Morphological control is an effective approach to enhance the rate performance of nanostructured electrode materials, offering a promising solution for alleviating energy concerns. We have utilized a seed-mediated growth method to synthesize hexagonal djurleite (Cu1.94S) nanoplates and nanoflowers under N2 and air, respectively. The influence of the morphology on the ion interaction has been investigated in the storage process through half-cell electrochemical energy storage. Cu1.94S nanoplates performed a higher specific capacity of 193 mAh g−1 at a high rate of 8 A g−1 than nanoflowers and showed excellent cycle stability over 4,000 cycles with capacity retention of 80.8%. The relationship between morphology and electrochemical performance was explored through further electrochemical characterization. It is found that the stacking of hexagonal surfaces of nanoplates increases the contact area of the electrode material and reduced resistance, leading to faster ion migration and a more complete redox process, ultimately contributing to a higher specific capacity. Our study has enhanced the understanding of structure–property relationships for electrode material, providing an insightful approach for the preparation of electrode materials suitable for ultrafast charge and discharge.
Zhang Z, Zhao D, Xu Y, Liu S, Xu X, Zhou J, Gao F, Tang H, Wang Z, Wu Y, et al. A review on electrode materials of fast-charging lithium-ion batteries. Chem Rec. 2022;22(10):Article e202200127.
Chen R, Luo R, Huang Y, Wu F, Li L. Advanced high energy density secondary batteries with multi-electron reaction materials. Adv Sci. 2016;3(10):1600051.
Rao D, Zhang L, Meng Z, Zhang X, Wang Y, Qiao G, Shen X, Xia H, Liu J, Lu R. Ultrahigh energy storage and ultrafast ion diffusion in borophene-based anodes for rechargeable metal ion batteries. J Mater Chem A. 2017;5(5):2328–2338.
Yuan M, Liu H, Ran F. Fast-charging cathode materials for lithium & sodium ion batteries. Mater Today. 2023;63:360–379.
Li N, Xu X, Sun B, Xie K, Huang W, Yu T. Recent nanosheet-based materials for monovalent and multivalent ions storage. Energy Storage Mater. 2020;25:382–403.
Kunduraci M, Amatucci GG. Effect of oxygen non-stoichiometry and temperature on cation ordering in LiMn2−xNixO4 (0.50≥x≥0.36) spinels. J Power Sources. 2007;165(1):359–367.
Yan Z, Xiao J, Lai W, Wang L, Gebert F, Wang Y, Gu Q, Liu H, Chou S-L, Liu H, et al. Nickel sulfide nanocrystals on nitrogen-doped porous carbon nanotubes with high-efficiency electrocatalysis for room-temperature sodium-sulfur batteries. Nat Commun. 2019;10(1):4793.
Kunduraci M, Al-Sharab JF, Amatucci GG. High-power nanostructured LiMn2-xNixO4 high-voltage lithium-ion battery electrode materials: Electrochemical impact of electronic conductivity and morphology. Chem Mater. 2006;18(15):3585–3592.
Hao K, Sheng Z, Qi P, Lu Y, Liu G, Chen M, Wu H, Tang Y. Stable structure and fast ion diffusion: N-doped VO2 3D porous nanoflowers for applications in ultrafast rechargeable aqueous zinc-ion batteries. J Colloid Interface Sci. 2023;644:275–284.
Lee DU, Fu J, Park MG, Liu H, Ghorbani Kashkooli A, Chen Z. Self-assembled NiO/Ni(OH)2 nanoflakes as active material for high-power and high-energy hybrid rechargeable battery. Nano Lett. 2016;16(3):1794–1802.
Liang F, Dong H, Dai J, He H, Zhang W, Chen S, Lv D, Liu H, Kim IS, Lai Y, et al. Fast energy storage of sns2 anode nanoconfined in hollow porous carbon nanofibers for lithium-ion batteries. Adv Sci. 2023;11(4):2306711.
Coughlan C, Ibáñez M, Dobrozhan O, Singh A, Cabot A, Ryan KM. Compound copper chalcogenide nanocrystals. Chem Rev. 2017;117(9):5865–6109.
Yu XL, Cao CB, Zhu HS, Li QS, Liu CL, Gong QH. Nanometer-sized copper sulfide hollow spheres with strong optical-limiting properties. Adv Funct Mater. 2007;17(8):1397–1401.
