PDF (2.3 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese

An Overview of the Worldwide Plum Breeding

Shuo LIU()Ming XUJiaCheng LIUQiuPing ZHANGXiaoXue MANing LIUYuPing ZHANGYuJun ZHANGHaiJuan ZHAOWeiSheng LIU()
Liaoning Institute of Pomology, Yingkou 115009, Liaoning
Show Author Information

Abstract

Plum is a significant fruit tree worldwide, with the two main species being P. domestica and P. salicina. Chinese plum, originating from China, exhibits high genetic heterogeneity and abundant genetic variation in fruit traits. It is speculated that wild Chinese plums still exist in the Yangtze River basin. Throughout Chinese history, the plum cultivation and varieties were recorded by many secretaries of the Qin Dynasty, the Han Dynasty, the Jin Dynasty, the Northern Song Dynasty, and the Ming Dynasty. Similarly, in other countries, such as Greece, France, Finland, the Czech Republic, and Russia, there are written records of plum, describing its origin and 14 varieties. Plum was gradually introduced into the European continent during the Roman era, and numerous new varieties have since been cultivated to improve the fruit’s quality, commercial value, and meet market demand. There were currently 88 independently bred plum varieties in China that have passed variety approval and been officially published. Breeding traits of common concern include fruit size, peel color, polyphenols, soluble solids, fruit maturity, cold resistance, disease resistance, etc. Breeding methods range from traditional methods to molecular-assisted breeding, tissue culture, and transgenic breeding. Many excellent varieties with good fresh food quality, storage and transportation resistance, and adaptability have been bred through continuous improvement of breeding methods, promoting the development of the global plum industry. China is the world’s largest plum producer, accounting for 54.94% of total production and 74.75% of total cultivation area worldwide. The rich natural resources of plum in China provide solid material and diversity guarantee for germplasm exploration and breeding application. To further strengthen the international advantages of plum germplasm resources and cultivation areas in China, and to enhance the core competitiveness of national breeding, this study reviewed the global history process of plum breeding and improvement, including the origin, dissemination, early cultivation history of plum in the world, recent research on the main breeding traits, and commercial breeding strategies for modern plum.

References

[1]
LIU W S, ZHANG Q P, MA X X, ZHANG Y P, LIU J C, ZHANG Y J, LIU S, LIU N, XU M. Fruit scientific research in New China in the past 70 years: Plum. Journal of Fruit Science, 2019, 36(10): 1320-1338. (in Chinese)
[2]
HEDRICK U P, ALDERMAN W H, DORSEY M J, TAYLOR O M, WELLINGTON R. The Plums of New York. Albany J. B. Lyon Company, State Printers, 1911.
[3]
Food and Agriculture Organization of the United Nations Database (FAOSTAT)[OL]. 2020. 2022-12-23.
[4]
VAVILOV N. Wild progenitors of the fruit trees of Turkistan and the Caucasus and the problem of the origin of fruit trees. Ninth International Horticultural Congress Report, 1930.
[5]
ZHEBENTYAYEVA T, SHANKAR V, SCORZA R, CALLAHAN A, RAVELONANDRO M, CASTRO S, DEJONG T, SASKI C A, DARDICK C. Genetic characterization of worldwide Prunus domestica (plum) germplasm using sequence-based genotyping. Horticulture Research, 2019, 6: 12.
[6]
RYBIN W A. Spontaneous and experimentally produced hybrids between blackthorn and cherry plum and the descent problem of the cultivated plum. Planta, 1936, 25: 22-58.
[7]
LIN P, SHI L. The discovery and distribution of Ili wild Prunus domestica (P. communis Fritsch) in Xinjiang//Proceedings of International Symposium on Horticultural Germplasm, Cultivated and Wild, 1989: 282-286.
[8]
LIN S H, PU F S, ZHANG J H, GAO X Y, LI X J. Observation on chromosomes numbers of Prunus. China Fruits, 1991, 2: 8-10.
