3:959–962.

43

Meng P. A low-cost and air-stable rechargeable aluminum-ion battery. Adv Mater. 2022;34(8):1–9.

44

Manalastas W, Kumar S, Verma V, Zhang L, Yuan D, Srinivasan M. Water in rechargeable multivalent-ion batteries: An electrochemical Pandora’s box. ChemSusChem. 2019;12(2):379–396.

45

Zhang K, Kirlikovali KO, Suh JM, Choi JW, Jang HW, Varma RS, Farha OK, Shokouhimehr M. Recent advances in rechargeable aluminum-ion batteries and considerations for their future progress. ACS Appl Energy Mater. 2020;3(7):6019–6035.

46

Schoetz T, de Leon CP, Ueda M, Bund A. Perspective—State of the art of rechargeable aluminum batteries in non-aqueous systems. J Electrochem Soc. 2017;164(14):A3499–A3502.

47

Yang H, Li H, Li J, Sun Z, He K, Cheng HM, Li F. The rechargeable aluminum battery: Opportunities and challenges. Angew Chem Int Ed Engl. 2019;58(35):11978–11996.

48

Gifford PR, Palmisano JB. An aluminum/chlorine rechargeable cell employing a room temperature molten salt electrolyte. J Electrochem Soc. 1988;135:650–654.

49

Lin MC, Gong M, Lu B, Wu Y, Wang DY, Guan M, Angell M, Chen C, Yang J, Hwang BJ, et al. An ultrafast rechargeable aluminium-ion battery. Nature. 2015;520:325–328.

50

Wang DY. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nat Commun. 2017;8:1–7.

51

Elia GA, Kyeremateng NA, Marquardt K, Hahn R. An ultrafast rechargeable aluminium-ion battery. Batter Supercaps. 2018;2:83–90.

52

Sun H, Wang W, Yu Z, Yuan Y, Wang S, Jiao S. A new aluminium-ion battery with high voltage, high safety and low cost. Chem Commun. 2015;51(59):11892–11895.

53

Canever N, Hughson FR, Nann T. Solid-electrolyte interphases (SEI) in nonaqueous aluminum-ion batteries. ACS Appl Energy Mater. 2020;3:3673–3683.

54

Xu JH, Schoetz T, McManus JR, Subramanian VR, Fields PW, Messinger RJ. Tunable pseudocapacitive intercalation of chloroaluminate anions into graphite electrodes for rechargeable aluminum batteries. J Electrochem Soc. 2021;168(6):Article 060514.

55

Rani JV, Kanakaiah V, Dadmal T, Rao MS, Bhavanarushi S. Fluorinated natural graphite cathode for rechargeable ionic liquid based aluminum–ion battery. J Electrochem Soc. 2013;160(10):A1781–A1784.

56

Bian Y, Su L, Yu Z, Lv Z, Chen H, Zhou Y, Meng C, du H, Cai M, Cao H, et al. Graphite/copper phthalocyanine composite cathode for overcharge protection and gas evolution suppression in aluminum-ion batteries at room temperature. Electrochim Acta. 2020;332:Article 135188.

57

Crowther O, du LS, Moureau DM, Bicaku I, Salomon M, Lawson JW, Lucente LR, Mock K, Fellner JP, Scanlon LG. Effect of conductive carbon on capacity of iron phthalocyanine cathodes in primary lithium batteries. J Power Sources. 2012;217:92–97.

58

Ramos-Sanchez G, Callejas-Tovar A, Scanlon LG, Balbuena PB. DFT analysis of Li intercalation mechanisms in the Fe-phthalocyanine cathode of Li-ion batteries. Phys Chem Chem Phys. 2014;16(2):743–752.

59

Sevim AM, Arkan S, Koca A, Gül A. Synthesis and spectroelectrochemistry of new phthalocyanines with ester functionalities. Dyes Pigments. 2012;92(3):1114–1121.

