PDF (11.2 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
References
Show full outline
Hide outline
Research Article | Open Access

Energy Density in Ionic Thermoelectric Generators by Prussian Blue Electrodes

Xia Yang1,2,Jin Liu3,Jianchao Jia1Chen Wu1Fei Wang1Dong Yu Zhu2()Wei Zeng1()
The Center of Flexible Sensing Technology, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon Clear Water Bay, Hong Kong, China

†These author contributed equally to this work.

Show Author Information

Abstract

Solid-state ionic thermoelectric generators have emerged as promising solutions for efficient harvesting of low-grade waste heat. However, the main challenge in achieving continuous power supply is the low efficiency of thermoelectric conversion. In this work, substantial achievements have been made in improving the thermoelectric conversion characteristics by introducing redox pairs on the electrode surfaces. This approach takes advantage of the synergistic effect of thermal diffusion and thermoelectric effects to maximize the conversion efficiency. To improve the thermoelectric storage and output power performance, Prussian blue was attached to a carbon woven fabric and used as an electrode. The incorporation of Prussian blue/carbon woven fabric electrodes results in an increase in current density output and an instantaneous power density of 3.7 mW/m2·K2. Furthermore, under a temperature gradient of 10 K, the output energy density for 2 h is 194 J/m2, and the Carnot relative efficiency is as high as 0.12% at a hot side temperature (TH) of 30 ℃ and a cold side temperature (TC) of 20 ℃. Our findings validate the efficacy of integrating thermal diffusion and redox reactions in ionic thermoelectric generators, paving the way for the progress of thermocharged devices and their potential commercial applications.

References

1

Metzger N. Energy crisis. Nature. 1977;269:224.

2

Gibson L, Wilman EN, Laurance WF. How green is ‘green’ energy? Trends Ecol Evol. 2017;32(12):922–935.

3

Katzner TE, Diffendorfer JE, Duerr AE, Campbell CJ, Leslie D, Zanden HBV, Yee JL, Sur M, Huso MMP, Braham MA, et al. Wind energy: A human challenge. Science. 2019;366(6470):366.

4

Khan N, Kalair A, Abas N, Haider A. Review of ocean tidal, wave and thermal energy technologies. Renew Sust Energ Rev. 2017;72:590–604.

5

Liu J, Zeng W, Tao X. Gigantic effect due to phase transition on thermoelectric properties of ionic sol–gel materials. Adv Funct Mater. 2022;32(47):08286.

6

Forman C, Muritala IK, Pardemann R, Meyer B. Estimating the global waste heat potential. Renew Sust Energ Rev. 2016;57:1568–1579.

7

Du C, Cao M, Li G. Toward precision recognition of complex hand motions: Wearable thermoelectrics by synergistic 2D nanostructure confinement and controlled reduction. Adv Funct Mater. 2022;32(36):2206083.

8

Feng M, Lv S, Deng J, Guo Y, Wu Y, Shi G, Zhang M. An overview of environmental energy harvesting by thermoelectric generators. Renew Sust Energ Rev. 2023;187(9):113723.

9

Khan S, Kim J, Roh K, Park G, Kim W. High power density of radiative-cooled compact thermoelectric generator based on body heat harvesting. Nano Energy. 2021;87:106180.

10

Zhang J, Xue W, Dai Y, Li B, Chen Y, Liao B, Zeng W, Tao X, Zhang M. High ionic thermopower in flexible composite hydrogel for wearable self-powered sensor. Compos Sci Technol. 2022;230(Part 1):109771.

11

Li L, Jia J, Shi C, Zeng W. Fine-tuning Bi2Te3-copper selenide alloys enables an efficient n-type thermoelectric conversion. Molecules. 2022;27(23):8183.

12

Alam H, Ramakrishna S. A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy. 2013;2(2):190–212.

13

Song YX, Zeng W, Rong MZ, Zhang MQ. Flexible thermoelectric composite materials with self-healing ability for harvesting low-grade thermal energy. Compos Sci Technol. 2023;242:110179.