[9]
LIU W S, LIU D C, ZHANG A, FENG C, YANG J M, YOON J, LI S H. Genetic diversity and phylogenetic relationships among plum germplasm resources in China assessed with inter-simple sequence repeat markers. Journal of the American Society for Horticultural Science, 2007, 132(5): 619-628.
[10]
ZHANG J Y, ZHOU E. China Fruit-Plant Monographs, Plum Flora. Beijing: China Forestry Publishing House, 1998: 17-23. (in Chinese)
[11]
YOSHIDA M. The origin of fruits. 2: Plums. 1987, 42(2): 49-53.
[12]
JANICK J, MOORE J N. Fruit Breeding, Volume 1, Tree and Tropical Fruits. Fruit Breeding, 1996: 559-607.
[13]
HARTMANN W, NEUMÜLLER M. Plum Breeding//Breeding Plantation Tree Crops: Temperate Species. New York, NY: Springer New York, 2008.
[14]
AL-KHAYRI J M, JAIN S, JOHNSON D. Advances in Plant Breeding Strategies: Fruits. Cham: Springer, 2018: 165-215.
[15]
RIMPIKA, SHARMA D. Advances in breeding of peach, plum and apricot. Prunus-Recent Advances. Intech Open, 2022.
[16]
BURBANK L. How this ‘Miracle’ came to be. Sunset Magazine, 1903-1904(12): 35-36.
[17]
BURBANK L, WHITSON J, JOHN R, WILLIAMS H S, SOCIETY L B. Luther Burbank: His Methods and Discoveries and Their Practical Application. New York, N.Y.; London: Luther Burbank Press, 1914.
[18]
JANICK J. Luther Burbank: plant breeding artist, horticulturist, and legend. HortScience, 2015, 50(2): 153-156.
[19]
CALLAHAN A, DARDICK C, TOSETTI R, LALLI D, SCORZA R. 21st century approach to improving burbank’s ‘stoneless’ plum. HortScience, 2015, 50(2): 195-200.
[20]
BRUCE L T, DOUGAL M R, MICHAEL N, MARCO A D, LIU W S. Plum. Fruit breeding, 2012, 15: 571-621.
[21]
HOWARD W L. Luther Burbank’s plant contributions//Berkeley, Cal.: Agricultural Experiment Station, 1945.
[22]
CROW J F. Plant breeding giants: Burbank, the artist; vavilov, the scientist. Genetics, 2001, 158(4): 1391-1395.
[23]
OKIE W R, RAMMING D W. Plum breeding worldwide. HortTechnology, 1999, 9(2): 162-176.
[24]
BUTAC M, BOZHKOVA V, ZHIVONDOV A, MILOSEVIC N, BELLINI E, NENCETTI V, BLAZEK J, BALSEMIN E, LAFARQUE B, KAUFMANE E, GRAVITE I, VASILJEVA M, PINTEA M, JURAVELI A, WEBSTER T, HJALMARSSON I, TRAJKOVSKI V, HJELTNES S H. Overview of plum breeding in Europe. Acta Horticulturae, 2013, 981: 91-98.
[25]
BELLINI E, NENCETTI V, NATARELLI L. New selections of yellow Japanese plum obtained in Florence at the dofi. Acta Horticulturae, 2010, 874: 321-326.
[26]
BLAŽEK J, PIŠTĚKOVÁ I. Initial results from the evaluation of plum cultivars grown in a very dense planting. Acta Horticulturae, 2012, 968: 99-108.
[27]
BUTAC M, ZAGRAI I, BOTU M. Breeding of new plum cultivars in Romania. Acta Horticulturae, 201, 874: 51-58.
[28]
JACOB H. Plum breeding worldwide//Symposium on Plum of Serbia. 2006: 15.
[29]
KNIGHT V H, EVANS K M, SIMPSON D W, TOBUTT K R. Report on a desktop study to investigate the current world resources in Rosaceous fruit breeding programmes. East Malling Research, 2005.