Zheng H, Rivest JB, Miller TA, Sadtler B, Lindenberg A, Toney MF, Wang L-W, Kisielowski C, Alivisatos AP. Observation of transient structural-transformation dynamics in a Cu2S nanorod. Science. 2011;333(6039):206–209.
Wu C, Yu S-H, Chen S, Liu G, Liu B. Large scale synthesis of uniform CuS nanotubes in ethylene glycol by a sacrificial templating method under mild conditions. J Mater Chem. 2006;16(32):3326–3331.
Goswami SK, Kim J, Hong K, Oh E, Yang Y, Yu D. Photocurrent and photovoltaic characteristics of copper sulfide nanowires grown by a hydrothermal method. Mater Lett. 2014;133:132–134.
Sigman MB, Ghezelbash A, Hanrath T, Saunders AE, Lee F, Korgel BA. Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets. J Am Chem Soc. 2003;125(51):16050–16057.
Cao H, Qian X, Wang C, Ma X, Yin J, Zhu Z. High symmetric 18-facet polyhedron nanocrystals of Cu7S4 with a hollow nanocage. J Am Chem Soc. 2005;127(46):16024–16025.
Jiao S, Xu L, Jiang K, Xu D. Well-defined non-spherical copper sulfide mesocages with single-crystalline shells by shape-controlled Cu2O crystal templating. Adv Mater. 2006;18(9):1174–1177.
Evans HT. Djurleite (Cu1.94S) and low chalcocite (Cu2S): New crystal structure studies. Science. 1979;203(4378):356–358.
Zhao Y, Pan H, Lou Y, Qiu X, Zhu J, Burda C. Plasmonic Cu2−xS nanocrystals: Optical and structural properties of copper-deficient copper(Ⅰ) sulfides. J Am Chem Soc. 2009;131(12):4253–4261.
Ahn J, Kim J, Qin D. Orthogonal deposition of Au on different facets of Ag cuboctahedra for the fabrication of nanoboxes with complementary surfaces. Nanoscale. 2020;12(1):372–379.
Yuan H, Liu Y, Tong L, Wang Z. Influence of shape-directing agents on the formation of anisotropic gold nanoparticles. Nano. 2021;16(09):2150098.
Peng B, Zhou J-F, Chen H, Ding M, Zhu Y-S, Albela B, Wu P, Bonneviot L, Zhang K. Tetraalkoxysilane-assisted self-emulsification templating for controlled mesostructured silica nanoparticles. Langmuir. 2023;39(10):3610–3618.
Liu S, Liu J, Liu G, Liu Y, Zhong H. Modulation of the morphology, surface energy and wettability of malachite through a S,O,O-ligand surfactant: Mechanism and hydrophobization. Appl Surf Sci. 2020;505:Article 144467.
Wang Y, Chao D, Wang Z, Ni J, Li L. An energetic CuS–Cu battery system based on CuS nanosheet arrays. ACS Nano. 2021;15(3):5420–5427.
Wang Y, Liu F, Ji Y, Yang M, Liu W, Wang W, Sun Q, Zhang Z, Zhao X, Liu X. Controllable synthesis of various kinds of copper sulfides (CuS, Cu7S4, Cu9S5) for high-performance supercapacitors. Dalton Trans. 2015;44(22):10431–10437.
Comby-Dassonneville S, Volpi F, Parry G, Pellerin D, Verdier M. Resistive-nanoindentation: Contact area monitoring by real-time electrical contact resistance measurement. MRS Commun. 2019;9(3):1008–1014.
Downey BP, Datta S, Mohney SE. Numerical study of reduced contact resistance via nanoscale topography at metal/semiconductor interfaces. Semicond Sci Technol. 2010;25(1):Article 015010.
Cai W, Yao Y-X, Zhu G-L, Yan C, Jiang L-L, He C, Huang J-Q, Zhang Q. A review on energy chemistry of fast-charging anodes. Chem Soc Rev. 2020;49(12):3806–3833.
Putnis A. The transformation behaviour of cuprous sulphides and its application to the efficiency of CuxS–CdS solar cells. Philos Mag. 1976;34(6):1083–1086.
Xu W, Sun C, Zhao K, Cheng X, Rawal S, Xu Y, Wang Y. Defect engineering activating (boosting) zinc storage capacity of MoS2. Energy Storage Mater. 2019;16:527–534.
Yan W, Liu Y, Guo S, Jiang T. Effect of defects on decay of voltage and capacity for Li[Li0.15Ni0.2Mn0.6]O2 cathode material. ACS Appl Mater Interfaces. 2016;8(19):12118–12126.