60

Kim J, Raj MR, Lee G. High-defect-density graphite for superior-performance aluminum-ion batteries with ultra-fast charging and stable long life. Nano-Micro Lett. 2021;13(1):171.

61

Liu Z, Wang J, Ding H, Chen S, Yu X, Lu B. Carbon nanoscrolls for aluminum battery. ACS Nano. 2018;12(8):8456–8466.

62

Han M, Lv Z, Hou L, Zhou S, Cao H, Chen H, Zhou Y, Meng C, du H, Cai M, et al. Graphitic multi-walled carbon nanotube cathodes for rechargeable Al-ion batteries with well-defined discharge plateaus. J Power Sources. 2020;451(8):Article 227769.

63

Zhang Q, Wei H, Wang L, Wang J, Fan L, Ding H, Lei J, Yu X, Lu B. Accessible COF-based functional materials for potassium-ion batteries and aluminum batteries. ACS Appl Mater Interfaces. 2019;11(47):44352–44359.

64

Jiao H, Jiao S, Li S, Song WL, Chen H, Tu J, Wang M, Tian D, Fang D. Liquid gallium as long cycle life and recyclable negative electrode for Al-ion batteries. Chem Eng J. 2020;391:Article 123594.

65

Chen LL. Nonmetal current collectors: The key component for high-energy-density aluminum batteries. Adv Mater. 2020;32(42):1–8.

66

Jiao H, Jiao S, Song WL, Chen H, Wang M, Tu J, Fang D. Cu-Al composite as the negative electrode for long-life Al-ion batteries. J Electrochem Soc. 2019;166:A3539–A3545.

67

Jiao H. Al homogeneous deposition induced by N-containing functional groups for enhanced cycling stability of Al-ion battery negative electrode. Nano Res. 2020;12:1–7.

68

Huang X, Liu Y, Zhang H, Zhang J, Noonan O, Yu C. Free-standing monolithic nanoporous graphene foam as high performance aluminum-ion battery cathode. J Mater Chem A. 2017;5(36):19416–19421.

69

Chen H, Guo F, Liu Y, Huang T, Zheng B, Ananth N, Xu Z, Gao W, Gao C. A defect-free principle for advanced graphene cathode of aluminum-ion battery. Adv Mater. 2017;29(12):1605958.

70

Huang H, Zhou F, Lu P, Li X, das P, Feng X, Müllen K, Wu ZS. Design and construction of few-layer graphene cathode for ultrafast and high-capacity aluminum-ion batteries. Energy Storage Mater. 2020;27:396–404.

71

Elia GA, Greco G, Kamm PH, García-Moreno F, Raoux S, Hahn R. Simultaneous X-ray diffraction and tomography operando investigation of aluminum/graphite batteries. Adv Funct Mater. 2020;30(43):2003913.

72

Le DB. Intercalation of polyvalent cations into V2O5 aerogels. Chem Mater. 1998;10(3):682–684.

73

Mckerracher RD, Holland A, Cruden A, Wills RGA. Comparison of carbon materials as cathodes for the aluminium-ion battery. Carbon N Y. 2019;144:333–341.

74

Jayaprakash N, Das SK, Archer LA. The rechargeable aluminum-ion battery. Chem Commun. 2011;47:12610–12612.

75

Gu S, Wang H, Wu C, Bai Y, Li H, Wu F. Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Storage Mater. 2017;6:9–17.

76

Wang H, Bai Y, Chen S, Luo X, Wu C, Wu F, Lu J, Amine K. Binder-free V2O5 cathode for greener rechargeable aluminum battery. ACS Appl Mater Interfaces. 2015;7(1):80–84.

77

Diem AM, Bill J, Burghard Z. Creasing highly porous V2O5 scaffolds for high energy density aluminum-ion batteries. ACS Appl Energy Mater. 2020;3(4):4033–4042.

78

Wang W. A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation. Sci Rep. 2013;3:2–7.