[30]
HJELTNES S H, NORNES L. ROGNLI O A. Inheritance of some fruit characters in plum (Prunus domestica)//IX International Symposium on Plum and Prune Genetics, Breeding and Pomology, 2008: 45-50.
[31]
SHERMAN W B, TOPP B L, LYRENE P M. Breeding low-chill Japanese-type plums for subtropical climates. Acta Horticulturae, 1992, 317: 149-154.
[32]
SARKHOSH A, OLMSTEAD M A. Growing plums in florida: HS895/HS250, rev. 1/2016. EDIS, 2020, 2016(2): 12.
[33]
YAMAGUCHI M, YOSHIDA M, KYOTANI H, NAKAMURA Y, NISHIMURA K, HAJI T, MIYAKE M. New Japanese plum cultivar ‘Honey Rosa’. Bulletin-National Institute of Fruit Tree Science, 1995.
[34]
YAMAGUCHI M, YOSHIDA M, KYOTANI H, NAKAMURA Y, NISHIMURA K, HAJI T, MIYAKE M. New Japanese plum cultivar ‘Honey Heart’. Bulletin-National Institute of Fruit Tree Science, 1999: 15-30.
[35]
JUN J H, CHUNG K H, KANG S J, KWACK Y B, PARK K S, YUN H K, JEONG S B. ‘Honey Red’, an early maturing Japanese plum. Journal of the American Pomological Society, 2008, 62: 27-29.
[36]
NAKASU B H, BASSOLS M, FELICIANO A J. Temperate fruit breeding in Brazil. Fruit Varieties Journal, 1981, 35: 114-122.
[37]
DUCROQUET J P, DALBÓ M A. SCS 409 Camila e SCS 410 Piuna-Novascultivares de ameixeira com resistência à escaldadura das folhas. Agropecuária Catarinense, 2007, 20: 67-70.
[38]
TOPP B L, RUSSELL D M. Breeding early ripening Japanese plums. Acta Horticulturae, 1989, 240: 27-30.
[39]
TOPP B L, RUSSELL D M. ‘Queensland bellerosa’ plum. HortScience, 1990, 25(7): 814.
[40]
TOPP B L, RUSSELL D M. ‘Queensland earlisweet’ cherry plum. HortScience, 1990, 25(6): 713.
[41]
ZHANG Y B, WANG X S, CUI L, CHEN L, LI F. A new cold resistant plum cultivar ‘fulu’. Acta Horticulturae Sinica, 2021, 48(6): 1265-1266. (in Chinese)
[42]
ZHANG Y B, WANG X S, CHEN L, CUI L, LI F, SUI S B, ZHANG L X. A new cold-resistant plum variety Gongzhu Hong. Journal of Fruit Science, 2022, 39(4): 689-691. (in Chinese)
[43]
HE Y H, YANG X H, GUO C H, LUAN A P, LIU C Y, XIA J X, XIE T, LI C H, ZENG Z. Breeding report of a new fresh-eating and processing plum cultivar ‘Xinghuali’ (Prunus salicina). Journal of Fruit Science, 2020, 37(10): 1597-1600. (in Chinese)
[44]
HE Y H, YANG X H, LUAN A P, LIU C M, HU G B, LIN S Q, QIN Y H, XIA J X, FU J X, ZHAO J T, GAO Y S, ZHANG Z K, WEN R M, CHEN S K, LUO X Y, CHI Q Y, LU S W. A new plum cultivar ‘Yunkai 1’. Acta Horticulturae Sinica, 2020, 47(S2): 2892-2893. (in Chinese)
[45]
FANG B, ZHAO Q, HUANG M, TANG J, CAI Z Y, ZHANG X, LIU J H, TAN P. ‘Wanqing’, a new late-maturing plum cultivar of Prunus salicina Lindl. Wushancuili. Journal of Fruit Science, 2020, 37(7): 1106-1109. (in Chinese)
[46]
