PDF (5.2 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
References
Show full outline
Hide outline
Review Article | Open Access

Research Advances in the Giant Impact Hypothesis of Moon Formation

You Zhou1Rongxi Bi1Yun Liu1,2()
Research Center for Planetary Science, College of Earth and Planetary Sciences, Chengdu University of Technology, Chengdu, China
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
Show Author Information

Abstract

The Moon’s origin is a long-debated scientific question, and its unique characteristics have led to the widespread acceptance of the giant impact hypothesis as the dominant theory explaining how the Moon formed. According to the canonical impact model, an impactor about the size of Mars collided with Earth, leading to the formation of a debris disk primarily composed of material from the impactor, within which the Moon subsequently formed. However, the canonical impact model faces an important challenge in accounting for the remarkably similar isotopic anomalies across various isotope systems observed in both Earth and the Moon, referred to as the “isotope crisis”. To address this quandary, a range of new computational models depicting the giant impact has been proposed. Nevertheless, the inquiry into the Moon’s origin is still far from a conclusive resolution. Consequently, acquiring additional experimental and exploratory data becomes imperative. Furthermore, delving deeper into the limitations and mechanisms of numerical models is crucial, offering the potential for an enhanced understanding of Earth and Moon’s evolution. This paper provides an extensive evaluation of the primary computational models associated with the giant impact theory. It explores the advancements made in research related to this theory and analyzes its merits and limitations.

References

1

Metzger PT, Grundy WM, Sykes MV, Stern A, Bell JF Ⅲ, Detelich CE, Runyon K, Summers M. Moons are planets: Scientific usefulness versus cultural teleology in the taxonomy of planetary science. Icarus. 2022;374:Article 114768.

2

Lambeck K. Tidal dissipation in the oceans: Astronomical, geophysical and oceanographic consequences. Philos Trans R Soc Lond A Math Phys Sci. 1997;287(1347):545–594.

3

Touma J, Wisdom J. Evolution of the earth-moon system. Astron J. 1994;108:1943.

4

Nakajima M, Stevenson DJ. Investigation of the initial state of the moon-forming disk: Bridging SPH simulations and hydrostatic models. Icarus. 2014;233:259–267.

5

Mittlefehldt DW, Clayton RN, Drake MJ, Righter K. Oxygen isotopic composition and chemical correlations in meteorites and the terrestrial planets. Rev Mineral Geochem. 2008;68(1):399–428.

6

Asphaug E. Impact origin of the moon? Annu Rev Earth Planet Sci. 2014;42:551–578.

7

Hartmann WK, Davis DR. Satellite-sized planetesimals and lunar origin. Icarus. 1975;24(4):504–515.

8
Cameron AGW, Ward WR. The origin of the Moon. In: Abstracts of the Lunar and Planetary Science Conference, vol. 7, p. 120. Lunar and Planetary Institute; 1976.
9

Ward WR, Canup RM. Origin of the Moon’s orbital inclination from resonant disk interactions. Nature. 2000;403(6771):741–743.

10

Canup RM, Ward WR, Cameron AGW. A scaling relationship for satellite-forming impacts. Icarus. 2001;150(2):288–296.

11

Melosh HJ, Stevenson DJ, Canup R. Credit for impact theory. Science. 2013;342(6165):1445–1446.

12

Aldworth DR. Origin of the moon and its topography. Proc Am Philos Soc. 1946;90:104–119.

13

Canup RM, Asphaug E. Origin of the moon in a giant impact near the end of the Earth’s formation. Nature. 2001;412(6848):708–712.

14

Canup RM. Forming a moon with an earth-like composition via a giant impact. Science. 2012;338(6110):1052–1055.

15

Cuk M, Stewart ST. Making the moon from a fast-spinning earth: A giant impact ´followed by resonant despinning. Science. 2012;338(6110):1047–1052.

16

Reufer A, Meier MMM, Benz W, Wieler R. A hit-and-run giant impact scenario. Icarus. 2012;221(1):296–299.

17

Nakajima M, Stevenson DJ. Melting and mixing states of the Earth’s mantle after the Moon-forming impact. Earth Planet Sci Lett. 2015;427:286–295.

18

Rufu R, Aharonson O, Perets HB. A multiple-impact origin for the Moon. Nat Geosci. 2017;10:89–94.

19

Hosono N, Karato S-I, Makino J, Saitoh TR. Terrestrial magma ocean origin of the Moon. Nat Geosci. 2019;12:418–423.

20

Kegerreis JA, Ruiz-Bonilla S, Eke VR, Massey RJ, Sandnes TD, Teodoro LFA. Immediate origin of the Moon as a post-impact satellite. Astrophys J Lett. 2022;937:L40.