79

Wang S, Kravchyk KV, Pigeot-Rémy S, Tang W, Krumeich F, Wörle M, Bodnarchuk MI, Cassaignon S, Durupthy O, Zhao S, et al. Anatase TiO2 nanorods as cathode materials for aluminum-ion batteries. ACS Appl Nano Mater. 2019;2(10):6428–6435.

80

Koketsu T, Ma J, Morgan BJ, Body M, Legein C, Dachraoui W, Giannini M, Demortière A, Salanne M, Dardoize F, et al. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat Mater. 2017;16(11):1142–1148.

81

Ma D, Lai L, de León CP, Yuan D, Pan JH. Microwave-assisted self-template synthesis of mesoporous anatase TiO2 spheres for non-aqueous Al-ion batteries: Textural property optimization and enhanced reversible Al3+ storage. Sustain Mater Technol. 2022;32:Article e00419.

82

Wang L, Lin H, Kong W, Hu Y, Chen R, Zhao P, Shokouhimehr M, Zhang XL, Tie Z, Jin Z. Controlled growth and ion intercalation mechanism of monocrystalline niobium pentoxide nanotubes for advanced rechargeable aluminum-ion batteries. Nanoscale. 2020;12(23):12531–12540.

83

Subramanian N, Viswanathan B, Varadarajan TK. A facile, morphology-controlled synthesis of potassium-containing manganese oxide nanostructures for electrochemical supercapacitor application. RSC Adv. 2014;4(64):33911–33922.

84

Yin B, Zhang S, Jiang H, Qu F, Wu X. Phase-controlled synthesis of polymorphic MnO2 structures for electrochemical energy storage. J Mater Chem A. 2015;3(10):5722–5729.

85

Sun X, Duffort V, Mehdi BL, Browning ND, Nazar LF. Investigation of the mechanism of mg insertion in birnessite in nonaqueous and aqueous rechargeable mg-ion batteries. Chem Mater. 2016;28(2):534–542.

86

Komaba S, Kumagai N, Chiba S. Synthesis of layered MnO2 by calcination of KMnO4 for rechargeable lithium battery cathode. Electrochim Acta. 2000;46(1):31–37.

87

Khamsanga S, Pornprasertsuk R, Yonezawa T, Mohamad AA, Kheawhom S. δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries. Sci Rep. 2019;9:1–9.

88

Almodóvar P, Giraldo DA, Chancón J, Álvarez-Serrano I, López ML. δ-MnO2 nanofibers: A promising cathode material for new aluminum-ion batteries. ChemElectroChem. 2020;7(9):2102–2106.

89

Lu H, Wan Y, Wang T, Jin R, Ding P, Wang R, Wang Y, Teng C, Li L, Wang X, et al. A high performance SnO2/C nanocomposite cathode for aluminum-ion batteries. J Mater Chem A. 2019;7(12):7213–7220.

90

Jahnke T, Raafat L, Hotz D, Knöller A, Diem AM, Bill J, Burghard Z. Highly porous free-standing rGO/SnO2 pseudocapacitive cathodes for high-rate and long-cycling al-ion batteries. Nano. 2020;10(10):1–17.

91

Almodóvar P, Giraldo D, Díaz-Guerra C, Ramírez-Castellanos J, González Calbet JM, Chacón J, López ML. H-MoO3/AlCl3-urea/Al: High performance and low-cost rechargeable Al-ion battery. J Power Sources. 2021;516:Article 230656.

92

Geng L, Lv G, Xing X, Guo J. Reversible electrochemical intercalation of aluminum in Mo6S8. Chem Mater. 2015;27(14):4926–4929.

93

Li Z, Niu B, Liu J, Li J, Kang F. Rechargeable aluminum-ion battery based on MoS2 microsphere cathode. ACS Appl Mater Interfaces. 2018;10(11):9451–9459.

94

Guo S, Yang H, Liu M, Feng X, Xu H, Bai Y, Wu C. Interlayer-expanded MoS2/N-doped carbon with three-dimensional hierarchical architecture as a cathode material for high-performance aluminum-ion batteries. ACS Appl Energy Mater. 2021;4(7):7064–7072.