ZHOU W, HE C Z, ZHANG N H, PU C Q, WANG X W, ZHU G C, WAN C D, ZHANG H W, LI L, CHENG L, HE C H. Breeding and cultivation techniques of a new plum variety ‘Late Frost Crispy Plum’. China Fruit News, 2019, 36(3): 55-57. (in Chinese)
[47]
XIONG W, XIANG F, ZENG M, WANG Y Z, KOU L L, LI X T, LI X J, HE Q, LIU J, LIU S X, CHEN P, LI W. Breeding of a new plum variety ‘Wuxi Late Crispy Plum’. South China Fruits, 2020, 49(3): 92-96. (in Chinese)
[48]
SONG H W, CHI Z W, ZHANG Y B, TAO R, ZHANG B B. Resources and variety breeding of plum in cold region. Northern Horticulture, 2008(6): 105-106. (in Chinese)
[49]
GUAN L J, LI J C, Y X. New varieties of plum trees in cold region—Suili 3 hao and Suilinghong. Northern Fruits, 1987(S1): 60-61, 48. (in Chinese)
[50]
WU Q Y. Changli No.7, a new plum variety. Journal of Fruit Resources, 1991(1): 41. (in Chinese)
[51]
WU Q Y. Changli 17, a new plum variety. Northern Fruits, 1991(1): 41. (in Chinese)
[52]
LI F. A new cold-resistant plum variety (line). China Fruits, 1993(1): 1-2, 5. (in Chinese)
[53]
ZENG Y, MOU Y H, JIN D Y, LIU G H, LIU Y Z. A new plum variety ‘Longyuan Qiuli’. China Fruits, 1998(2): 26. (in Chinese)
[54]
LIU S, XU M, ZHANG Y P, ZHANG Y J, MA X X, ZHANG Q P, LIU N, LIU W S. Retrospect, problematical issues and the prospect of plum breeding in China. Journal of Fruit Science, 2018, 35(2): 231-245. (in Chinese)
[55]
TANG S Y, XING Y L, WANG Y J, CAI F, JIANG Y F. Breeding of Yuehan Hongye plum. Northern Horticulture, 2007(11): 133-134. (in Chinese)
[56]
LI F, ZHANG B B, JI X J, ZHANG Y B, XING G J. A new variety of hardy purple-leaf plum ‘Changchun Caiye Li’. Acta Horticulturae Sinica, 2007, 34(2): 534. (in Chinese)
[57]
ZHANG Y B, ZHAO C H, LIANG Y H, FU L Z, LI F, CAO X J, JI X J. A new variety breeding of hardy purple-leaf plum ‘Beiguohong’. Northern Horticulture, 2013(12): 168-169. (in Chinese)
[58]
LU Z C, LI F, ZHANG J R, ZHANG Y B, SONG H W, ZHAO C H, SUN H L. A new edible ornamental plum cultivar ‘Yipin Danfeng’. Acta Horticulturae Sinica, 2014, 41(12): 2547-2548. (in Chinese)
[59]
LI H Y, FANG Y F. Variation of plum’s offspring and parental selection. Northern Horticulture, 1990(4): 9-13. (in Chinese)
[60]
SUN W, GAO Q Y. Inheritance of cold hardiness and fruit size in Chinese plum (Prunus salicina Lindl.). Journal of Northeast Agricultural University, 2003, 34(3): 250-253. (in Chinese)
[61]
SALAZAR J A, PACHECO I, SHINYA P, ZAPATA P, SILVA C, ARADHYA M, VELASCO D, RUIZ D, MARTÍNEZ-GÓMEZ P, INFANTE R. Genotyping by sequencing for SNP-based linkage analysis and identification of QTLs linked to fruit quality traits in Japanese plum (Prunus salicina lindl.). Frontiers in Plant Science, 2017, 8: 476.
