PDF (4.3 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
References
Show full outline
Hide outline
Research Article | Open Access

Layer-by-Layer Flexible Organic Thermoelectric Devices based on PEDOT:PSS and PBFDO

Chan Zhang1,Haiming Huang,1Shaobo Han1()Xi Liu1()Lixin Mo2Jing Zhao1Jinpeng Mo1Canyan Che3()
College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, China

†These authors contributed equally to this work.

Show Author Information

Abstract

Recent advances in n-type conducting polymers are beginning to rival those of p-type materials. Notably, the n-type conducting polymer poly(benzodifurandione) (PBFDO) demonstrates a notable Seebeck coefficient along with exceptionally high electrical conductivity, positioning it as a promising n-type thermoelectric material with substantial research potential. Despite its promise, the exploration of PBFDO’s thermoelectric properties and the development of related thermoelectric devices have been limited. In this study, we introduce a flexible thermoelectric device that utilizes a combination of the p-type polymer poly(3,4ethylenedioxythiophene):polystyrene sulfonate and the n-type polymer PBFDO, using a straightforward print-and-fold technique. This approach enabled the production of flexible devices with thermoelectric generators whose properties were assessed. The polymer films and the resultant devices demonstrated commendable performance stability even after being subjected to 1,000 bending cycles at a 90° angle. Our findings corroborate the potential of PBFDO as a viable material for flexible thermoelectric applications, a development that is eagerly anticipated in the field.

References

1

Prunet G, Pawula F, Fleury G, Cloutet E, Robinson AJ, Hadziioannou G, Pakdel A. A review on conductive polymers and their hybrids for flexible and wearable thermoelectric applications. Mater Today Phys. 2021;18:Article 100402.

2

Zaia EW, Gordon MP, Yuan P, Urban JJ. Progress and perspective: Soft thermoelectric materials for wearable and internet-of-things applications. Adv Electron Mater. 2019;5(11):1800823.

3

Zhang Y, Wang W, Zhang F, Dai K, Li C, Fan Y, Chen G, Zheng Q. Soft organic thermoelectric materials: Principles, current state of the art and applications. Small. 2022;18(12):2104922.

4

Khan ZU, Edberg J, Hamedi MH, Gabrielsson R, Granberg H, Wågberg L, Engquist I, Berggren M, Crispin X. Thermoelectric polymers and their elastic aerogels. Adv Mater. 2016;28(22):4556–4562.

5

Han S, Jiao F, Khan ZU, Edberg J, Fabiano S, Crispin X. Thermoelectric polymer aerogels for pressure–temperature sensing applications. Adv Funct Mater. 2017;27(44):1703549.

6

Chen G, Xu W, Zhu D. Recent advances in organic polymer thermoelectric composites. J Mater Chem C. 2017;5(18):4350–4360.

7

Guo C, Chu F, Chen P, Zhu J, Wang H, Wang L, Fan Y, Jiang W. Effectively enhanced thermopower in polyaniline/Bi0.5Sb1.5 Te3 nanoplate composites via carrier energy scattering. J Mater Sci. 2018;53:6752–6762.

8

Bharti M, Singh A, Samanta S, Aswal DK. Conductive polymers for thermoelectric power generation. Prog Mater Sci. 2018;93:270–310.

9

Bae EJ, Kang YH, Jang KS, Cho SY. Enhancement of thermoelectric properties of PEDOT:PSS and tellurium-PEDOT:PSS hybrid composites by simple chemical treatment. Sci Rep. 2016;6(1):18805.

10

Bubnova O, Khan ZU, Wang H, Braun S, Evans DR, Fabretto M, Hojati-Talemi P, Dagnelund D, Arlin JB, Geerts YH, et al. Semi-metallic polymers. Nat Mater. 2014;13(2):190–194.

11

Xia Y, Fang J, Li P, Zhang B, Yao H, Chen J, Ding J, Ouyang J. Solution-processed highly superparamagnetic and conductive PEDOT:PSS/Fe3O4 nanocomposite films with high transparency and high mechanical flexibility. ACS Appl Mater Interfaces. 2017;9(22):19001–19010.

12

Liu L, Chen J, Liang L, Deng L, Chen G. A PEDOT:PSS thermoelectric fiber generator. Nano Energy. 2022;102:Article 107678.

13

Li H, Ding Z, Zhou Q, Chen J, Liu Z, Du C, Liang L, Chen G. Harness high-temperature thermal energy via elastic thermoelectric aerogels. Nanomicro Lett. 2024;16(1):151.

14

Wei Q, Mukaida M, Naitoh Y, Ishida T. Morphological change and mobility enhancement in PEDOT:PSS by adding co-solvents. Adv Mater. 2013;25(20):2831–2836.

15

Bubnova O, Khan ZU, Malti A, Braun S, Fahlman M, Berggren M, Crispin X. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat Mater. 2011;10(6):429–433.

16

Yeo JS, Yun JM, Kim DU, Park S, Kim SS, Yoon MH, Kim TW, Na SI. Significant vertical phase separation in solvent-vapor-annealed poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) composite films leading to better conductivity and work function for high-performance indium tin oxide-free optoelectronics. ACS Appl Mater Interfaces. 2012;4(5):2551–2560.

17

Chou TR, Chen SH, Chiang YT, Lin YT, Chao CY. Highly conductive PEDOT:PSS films by post-treatment with dimethyl sulfoxide for ITO-free liquid crystal display. J Mater Chem C. 2015;3(15):3760–3766.