95

Wang S, Yu Z, Tu J, Wang J, Tian D, Liu Y, Jiao S. A novel aluminum-ion battery: Al/AlCl3-[EMIm]cl/Ni3S2@ graphene. Adv Energy Mater. 2016;6(13):1600137.

96

Wang S, Jiao S, Wang J, Chen HS, Tian D, Lei H, Fang DN. High-performance aluminum-ion battery with CuS@C microsphere composite cathode. ACS Nano. 2017;11(1):469–477.

97

Hu Y, Luo B, Ye D, Zhu X, Lyu M, Wang L. An innovative freeze-dried reduced graphene oxide supported SnS2 cathode active material for aluminum-ion batteries. Adv Mater. 2017;29(48):1606132.

98

Mori T, Orikasa Y, Nakanishi K, Kezheng C, Hattori M, Ohta T, Uchimoto Y. Discharge/charge reaction mechanisms of FeS2 cathode material for aluminum rechargeable batteries at 55℃. J Power Sources. 2016;313:9–14.

99

Zhao Z, Hu Z, Li Q, Li H, Zhang X, Zhuang Y, Wang F, Yu G. Designing two-dimensional WS2 layered cathode for high-performance aluminum-ion batteries: From micro-assemblies to insertion mechanism. Nano Today. 2020;32(141):Article 100870.

100

Li G, Kou M, Tu J, Luo Y, Wang M, Jiao S. Coordination interaction boosts energy storage in rechargeable Al battery with a positive electrode material of CuSe. Chem Eng J. 2021;421:Article 127792.

101

Yang W, Lu H, Cao Y, Jing P, Hu X, Yu H. A flexible free-standing cathode based on graphene-like MoSe2 nanosheets anchored on N-doped carbon nanofibers for rechargeable aluminum-ion batteries. Ionics (Kiel). 2020;26(5):3405–3413.

102

Ramakrishna Matte HSS. MoS2 and WS2 analogues of graphene. Angew Chem - Int Ed. 2010;49(24):4059–4062.

103

Ai Y, Wu SC, Wang K, Yang TY, Liu M, Liao HJ, Sun J, Chen JH, Tang SY, Wu DC, et al. Three-dimensional molybdenum Diselenide helical nanorod arrays for high-performance aluminum-ion batteries. ACS Nano. 2020;14(7):8539–8550.

104

Jiang J, Li H, Fu T, Hwang BJ, Li X, Zhao J. One-dimensional Cu2-xSe nanorods as cathode material for high-performance aluminum ion battery. ACS Appl Mater Interfaces. 2018;10(21):17942–17949.

105

Zhang C, Gu H, Hu Y, Zhang W, Li Z. Investigation on the energy storage performance of Cu2Se@MnSe heterojunction hollow spherical shell for aluminum-ion battery. Chem Eng J. 2023;474:Article 145688.

106

Li J, Luo W, Zhang Z, Li F, Chao Z, Fan JC. ZnSe/SnSe2 hollow microcubes as cathode for high performance aluminum ion batteries. J Colloid Interface Sci. 2023;639:124–132.

107

Zhang C, Chen M, Zhao X, Zhang W, Li Z. High-performance MnSe2–MnSe heterojunction hollow sphere for aluminum ion battery. J Colloid Interface Sci. 2023;652(Pt B):1438–1446.

108

Wu J, Wu D, Zhao M, Wen Z, Jiang J, Zeng J, Zhao J. Rod-shaped Cu1.81Te as a novel cathode material for aluminum-ion batteries. Dalt Trans. 2020;49(3):729–736.

109

Cho JS, Ju HS, Lee JK, Kang YC. Carbon/two-dimensional MoTe2 core/shell-structured microspheres as an anode material for Na-ion batteries. Nanoscale. 2017;9(5):1942–1950.