[62]
ZHAO H J, LIU N, ZHANG Y P, LIU W S, ZHANG Y J, XU M, MA X X, LIU J C, LIU S. Research progress in genetic diversity and related factors of plum peel color. Journal of Fruit Science, 2022, 39(8): 1479-1489. (in Chinese)
[63]
FANG Y F, ZHANG F F, WANG G Q, LI D, LI S Q, LI H Y. Inheritance of some characters in naturally hybridized progeny from plum 6'X Sui Ling red plum. Journal of Shenyang Agricultural University, 1989, 20(1): 15-19. (in Chinese)
[64]
LIU W D. Genetic variation of parent-child traits in hybrid progeny of plum tree. Forest by-Product and Speciality in China, 2013(5): 96-97. (in Chinese)
[65]
VALDERRAMA-SOTO D, SALAZAR J, SEPÚLVEDA-GONZÁLEZ A, SILVA-ANDRADE C, GARDANA C, MORALES H, BATTISTONI B, JIMÉNEZ-MUÑOZ P, GONZÁLEZ M, PEÑA-NEIRA Á, INFANTE R, PACHECO I. Detection of quantitative trait loci controlling the content of phenolic compounds in an Asian plum (Prunus salicina L.) F1 population. Frontiers in Plant Science, 2021, 12: 679059.
[66]
JIAO C Y, TAO K Q, YU Z Y, SHEN T H. Study on genetic tendency of fruit quality of China plum. Northern Horticulture, 1999(2): 23-25. (in Chinese)
[67]
DE MORI G, SAVAZZINI F, GEUNA F. Molecular tools to investigate Sharka disease in Prunus species. Applied Plant Biotechnology for Improving Resistance to Biotic Stress. Amsterdam: Elsevier, 2020: 203-223.
[68]
ATANASSOV D. Plum pox. A new virus disease. Annal of the University of Sofia Faculty Agriculture and Silvicultural, 1932, 11: 49-69.
[69]
HADIDI A, BARBA M, CANDRESSE T, JELKMANN W. Virus and Virus-Like Disease of Pome and stone Fruits. APS Press/American Phytopathological Society, 2011.
[70]
CAMBRA MCAPOTE NMYRTA ALLÁCER G. Plum pox virus and the estimated costs associated with sharka disease. EPPO Bulletin, 2006, 36(2): 202-204.
[71]
GARCÍA J A, GLASA M, CAMBRA M, CANDRESSE T. Plum pox virus and sharka: A model potyvirus and a major disease. Molecular Plant Pathology, 2014, 15(3): 226-241.
[72]
NEUMÜLLER M, LANZL S, HARTMANN W, FEUCHT W, TREUTTER D. Towards an understanding of the inheritance of hypersensitivity resistance against the sharka virus in European plum (Prunus domestica L.): Generation of interspecific hybrids with lower ploidy levels. Acta Horticulturae, 2009, 814: 721-726.
[73]
RUBIO M, RODRÍGUEZ-MORENO L, BALLESTER A R, DE MOURA M C, BONGHI C, CANDRESSE T, MARTÍNEZ-GÓMEZ P. Analysis of gene expression changes in peach leaves in response to Plum pox virus infection using RNA-Seq. Molecular Plant Pathology, 2015, 16(2): 164-176.
[74]
ZURIAGA E, SORIANO J M, ZHEBENTYAYEVA T, ROMERO C, DARDICK C, CAÑIZARES J, BADENES M L. Genomic analysis reveals MATH gene (s) as candidate (s) for plum pox virus (PPV) resistance in apricot (Prunus armeniaca L.). Molecular Plant Pathology, 2013, 14(7): 663-677.
[75]
MARIETTE S, WONG JUN TAI F, ROCH G, BARRE A, CHAGUE A, DECROOCQ S, GROPPI A, LAIZET Y, LAMBERT P, TRICON D, NIKOLSKI M, AUDERGON J M, ABBOTT A G, DECROOCQ V. Genome-wide association links candidate genes to resistance to plum pox virus in apricot (Prunus armeniaca). The New Phytologist, 2016, 209(2): 773-784.