14

Jiang Y, Dong J, Zhuang HL, Yu J, Su B, Li H, Pei J, Sun FH, Zhou M, Hu H, et al. Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials. Nat Commun. 2022;13(1):6087.

15

Wang Y, Dai Y, Li L, Yu L, Zeng W. Proton-coupled electron transfer aided thermoelectric energy conversion and storage. Angew Chem Int Ed Engl. 2023;62(35):Article e202307947.

16

Zhang J, Xue W, Dai Y, Wu C, Li B, Guo X, Liao B, Zeng W. Ultrasensitive, flexible and dual strain-temperature sensor based on ionic-conductive composite hydrogel for wearable applications. Compos A: Appl Sci Manuf. 2023;171:107572.

17

Zhang X, Zhang J, Liao W, Zhang D, Dai Y, Wu C, Wen J, Zeng W. Stretchable conductive hydrogels integrated with microelectronic devices for strain sensing. J Mater Chem C. 2023;11(45):15873–15880.

18

Han Y, Wei H, Du Y. Ultrasensitive flexible thermal sensor arrays based on high-thermopower ionic thermoelectric hydrogel. Adv Sci (Weinh). 2023;10(25):Article e2302685.

19

Li S, Zhang Q. Ionic gelatin thermoelectric generators. Joule. 2020;4:1628–1629.

20

Liu YYS, Huang H, Zheng J, Liu G, To TH, Huang B. Giant and bidirectionally tunable thermopower in nonaqueous ionogels enabled by selective ion doping. Sci Adv. 2022;8(1):eabj3019.

21

Zhao HWD, Khan ZU, Chen JC, Gabrielsson R, Jonsson MP, Berggren M, Crispin X. Ionic thermoelectric supercapacitors. Energy Environ Sci. 2016;1450(4):9.

22

Wu J, Black JJ, Aldous L. Thermoelectrochemistry using conventional and novel gelled electrolytes in heat-to-current thermocells. Electrochim Acta. 2017;225:482–492.

23

Chi C, Liu G, An M, Zhang Y, Song D, Qi X, Zhao C, Wang Z, du Y, Lin Z, et al. Reversible bipolar thermopower of ionic thermoelectric polymer composite for cyclic energy generation. Nat Commun. 2023;14(1):306.

24

Qian Q, Cheng H, Le Q, Ouyang J. Great enhancement in the thermopower of ionic liquid by a metal-organic framework. Adv Funct Mater. 2023;33(37):3377.

25

Zhou Z, Wan Y, Zi J, Ye G, Jin T, Geng X, Zhuang W, Yang P. Flexible hydrogel with a coupling enhanced thermoelectric effect for low-grade heat harvest. Mater Today Sust. 2023;21.

26

Cheng H, He X, Fan Z, Ouyang J. Flexible quasi-solid state ionogels with remarkable Seebeck coefficient and high thermoelectric properties. Adv Energy Mater. 2019;9:100293.

27

Chen J, Zhang L, Tu Y, Zhang Q, Peng F, Zeng W, Zhang M, Tao X. Wearable self-powered human motion sensors based on highly stretchable quasi-solid state hydrogel. Nano Energy. 2021;88:106272.

28

Wu ZT, Wang BX, Li J, Wu R, Jin M, Zhao H, Chen S, Wang H. Advanced bacterial cellulose ionic conductors with gigantic thermopower for low-grade heat harvesting. Nano Letters. 2022;22:8152-.

29

Han XQCG, Li QK, Deng B, Zhu YB, Han ZJ, Zhang WQ, Wang WC, Feng SP, Chen G, Liu WS. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Science. 2020;1091:368.

30

Fan Z, Zhang Y, Pan L, Ouyang J, Zhang Q. Recent developments in flexible thermoelectrics: From materials to devices. Renew Sust Energ Rev. 2021;7(1):2100005.

31

Hu Y, Chen M, Qin C, Zhang J, Lu A. Cellulose ionic conductor with tunable Seebeck coefficient for low-grade heat harvesting. Carbohydr Polym. 2022;292:Article 119650.

