Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The nutritional status of rubber trees (Hevea brasiliensis) is inseparable from the production of natural rubber. Nitrogen (N) and potassium (K) levels in rubber leaves are 2 crucial criteria that reflect the nutritional status of the rubber tree. Advanced hyperspectral technology can evaluate N and K statuses in leaves rapidly. However, high bias and uncertain results will be generated when using a small size and imbalance dataset to train a spectral estimaion model. A typical solution of laborious long-term nutrient stress and high-intensive data collection deviates from rapid and flexible advantages of hyperspectral tech. Therefore, a less intensive and streamlined method, remining information from hyperspectral image data, was assessed. From this new perspective, a semisupervised learning (SSL) method and resampling techniques were employed for generating pseudo-labeling data and class rebalancing. Subsequently, a 5-classification spectral model of the N and K statuses of rubber leaves was established. The SSL model based on random forest classifiers and mean sampling techniques yielded optimal classification results both on imbalance/balance dataset (weighted average precision 67.8/78.6%, macro averaged precision 61.2/74.4%, and weighted recall 65.7/78.5% for the N status). All data and code could be viewed on the:Github https://github.com/WeehowTang/SSL-rebalancingtest. Ultimately, we proposed an efficient way to rapidly and accurately monitor the N and K levels in rubber leaves, especially in the scenario of small annotation and imbalance categories ratios.
Van Beilen JB, Poirier Y. Establishment of new crops for the production of natural rubber. Trends Biotechnol. 2007;25(11):522.
Reich PB, Walters MB, Kloeppel BD, Ellsworth DS. Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species. Oecologia. 1995;104(1):24–30.
Poorter H, Evans JR. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia. 1998;116(1-2):26–37.
Shah SH, Angel Y, Houborg R, Ali S, McCabe MF. A random forest machine learning approach for the retrieval of leaf chlorophyll content in wheat. Remote Sens. 2019;11(8):920.
Peck GM, Andrews PK, Reganold JP, Fellman JK. HortScience HortSci. 2006;41:99.
Cao Q, Miao Y, Wang H, Huang S, Cheng S, Khosla R, Jiang R. Field Crop Res. 2013;154:133.
Zhang X, Liu F, He Y, Gong X. Detecting macronutrients content and distribution in oilseed rape leaves based on hyperspectral imaging. Biosyst Eng. 2013;115(1):56–65.
Asrar G, Kanemasu E, Yoshida M. Remote Sens Environ. 1985;17:1.
Ji-Yong S, Xiao-Bo Z, Jie-Wen Z, Kai-Liang W, Zheng-Wei C, Xiao-Wei H, de-Tao Z, Holmes M. Sci Hortic. 2012;138:190.
Lu J, Yang T, Su X, Qi H, Yao X, Cheng T, Zhu Y, Cao W, Tian Y. Precis Agric. 2020;21:324.
Bruce L, Koger C, Li J. IEEE Trans Geosci Remote Sens. 2002;40:2331.
ElMasry G, Sun D-W, Allen P. J Food Eng. 2012;110:127.
Phanomsophon T, Jaisue N, Worphet A, Tawinteung N, Shrestha B, Posom J, Khurnpoon L, Sirisomboon P. Rapid measurement of classification levels of primary macronutrients in durian (Durio zibethinus Murray CV. Mon Thong) leaves using FT-NIR spectrometer and comparing the effect of imbalanced and balanced data for modelling. Measurement. 2022;203:Article 111975.
Amirruddin AD, Muharam FM, Ismail MH, Tan NP, Ismail MF. Comput Electron Agric. 2022;193:Article 106646.
Xiao Q, Tang W, Zhang C, Zhou L, Feng L, Shen J, Yan T, Gao P, He Y, Wu N. Plant Phenomics. 2022;2022.
Azadnia R, Rajabipour A, Jamshidi B, Omid M. New approach for rapid estimation of leaf nitrogen, phosphorus, and potassium contents in apple-trees using Vis/NIR spectroscopy based on wavelength selection coupled with machine learning. Comput Electron Agric. 2023;207:Article 107746.
Suh S, Lee H, Lukowicz P, Lee YO. CEGAN: Classification Enhancement Generative Adversarial Networks for unraveling data imbalance problems. Neural Netw. 2021;133:69–86.