[76]
DECROOCQ S, CHAGUE A, LAMBERT P, ROCH G, AUDERGON J M, GEUNA F, CHIOZZOTTO R, BASSI D, DONDINI L, TARTARINI S, SALAVA J, KRŠKA B, PALMISANO F, KARAYIANNIS I, DECROOCQ V. Selecting with markers linked to the PPVres major QTL is not sufficient to predict resistance to plum pox virus (PPV) in apricot. Tree Genetics & Genomes, 2014, 10(5): 1161-1170.
[77]
PASSARO M, GEUNA F, BASSI D, CIRILLI M. Development of a high-resolution melting approach for reliable and cost-effective genotyping of PPVres locus in apricot (P. armeniaca). Molecular Breeding, 2017, 37(6): 74.
[78]
ILARDI V, TAVAZZA M. Biotechnological strategies and tools for Plum pox virus resistance: Trans-, intra-, cis-genesis, and beyond. Frontiers in Plant Science, 2015, 6: 379.
[79]
LIMERA C, SABBADINI S, SWEET J B, MEZZETTI B. New biotechnological tools for the genetic improvement of major woody fruit species. Frontiers in Plant Science, 2017, 8: 1418.
[80]
GARCÍA-ALMODÓVAR R C, CLEMENTE-MORENO M J, DÍAZ- VIVANCOS P, PETRI C, RUBIO M, PADILLA I M G, ILARDI V, BURGOS L. Greenhouse evaluation confirms in vitro sharka resistance of genetically engineered h-UTR/P1 plum plants. Plant Cell, Tissue and Organ Culture, 2015, 120(2): 791-796.
[81]
SIDOROVA T, PUSHIN A, MIROSHNICHENKO D, DOLGOV S. Generation of transgenic rootstock plum ((Prunus pumila L. ×P. salicina Lindl.) × (P. cerasifera Ehrh.)) using hairpin-RNA construct for resistance to the Plum pox virus. Agronomy, 2017, 8(1): 2.
[82]
YAMANE H, TAO R, SUGIURA A. Identification and cDNA cloning for S-RNases in self-incompatible Japanese plum (Prunus salicina Lindl. cv. Sordum). Plant Biotechnology, 1999, 16(5): 389-396.
[83]
BEPPU K, YAMANE H, YAEGAKI H, YAMAGUCHI M, KATAOKA I, TAO R. Diversity of S-RNase genes and S-haplotypes in Japanese plum (Prunus salicina Lindl.). The Journal of Horticultural Science and Biotechnology, 2002, 77(6): 658-664.
[84]
BEPPU K, TAKEMOTO Y, YAMANE H, YAEGAKI H, YAMAGUCHI M, KATAOKA I, TAO R. Determination of S-haplotypes of Japanese plum (Prunus salicina Lindl.) cultivars by PCR and cross-pollination tests. Journal of Horticultural Science, 2003, 78(3): 315-318.
[85]
BEPPU K, YAMANE H, YAEGAKI H, YAMAGUCHI M, TAO R. KATAOKA I. Analysis of S-RNase genes in self-compatible cultivars of Japanese plum, ‘Methley’, ‘Karari’ and ‘Kosyu’. Journal of the Japanese Society for Horticultural Science, 2004, 73(Suppl. 2): 253.
[86]
SAPIR G, STERN R, EISIKOWITCH D, GOLDWAY M. Cloning of four new Japanese plum S-alleles and determination of the compatibility between cultivars by PCR analysis. The Journal of Horticultural Science and Biotechnology, 2004, 79(2): 223-227.
[87]
BEPPU K, KOMATSU N, YAMANE H, YAEGAKI H, YAMAGUCHI M, TAO R, KATAOKA I. Se-haplotype confers self-compatibility in Japanese plum (Prunus salicina Lindl.). The Journal of Horticultural Science and Biotechnology, 2005, 80(6): 760-764.