21

Zhou Y, Liu Y, Reinhardt C, Deng H. The core-merging giant impact in Earth’s accretion history and its implications. Acta Geochim. 2021;41:553–567.

22

Kipp ME, Melosh HJ. Origin of the Moon: A preliminary numerical study of colliding planets. Lunar Planet Sci. 1986;17:420–421.

23

Benz W, Slattery WL, Cameron AGW. The origin of the Moon and the single-impact hypothesis I. Icarus. 1986;66(3):515–535.

24

Cameron AGW, Benz W. The origin of the Moon and the single impact hypothesis Ⅳ. Icarus. 1991;92(2):204–216.

25

Lucy LB. A numerical approach to the testing of the fission hypothesis. Astron J. 1977;82:1013–1024.

26

Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mon Not R Astron Soc. 1977;181:375–389.

27

Benz W, Slatter WL, Cameron AGW. Short note: snapshots from a three-dimensional modeling of a giant impact. Origin of the Moon. 1986. p. 617–620.

28

Benz W, Slattery WL, Cameron AGW. The origin of the Moon and the single-impact hypothesis, Ⅱ. Icarus. 1987;71(1):30–45.

29

Benz W, Cameron AGW, Melosh HJ. The origin of the Moon and the single-impact hypothesis Ⅲ. Icarus. 1989;81(1):113–131.

30

Cameron AGW. The origin of the Moon and the single impact hypothesis V. Icarus. 1997;126(1):126–137.

31

Cameron AGW. From interstellar gas to the Earth–Moon system. Meteorit Planet Sci. 2001;36(1):9–22.

32

Lock SJ, Stewart ST, Petaev MI, Leinhardt Z, Mace MT, Jacobsen SB, Cuk M. The origin of the Moon within a terrestrial Synestia. J Geophys Res Planets. 2018;123(4):910–951.

33

Asphaug E, Emsenhuber A, Cambioni S, Gabriel TSJ, Schwartz SR. Collision chains among the terrestrial planets. Ⅲ. Formation of the Moon. Planet Sci J. 2021;2:200.

34

Canup RM. Simulations of a late lunar-forming impact. Icarus. 2004;168(2):433–456.

35

Wiechert U, Halliday AN, Lee DC, Snyder GA, Taylor LA, Rumble D. Oxygen isotopes and the Moon-forming giant impact. Science. 2001;294(5541):345–348.

36

Humayun M, Clayton RN. Potassium isotope cosmochemistry: Genetic implications of volatile element depletion. Geochim Cosmochim Acta. 1995;59(10):2131–2148.

37

Lugmair GW, Shukolyukov A. Early solar system timescales according to 53Mn-53Cr systematics. Geochim Cosmochim Acta. 1998;62(16):2863–2886.

38

Georg RB, Halliday AN, Schauble EA, Reynolds BC. Silicon in the Earth’s core. Nature. 2007;447(7148):1102–1106.

39

Touboul M, Kleine T, Bourdon B, Palme H, Wieler R. Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature. 2007;450(7173):1206–1209.

40

Zhang J, Dauphas N, Davis AM, Leya I, Fedkin A. The proto-earth as a significant source of lunar material. Nat Geosci. 2012;5(4):251–255.

41

Young ED, Kohl IE, Warren PH, Rubie DC, Jacobson SA, Morbidelli A. Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science. 2016;351(6272):493–496.

42

Herwartz D, Pack A, Friedrichs B, Bischoff A. Identification of the giant impactor Theia in lunar rocks. Science. 2014;344(6188):1146–1150.

43

Cano EJ, Sharp ZD, Shearer CK. Distinct oxygen isotope compositions of the Earth and Moon. Nat Geosci. 2020;13(4):270–274.

44

Canup RM. Lunar-forming collisions with pre-impact rotation. Icarus. 2008;196(2):518–538.

45

Ringwood AE. Flaws in the giant impact hypothesis of lunar origin. Earth Planet Sci Lett. 1989;95(3-4):208–214.

46
Solomatov V. Magma oceans and primordial mantle differentiation. In: Schubert G, editor. Treatise on Geophysics (Second Edition). 2nd ed. Oxford: Elsevier; 2015. p. 81–104.
47

Wissing R, Hobbs D. A new equation of state applied to planetary impacts - Ⅱ. Lunar forming impact simulations with a primordial magma ocean. A&A. 2020;643:A40.

48

Hosono N, Karato S-I. The influence of equation of state on the giant impact simulations. J Geophys Res Planets. 2022;127(6):e2021JE006971.