Jacquemoud S, Bacour C, Poilvé H, Frangi J-P. Remote Sens Environ. 2000;74:471.
Zhou X, Hu Y, Wu J, Liang W, Ma J, Jin Q. IEEE Trans Industr Inform. 2023;19:570.
Peterson K, Sagan V, Sidike P, Hasenmueller EA, Sloan JJ, Knouft JH. Photogramm Eng Remote Sens. 2019;85:269.
Chen Q, Zheng B, Chenu K, Hu P, Chapman SC. Plant Phenomics. 2022;2022.
Ke R, Aviles-Rivero AI, Pandey S, Reddy S, Schönlieb C-B. IEEE Trans Image Process. 2022;31:1805.
Zhao F, Qian J, Liu H, Wang C, Wang X, Wu W, Wang D, Cai C, Lin Y. Quantification, identification, and comparison of oligopeptides on five tea categories with different fermentation degree by kjeldahl method and ultra-high performance liquid chromatography coupled with quadrupole-orbitrap ultra-high resolution mass spectrometry. Food Chem. 2022;378:Article 132130.
Singh S, Sharma PK, Singh S, Kumar A. Commun Soil Sci Plant Anal. 2021;52:2912.
Vrignon-Brenas S, Gay F, Ricard S, Snoeck D, Perron T, Mareschal L, Laclau JP, Gohet É, Malagoli P. Nutrient management of immature rubber plantations. A review. Agron Sustain Dev. 2019;39:11.
van Engelen JE, Hooks HH. Mach Learn. 2020;109:373.
Zhang B, Guo B, Zou B, Wei W, Lei Y, Li T. Environ Pollut. 2022;300:Article 118981.
Yang W, Xiong Y, Xu Z, Li L, Du Y. Infrared Phys Technol. 2022;126:Article 104359.
Chen J, Jönsson P, Tamura M, Gu Z, Matsushita B, Eklundh L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens Environ. 2004;91(3-4):332–344.
Li Y, Guan C, Li H, Chin Z. Pattern Recogn Lett. 2008;29:1285.
Gu X, Zhang C, Shen Q, Han J, Angelov PP, Atkinson PM. A Self-Training Hierarchical Prototype-based Ensemble Framework for Remote Sensing Scene Classification. Inform Fusion. 2022;80:179–204.
Esteki M, Shahsavari Z, Simal-Gandara J. Use of spectroscopic methods in combination with linear discriminant analysis for authentication of food products. Food Control. 2018;91:100–112.
Song W, Wang H, Maguire P, Nibouche O. Nearest clusters based partial least squares discriminant analysis for the classification of spectral data. Anal Chim Acta. 2018;1009:27–38.
Chan JC-W, Paelinckx D. Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens Environ. 2008;112:2999.
Jin X, Ba W, Wang L, Zhang T, Zhang X, Li S, Rao Y, Liu L. ACS omega. 2022;7:39727.
Lin N, Jiang R, Li G, Yang Q, Li D, Yang X. Ecol Indic. 2022;143:Article 109330.
Li Z, Kamnitsas K, Glocker B. IEEE Trans Med Imaging. 2021;40:1065.
Loyola-González O, Martinez-Trinidad JF, Carrasco-Ochoa JA, Garcia-Borroto M. Study of the impact of resampling methods for contrast pattern based classifiers in imbalanced databases. Neurocomputing. 2016;175(Part B):935–947.
Rendón E, Alejo R, Castorena C, Isidro-Ortega FJ, Granda-Gutiérrez EE. Data Sampling Methods to Deal With the Big Data Multi-Class Imbalance Problem. Appl Sci. 2020;10(4):1276.
Khushi M, Shaukat K, Alam TM, Hameed IA, Uddin S, Luo S, Yang X, Reyes MC. A comparative performance analysis of data resampling methods on imbalance medical data. IEEE Access. 2021;9:Article 109960.
Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. J Artif Intell Res. 2002;16:321.
Wang Y-J, Jin G, Li LQ, Liu Y, Kianpoor Kalkhajeh Y, Ning JM, Zhang ZZ. Infrared Phys Technol. 2020;108:Article 103365.
Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).