[88]
BEPPU K, SYOGASE K, YAMANE H, TAO R, KATAOKA I. Inheritance of self-compatibility conferred by the Se-haplotype of Japanese plum and development of Se-RNase gene-specific PCR primers. The Journal of Horticultural Science and Biotechnology, 2010, 85(3): 215-218.
[89]
SUTHERLAND B G, ROBBINS T P, TOBUTT K R. Primers amplifying a range of Prunus S-alleles. Plant Breeding, 2004, 123(6): 582-584.
[90]
SUTHERLAND B G, TOBUTT K R, ROBBINS T P. Molecular genetics of self-incompatibility in plums. Acta Horticulturae, 2004(663): 557-562.
[91]
VIEIRA E A, NODARI R O, DANTAS A C M, DUCROQUET J P H J, DALBÓ M, BORGES C V. Genetic mapping of Japanese plum. Cropp Breeding and Applied Biotechnology, 2005, 5(1): 29-37.
[92]
CARRASCO B, GONZÁLEZ M, GEBAUER M, GARCÍA-GONZÁLEZ R, MALDONADO J, SILVA H. Construction of a highly saturated linkage map in Japanese plum (Prunus salicina L.) using GBS for SNP marker calling. PLoS ONE, 2018, 13(12): e0208032.
[93]
ZHANG Q P, WEI X, LIU N, ZHANG Y P, XU M, ZHANG Y J, MA X X, LIU W S. Construction of an SNP-based high-density genetic map for Japanese plum in a Chinese population using specific length fragment sequencing. Tree Genetics & Genomes, 2020, 16(1): 18.
[94]
CALLAHAN A M, ZHEBENTYAYEVA T N, HUMANN J L, SASKI C A, GALIMBA K D, GEORGI L L, SCORZA R, MAIN D, DARDICK C D. Defining the ‘HoneySweet’ insertion event utilizing NextGen sequencing and a de novo genome assembly of plum (Prunus domestica). Horticulture Research, 2021, 8: 8.
[95]
SCORZA R, CALLAHAN A, DARDICK C, RAVELONANDRO M, POLAK J, MALINOWSKI T, ZAGRAI I, CAMBRA M, KAMENOVA I. Genetic engineering of Plum pox virus resistance: ‘HoneySweet’ plum-From concept to product. Plant Cell, Tissue and Organ Culture (PCTOC), 2013, 115(1): 1-12.
[96]
FANG Z Z, KUI L W, DAI H, ZHOU D R, JIANG C C, ESPLEY R V, DENG C, LIN Y J, PAN S L, YE X F. The genome of low-chill Chinese plum ‘Sanyueli’ (Prunus salicina Lindl.) provides insights into the regulation of the chilling requirement of flower buds. Molecular Ecology Resources, 2022, 22(5): 1919-1938.
[97]
LIU C Y, FENG C, PENG W Z, HAO J J, WANG J T, PAN J J, HE Y H. Chromosome-level draft genome of a diploid plum (Prunus salicina). GigaScience, 2020, 9(12): giaa130.
[98]
JO Y, LIAN S, CHO J K, CHOI H, CHU H, CHO W K. De novo transcriptome assembly of two different Prunus salicina cultivars. Genomics Data, 2015, 6: 262-263.
[99]
JO Y, CHOI H, LIAN S, CHO J K, CHU H, CHO W K. Identification of viruses infecting six plum cultivars in Korea by RNA-sequencing. PeerJ, 2020, 8: e9588.
[100]
KIM H Y, SAHA P, FARCUH M, LI B S, SADKA A, BLUMWALD E. RNA-seq analysis of spatiotemporal gene expression patterns during fruit development revealed reference genes for transcript normalization in plums. Plant Molecular Biology Reporter, 2015, 33(6): 1634-1649.