32

Lee J, Bark H, Xue Y, Lee PS, Zhong M. Size-selective ionic crosslinking provides stretchable mixed ionic-electronic conductors. Angew Chem Int Ed Engl. 2023;62(14):Article e202306994.

33

Tianyu Liu JS, Elliott J, Yang X, Cathcart W, Wang Z, He Z, Liu G. Exceptional capacitive deionization rate and capacity by block copolymer–based porous carbon fibers. Sci Adv. 2020;6(16):0906.

34

Zhang W, Qiu L, Lian Y, Dai Y, Yin S, Wu C, Wang Q, Zeng W, Tao X. Gigantic and continuous output power in ionic thermo-electrochemical cells by using electrodes with redox couples. Adv Sci (Weinh). 2023;10(29):Article e2303407.

35

Xiao G, Yang X, Zhang J, Wu C, Li L, Wang F, Huang X, Zeng W, Tao X. Gigantic effect due to redox electrodes on thermoelectric properties of ionic thermoelectric devices. Surfaces Interfaces. 2024;44:103564.

36

Jiang K, Jia J, Chen Y, Li L, Wu C, Zhao P, Zhu DY, Zeng W. An ionic thermoelectric generator with a Giant output power density and high energy density enabled by synergy of thermodiffusion effect and redox reaction on electrodes. Adv Energy Mater. 2023;13(21):2204357.

37

Bao B, Hao J, Bian X, Zhu X, Xiao K, Liao J, Zhou J, Zhou Y, Jiang L. 3D porous hydrogel/conducting polymer heterogeneous membranes with electro-/pH-modulated ionic rectification. Adv Mater. 2017;29(44):10.1002/adma.201702926.

38

Guari Y, Cahu M, Félix G, Sene S, Long J, Chopineau J, Devoisselle JM, Larionova J. Nanoheterostructures based on nanosized Prussian blue and its analogues: Design, properties and applications. Coord Chem Rev. 2022;461:214497.

39

Hou D, Cui X, Liu M, Qie H, Tang Y, Leng W, Luo N, Luo H, Lin A, Yang W, et al. Degradation of trichloroethylene by biochar supported nano zero-valent iron (BC-nZVI): The role of specific surface area and electrochemical properties. Sci Total Environ. 2024;908:Article 168341.

40

Yu B, Jiang G, Cao C, Lei N, Li C, Evariste U, Ma P. Preparation and electrochemical properties of ultra-high specific surface area N-doped biomass-porous carbon. J Energy Storage. 2020;30:101537.

41

Goda ES, Lee S, Sohail M, Yoon KR. Prussian blue and its analogues as advanced supercapacitor electrodes. J Energy Chem. 2020;50:206–229.

42

Xu Y, Zheng S, Tang H, Guo X, Xue H, Pang H. Prussian blue and its derivatives as electrode materials for electrochemical energy storage. Energy Storage Mater. 2017;9:11–30.

43

Zhan S, Hong T, Qin B, Zhu Y, Feng X, Su L, Shi H, Liang H, Zhang Q, Gao X, et al. Realizing high-ranged thermoelectric performance in PbSnS2 crystals. Nat Commun. 2022;13(1):5937.

44

Wang K, Zhang X, Li C, Sun X, Meng Q, Ma Y, Wei Z. Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance. Adv Mater. 2015;27(45):7451–7457.

45

Yan Y, Zhang S, Ma Q, Wang Z, Feng T, Chen Q, Shi B, Sun F, Liang M, Wang J, et al. High power efficiency nitrides thermoelectric device. Nano Energy. 2022;101:107568.

46

Li Y, Li Q, Zhang X, Deng B, Han C, Liu W. 3D hierarchical electrodes boosting ultrahigh power output for gelatin-KCl-FeCN4−/3− ionic thermoelectric cells. Adv Energy Mater. 2022;12(14):2103666.

Energy Material Advances
Article number: 0089
Cite this article:
Yang X, Liu J, Jia J, et al. Energy Density in Ionic Thermoelectric Generators by Prussian Blue Electrodes. Energy Material Advances, 2024, 5: 0089. https://doi.org/10.34133/energymatadv.0089
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return