49

Wissing R, Hobbs D. A new equation of state applied to planetary impacts - I. Models of planetary interiors. Astronomy Astrophys. 2020;635:A21.

50

Stewart S, Davies E, Duncan M, Lock S, Root S, Townsend J, Kraus R, Caracas R, Jacobsen S. The shock physics of giant impacts: Key requirements for the equations of state. AIP Conf Proc. 2020;2272:080003.

51

Stewart ST, Chidester BA, Caracas R, Badro J, Harwell ML, Huff M, Jacobsen SB, Kalita P, Spaulding DK, California Davis U, et al. A hydrocode EOS for pyrolitic mantles and magma oceans. LPI Contributions. 2022;2678:1535.

52

Canup RM, Barr AC, Crawford DA. Lunar-forming impacts: High-resolution SPH and AMR-CTH simulations. Icarus. 2013;222(1):200–219.

53

Lock SJ, Stewart ST. The structure of terrestrial bodies: Impact heating, corotation limits, and synestias. J Geophys Res Planets. 2017;122(5):950–982.

54

Caracas R, Stewart ST. No magma ocean surface after giant impacts between rocky planets. Earth Planet Sci Lett. 2023;608:Article 118014.

55

Ruiz-Bonilla S, Eke VR, Kegerreis JA, Massey RJ, Teodoro LFA. The effect of preimpact spin on the Moon-forming collision. Mon Not R Astron Soc. 2021;938(500):2861–2870.

56

Salmon J, Canup RM. Lunar accretion from a Roche-interior fluid disk. Astrophys J. 2012;760:83.

57

Hosono N, Iwasawa M, Tanikawa A, Nitadori K, Muranushi T, Makino J. Unconvergence of very-large-scale giant impact simulations. Publ Astron Soc Japan. 2017;69(2):26.

58

Genda H, Fujita T, Kobayashi H, Tanaka H, Abe Y. Resolution dependence of disruptive collisions between planetesimals in the gravity regime. Icarus. 2015;262:58–66.

59

Kegerreis JA, Eke VR, Gonnet P, Korycansky DG, Massey RJ, Schaller M, Teodoro LFA. Planetary giant impacts: Convergence of high-resolution simulations using efficient spherical initial conditions and swift. Mon Not R Astron Soc. 2019;487(4):5029–5040.

60

Pahlevan K, Stevenson DJ. Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet Sci Lett. 2007;262(3-4):438–449.

61

Ida S, Canup RM, Stewart GR. Lunar accretion from an impact-generated disk. Nature. 1997;389(2):353–357.

62

Salmon J, Canup RM. Accretion of the moon from non-canonical discs. Philos Trans R Soc A Math Phys Eng Sci. 2014;372:20130256.

63
Lock SJ, Stewart ST. Petaev MI, Leinhardt ZM, Mace M, Jacobsen SB, Ćuk M. A new model for lunar origin: Equilibration with Earth beyond the hot spin stability limit. Paper presented at: 47th Lunar and Planetary Science Conference; 2016 Mar 21 to 25; The Woodlands, TX.
64

Nakajima M, Genda H, Asphaug E, Ida S. Large planets may not form fractionally large moons. Nat Commun. 2022;13:568.

65

Canup RM, Visscher C, Salmon J, Fegley B Jr. Lunar volatile depletion due to incomplete accretion within an impact-generated disk. Nat Geosci. 2015;8:918–921.

66

Nakajima M, Stevenson DJ. Inefficient volatile loss from the moon-forming disk: Reconciling the giant impact hypothesis and a wet moon. Earth Planet Sci Lett. 2018;487:117–126.

67

Nie NX, Dauphas N. Vapor drainage in the protolunar disk as the cause for the depletion in volatile elements of the moon. Astrophys J Lett. 2019;884:L48.

68

Charnoz S, Sossi PA, Lee YN, Siebert J, Hyodo R, Allibert L, Pignatale FC, Landeau M, Oza AV, Moynier F. Tidal pull of the Earth strips the proto-moon of its volatiles. Icarus. 2021;364:Article 114451.

69

Wisdom J, Tian Z. Early evolution of the Earth–moon system with a fast-spinning Earth. Icarus. 2015;256:138–146.

70
Ward WR, Canup RM. Evection Resonance and the Angular Momentum of the Earth-Moon System. American Geophysical Union, Fall Meeting 2012; December 2012; P51C-07.
71

Rufu R, Canup RM. Tidal evolution of the evection resonance/quasi-resonance and the angular momentum of the Earth-moon system. J Geophys Res Planets. 2020;125(8):e2019JE006312.

72

Bao H, Cao X, Hayles JA. Triple oxygen isotopes: Fundamental relationships and applications. Annu Rev Earth Planet Sci. 2016;44:463–492.