18

Park H, Lee SH, Kim FS, Choi HH, Cheong IW, Kim JH. Enhanced thermoelectric properties of PEDOT:PSS nanofilms by a chemical dedoping process. J Mater Chem A. 2014;2(18):6532–6539.

19

Mahato S, Puigdollers J, Voz C, Mukhopadhyay M, Mukherjee M, Hazra S. Near 5% DMSO is the best: A structural investigation of PEDOT:PSS thin films with strong emphasis on surface and interface for hybrid solar cell. Appl Surf Sci. 2020;499:Article 143967.

20

Yu Z, Xia Y, Du D, Ouyang J. PEDOT:PSS films with metallic conductivity through a treatment with common organic solutions of organic salts and their application as a transparent electrode of polymer solar cells. ACS Appl Mater Interfaces. 2016;8(18):11629–11638.

21

Kim JY, Jung JH, Lee DE, Joo J. Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synth Met. 2002;126(2–3):311–316.

22

Tripathi A, Lee Y, Lee S, Woo HY. Recent advances in n-type organic thermoelectric materials, dopants, and doping strategies. J Mater Chem C. 2022;10(16):6114–6140.

23

Wang X, Shi Y, Ding L. To enhance the performance of n-type organic thermoelectric materials. J Semicond. 2022;43(2):020202.

24

Jin K, Hao F, Ding L. Solution-processable n-type organic thermoelectric materials. Sci Bull. 2020;65(22):1862–1864.

25

Xu K, Sun H, Ruoko TP, Wang G, Kroon R, Kolhe NB, Puttisong Y, Liu X, Fazzi D, Shibata K, et al. Ground-state electron transfer in all-polymer donor–acceptor heterojunctions. Nat Mater. 2020;19(7):738–744.

26

Tang H, Liang Y, Liu C, Hu Z, Deng Y, Guo H, Yu Z, Song A, Zhao H, Zhao D, et al. A solution-processed n-type conducting polymer with ultrahigh conductivity. Nature. 2022;611(7935):271–277.

27

Li N, Sheng H, Sun Y, Wang J. Spectroscopic study on size-dependent optoelectronics of N-type ultra-high conductive polymer PBFDO. Spectrochim Acta A Mol Biomol Spectrosc. 2023;298:Article 122744.

28
Liang Y, Che C, Tang H, Zhang K, Lan L, Zhou C, Ma Y, Huang F. Influence of interaction between electrolyte with side-chain free conjugated polymer on the performance of organic electrochemical transistors. ACS Appl Mater Interfaces. 2023.
29

Hewitt CA, Kaiser AB, Roth S, Craps M, Czerw R, Carro DL. Multilayered carbon nanotube/polymer composite based thermoelectric fabrics. Nano Lett. 2012;12(3):1307–1310.

30

Qu D, Li X, Wang H, Chen G. Assembly strategy and performance evaluation of flexible thermoelectric devices. Adv Sci. 2019;6(15):1900584.

31

Wu G, Zhang ZG, Li Y, Gao C, Wang X, Chen G. Exploring high-performance n-type thermoelectric composites using amino-substituted rylene dimides and carbon nanotubes. ACS Nano. 2017;11(6):5746–5752.

32

Rojas JP, Conchouso D, Arevalo A, Singh D, Foulds IG, Hussain MM. Paper-based origami flexible and foldable thermoelectric nanogenerator. Nano Energy. 2017;31:296–301.

33

Fan B, Mei X, Sun K, Ouyang J. Conducting polymer/carbon nanotube composite as counter electrode of dye-sensitized solar cells. Appl Phys Lett. 2008;93(14):Article 143103.

34

Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon. 2010;48(8):2127–2150.

35

MacLeod BA, Stanton NJ, Gould IE, Wesenberg D, Ihly R, Owczarczyk ZR, Hurst KE, Fewox CS, Folmar CN, Hughes KH, et al. Large n-and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films. Energy Environ Sci. 2017;10(10):2168–2179.

36

Novak TG, Kim J, Kim J, Tiwari AP, Shin H, Song JY, Jeon S. Complementary n-type and p-type graphene films for high power factor thermoelectric generators. Adv Funct Mater. 2020;30(28):2001760.

37

Mytafides CK, Tzounis L, Karalis G, Formanek P, Paipetis AS. Fully printed and flexible carbon nanotube-based thermoelectric generator capable for high-temperature applications. J Power Sources. 2021;507:Article 230323.

38

Håkansson A, Han S, Wang S, Lu J, Braun S, Fahlman M, Berggren M, Crispin X, Fabiano S. Effect of (3-glycidyloxypropyl)trimethoxysilane (GOPS) on the electrical properties of PEDOT:PSS films. J Polym Sci B Polym Phys. 2017;55(10):814–820.

39

Soleimani Z, Zoras S, Ceranic B, Cui Y, Shahzad S. A comprehensive review on the output voltage/power of wearable thermoelectric generators concerning their geometry and thermoelectric materials. Nano Energy. 2021;89:Article 106325.

40

Camacho-Medina P, Olivares-Robles MA, Vargas-Almeida A, Solorio-Ordaz F. Maximum power of thermally and electrically coupled thermoelectric generators. Entropy. 2014;16(5):2890–2903.

Energy Material Advances
Article number: 0104
Cite this article:
Zhang C, Huang H, Han S, et al. Layer-by-Layer Flexible Organic Thermoelectric Devices based on PEDOT:PSS and PBFDO. Energy Material Advances, 2024, 5: 0104. https://doi.org/10.34133/energymatadv.0104
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return