110

Pickup PG, Osteryoung RA. Charging and discharging rate studies of polyyrrole films in AlCl3:L-methyl ethyl-(3-ethyl)-imidazolium chloride molten salts and in CH3CN. J Electroanal Chem. 1985;195:271–288.

111

Janiszewska L, Osteryoung RA. Electrochemistry of polythiophene and polybithiophene films in ambient temperature molten salts. J Electrochem Soc. 1987;134:2787.

112

Tang J, Osteryoung RA. Formation and electrochemistry of polyaniline in ambienttemperature molten salts. Synth Met. 1991;45(1):1–13.

113

Schoetz T, Ueda M, Bund A, Ponce de Leon C. Preparation and characterization of a rechargeable battery based on poly-(3,4-ethylenedioxythiophene) and aluminum in ionic liquids. J Solid State Electrochem. 2017;21(11):3237–3246.

114

Goldenberg LM, Osteryoung RA. Benzene polymerization in 1-ethyl-3-methylimidazolium chloride-A1C13 ionic liquid. Synth Met. 1994;64(1):63–68.

115

Hudak NS. Chloroaluminate-doped conducting polymers as positive electrodes in rechargeable aluminum batteries. J Phys Chem C. 2014;118(10):5203–5215.

116

Wang S, Huang S, Yao M, Zhang Y, Niu Z. Engineering active sites of polyaniline for AlCl2+ storage in an aluminum-ion battery. Angew Chem - Int Ed. 2020;59(29):11800–11807.

117

Pan C, Shin M, Liu D, Kottwitz M, Zhang R, Nuzzo RG, Gewirth AA. Energy storage mechanisms in high-capacity graphitic C3N4 cathodes for Al-ion batteries. J Phys Chem C. 2020;124(19):10288–10297.

118

Kong D, Fan H, Ding X, Wang D, Tian S, Hu H, du D, Li Y, Gao X, Hu H, et al. β-Hydrogen of polythiophene induced aluminum ion storage for high-performance Al-polythiophene batteries. ACS Appl Mater Interfaces. 2020;12(41):46065–46072.

119

Zhang J, Wu Y, Liu M, Huang L, Li Y, Wu Y. Self-adaptive re-organization enables polythiophene as an extraordinary cathode material for aluminum-ion batteries with a cycle life of 100 000 cycles. Angew Chem - Int Ed Engl. 2023;62(8):Article e202215408.

120

Gu S, Wu S, Cao L, Li M, Qin N, Zhu J, Wang Z, Li Y, Li Z, Chen J, et al. Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries. J Am Chem Soc. 2019;141(24):9623–9628.

121

Chen X, Li Y, Wang L, Xu Y, Nie A, Li Q, Wu F, Sun W, Zhang X, Vajtai R, et al. High-lithium-affinity chemically exfoliated 2D covalent organic frameworks. Adv Mater. 2019;31(29):1901640.

122

Lu H, Ning F, Jin R, Teng C, Wang Y, Xi K, Zhou D, Xue G. Two-dimensional covalent organic frameworks with enhanced aluminum storage properties. ChemSusChem. 2020;13(13):3447–3454.

123

Xiao X, Wang M, Tu J, Luo Y, Jiao S. Metal−organic framework-derived Co3O4@MWCNTs polyhedron as cathode material for a high-performance aluminum-ion battery. ACS Sustain Chem Eng. 2019;7(19):16200–16208.

124

Shen C, Wang L, Zhou A, Wang B, Wang X, Lian W, Hu Q, Qin G, Liu X. Synthesis and electrochemical properties of two-dimensional RGO/Ti3C2Tx nanocomposites. Nano. 2018;8(2):1–11.

125

Zou G, Zhang Z, Guo J, Liu B, Zhang Q, Fernandez C, Peng Q. Synthesis of MXene/ag composites for extraordinary long cycle lifetime lithium storage at high rates. ACS Appl Mater Interfaces. 2016;8(34):22280–22286.