73

Greenwood RC, Barrat JA, Miller MF, Anand M, Dauphas N, Franchi IA, Sillard P, Starkey NA. Oxygen isotopic evidence for accretion of Earth’s water before a high-energy moon-forming giant impact. Sci Adv. 2018;4:eaao5928.

74

Nakajima M, Golabek GJ, Wünnemann K, Rubie DC, Burger C, Melosh HJ, Jacobson SA, Manske L, Hull SD. Scaling laws for the geometry of an impactinduced magma ocean. Earth Planet Sci Lett. 2021;568:Article 116983.

75

Marchi S, Canup RM, Walker RJ. Heterogeneous delivery of silicate and metal to the Earth by large planetesimals. Nat Geosci. 2018;11:77–81.

76

Marchi S, Walker RJ, Canup RM. A compositionally heterogeneous martian mantle due to late accretion. Sci Adv. 2020;6(7):eaay2338.

77
Zhou Y, Reinhardt C, Deng H, Xiaobin C, Liu Y. A special giant impact model: Implications on core-mantle chemical differentiation. 2019. arXiv. https://doi.org/10.48550/arXiv.1901.00420
78

Lock SJ, Stewart ST, Cuk M. The energy budget and figure of Earth during recovery from ´ the moon-forming giant impact. Earth Planet Sci Lett. 2020;530:Article 115885.

79

Carter PJ, Lock SJ, Stewart ST. The energy budgets of giant impacts. J Geophys Res Planets. 2020;125:e2019JE006042.

80

Deng H, Ballmer MD, Reinhardt C, Meier MMM, Mayer L, Stadel J, Benitez F. Primordial Earth mantle heterogeneity caused by the moon-forming giant impact? Astrophys J. 2019;887:211.

81

Yuan Q, Li M, Desch SJ, Ko B, Deng H, Garnero EJ, Gabriel TSJ, Kegerreis JA, Miyazaki Y, Eke V, et al. Moon-forming impactor as a source of Earth’s basal mantle anomalies. Nature. 2023;623:95–99.

82

Deng H, Reinhardt C, Benitez F, Mayer L, Stadel J, Barr AC. Enhanced mixing in giant impact simulations with a new lagrangian method. Astrophys J. 2019;870(2):127.

83

Lock SJ, Bermingham KR, Parai R, Boyet M. Geochemical constraints on the origin of the moon and preservation of ancient terrestrial heterogeneities. Space Sci Rev. 2020;216:109.

84

Johansen A, Ronnet T, Bizzarro M, Schiller M, Lambrechts M, Nordlund Å, Lammer H. A pebble accretion model for the formation of the terrestrial planets in the solar system. Sci Adv. 2021;7(8):eabc0444.

85

Mastrobuono-Battisti A, Perets HB, Raymond SN. A primordial origin for the compositional similarity between the Earth and the moon. Nature. 2015;520:212–215.

86

Quarles BL, Lissauer JJ. Dynamical evolution of the Earth–moon progenitors – Whence Theia? Icarus. 2015;248:318–339.

87

Reinhardt C, Stadel J. Numerical aspects of giant impact simulations. Mon Not R Astron Soc. 2017;467:4252–4263.

88

Ruiz-Bonilla S, Borrow J, Eke VR, Kegerreis JA, Massey RJ, Sandnes TD, Teodoro LFA. Dealing with density discontinuities in planetary SPH simulations. Mon Not R Astron Soc. 2022;512:4660–4668.

89

Hosono N, Saitoh TR, Makino J, Genda H, Ida S. The giant impact simulations with density independent smoothed particle hydrodynamics. Icarus. 2016;271:131–157.

90

Hopkins PF. A new class of accurate, mesh-free hydrodynamic simulation methods. Mon Not R Astron Soc. 2015;450:53–110.

91

Deng H, Mayer L, Meru F. Convergence of the critical cooling rate for protoplanetary disk fragmentation achieved: The key role of numerical dissipation of angular momentum. Astrophys J. 2017;847:43.

92

Rosswog S. A simple, entropy-based dissipation trigger for SPH. Astrophys J. 2020;898:60.

93

Borrow J, Schaller M, Bower RG, Schaye J. SPHENIX: Smoothed particle hydrodynamics for the next generation of galaxy formation simulations. Mon Not R Astron Soc. 2022;511:2367–2389.

Space: Science & Technology
Article number: 0153
Cite this article:
Zhou Y, Bi R, Liu Y. Research Advances in the Giant Impact Hypothesis of Moon Formation. Space: Science & Technology, 2024, 4: 0153. https://doi.org/10.34133/space.0153
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return