[101]
GONZÁLEZ M, MALDONADO J, SALAZAR E, SILVA H, CARRASCO B. De novo transcriptome assembly of ‘Angeleno’ and ‘Lamoon’ Japanese plum cultivars (Prunus salicina). Genomics Data, 2016, 9: 35-36.
[102]
FANG Z Z, ZHOU D R, YE X F, JIANG C C, PAN S L. Identification of candidate anthocyanin-related genes by transcriptomic analysis of ‘Furongli’ plum (Prunus salicina Lindl.) during fruit ripening using RNA-seq. Frontiers in Plant Science, 2016, 7: 1338.
[103]
FARCUH M, LI B S, RIVERO R M, SHLIZERMAN L, SADKA A, BLUMWALD E. Sugar metabolism reprogramming in a non- climacteric bud mutant of a climacteric plum fruit during development on the tree. Journal of Experimental Botany, 2017, 68(21/22): 5813-5828.
[104]
PICCOLO E L, ARANITI F, LANDI M, MASSAI R, GUIDI L, ABENAVOLI M R, REMORINI D. Girdling stimulates anthocyanin accumulation and promotes sugar, organic acid, amino acid level and antioxidant activity in red plum: An overview of skin and pulp metabolomics. Scientia Horticulturae, 2021, 280: 109907.
[105]
PETRI C, WEBB K, HILY J M, DARDICK C, SCORZA R. High transformation efficiency in plum (Prunus domestica L.): A new tool for functional genomics studies in Prunus spp. Molecular Breeding, 2008, 22(4): 581-591.
[106]
MANTE S, MORGENS P H, SCORZA R, CORDTS J M, CALLAHAN A M. Agrobacterium-mediated transformation of plum (Prunus domestica L.) hypocotyl slices and regeneration of transgenic plants. Bio/Technology, 1991, 9(9): 853-857.
[107]
GONZALEZ-PADILLA I M, WEBB K, SCORZA R. Early antibiotic selection and efficient rooting and acclimatization improve the production of transgenic plum plants (Prunus domestica L.). Plant Cell Reports, 2003, 22(1): 38-45.
[108]
TIAN L N, WEN Y, JAYASANKAR S, SIBBALD S. Regeneration of Prunus salicina Lindl (Japanese plum) from hypocotyls of mature seeds. In Vitro Cellular & Developmental Biology - Plant, 2007, 43(4): 343-347.
[109]
RAVELONANDRO M, SCORZA R, POLAK J, CALLAHAN A, KRŠKA B, KUNDU J B, BRIARD P. ‘Honey Sweet’ plum-A valuable genetically engineered fruit-tree cultivar. Food and Nutrition Sciences, 2013, 4(6): 45-49.
[110]
SRINIVASAN C, DARDICK C, CALLAHAN A, SCORZA R. Plum (Prunus domestica) trees transformed with poplar FT1 result in altered architecture, dormancy requirement, and continuous flowering. PLoS ONE, 2012, 7: E40715.
[111]
LIU W S. Brief introduction of the latest new plum and apricot varieties (lines). Fruit Growers’ Friend, 2017(5): 4-6. (in Chinese)
[112]
RUIZ D, COS J, NICOLÁS-ALMANSA M, EGEA J, GARCÍA F, CARRILLO A, RUBIO M, LÓPEZ D, SALAZAR J, GUEVARA A. New promising Japanese plum cultivars for warm areas from CEBAS-CSIC/IMIDA breeding programme. Acta Horticulturae, 2021, 1322: 55-60.
Scientia Agricultura Sinica
Pages 1744-1759
Cite this article:
LIU S, XU M, LIU J, et al. An Overview of the Worldwide Plum Breeding. Scientia Agricultura Sinica, 2023, 56(9): 1744-1759. https://doi.org/10.3864/j.issn.0578-1752.2023.09.011
Metrics & Citations  
Article History
Copyright
Return