126

Vahidmohammadi A, Hadjikhani A, Shahbazmohamadi S, Beidaghi M. Two-dimensional vanadium carbide (MXene) as a high capacity cathode material for rechargeable aluminum batteries two-dimensional vanadium carbide (MXene) as a high capacity cathode material for rechargeable aluminum batteries. ACS Nano. 2017;11(11):11135–11144.

127

Huo X, Wang X, Li Z, Liu J, Li J. Two-dimensional composite of D-Ti3C2T: X@S@TiO2 (MXene) as the cathode material for aluminum-ion batteries. Nanoscale. 2020;12(5):3387–3399.

128

Wang Y, Lv W, Wu G, Zhang W, Li Z. Lewis metal salt synthesis of V2C (MXene) composite nickel diselenide as a high-performance cathode material for secondary aluminum batteries. Appl Surf Sci. 2023;637:Article 157911.

129

Wang Y, Gu H, Lu Y, Zhang W, Li Z. The synergistic effect of Lewis acidic etching V4C3(MXene)@CuSe2/CoSe2 as an advanced cathode material for aluminum batteries. J Mater Sci Technol. 2024;177:205–213.

130

Jiang J, Li H, Huang J, Li K, Zeng J, Yang Y, Li J, Wang Y, Wang J, Zhao J. Investigation on the reversible intercalation/ deintercalation of Al into the novel Li3VO4@C microsphere composite cathode material for aluminum-ion batteries. ACS Appl Mater Interfaces. 2017;9(34):28486–28494.

131

Tu J, Wang M, Luo Y, Jiao S. Coral-like TeO2 microwires for rechargeable aluminum batteries. ACS Sustain Chem Eng. 2020;8(6):2416–2422.

132

Ju S, Ye J, Zhang H, Wang W, Xia G, Cui W, Yang Y, Pan H, Yu X. Recognizing the contrasting role of N, O dual-coordinated single-atom iron catalyst in Li−S and Al−S batteries. Energy Storage Mater. 2023;56:1–12.

133

Marassi R, Laher TM, Trimble DS, Mamantov G. Electrochemical and spectroscopic studies of sulfur in aluminum chloride-N-(n-butyl)pyridinium chloride. Electrochem Soc Ext Abstr. 1984;84–2:177–178.

134

Bian Y, Li Y, Yu Z, Chen H, du K, Qiu C, Zhang G, Lv Z, Lin MC. Using an AlCl3/urea ionic liquid analog electrolyte for improving the lifetime of aluminum-sulfur batteries. ChemElectroChem. 2018;5(23):3607–3611.

135

Bian Y, Jiang W, Zhang Y, Zhao L, Wang X, Lv Z, Zhou S, Han Y, Chen H, Lin MC. Understanding the oxidation and reduction reactions of sulfur in rechargeable aluminum-sulfur batteries with deep eutectic solvent and ionic liquid electrolytes. ChemSusChem. 2022;15(1):Article e202101398.

136

Li H. Reversible electrochemical oxidation of sulfur in ionic liquid for high-voltage Al−S batteries. Nat Commun. 2021;12(1):6–13.

137

Ju S, Yuan C, Zheng J, Yao L, Zhang T, Xia G, Yu X. Identifying single-atom catalysts for boosted Al–S conversion reactions. Energy Storage Mater. 2022;52:524–533.

138

Sun XG, Bi Z, Liu H, Fang Y, Bridges CA, Paranthaman MP, Dai S, Brown GM. A high performance hybrid battery based on aluminum anode and LiFePO4 cathode. Chem Commun. 2016;52(8):1713–1716.

139

Shi J, Zhang J, Guo J. Avoiding pitfalls in rechargeable aluminum batteries research. ACS Energy Lett. 2019;4(9):2124–2129.

Energy Material Advances
Article number: 0088
Cite this article:
Ma D, Li J, Li H, et al. Progress of Advanced Cathode Materials of Rechargeable Aluminum-Ion Batteries. Energy Material Advances, 2024, 5: 0088. https://doi.org/10.34133/energymatadv.0088
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return