PDF (6.7 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese

Current Status and Strategies for Utilization of Stripe Rust Resistance Genes in Wheat Breeding Program of China

ZhiYong LIU1,2,3()HuaiZhi ZHANG1,2Bin BAI4Jun LI5Lin HUANG6ZhiBin XU7YongXing CHEN1,2Xu LIU8TingJie CAO9MiaoMiao LI1Ping LU1QiuHong WU1LingLi DONG1YuLin HAN10GuiHong YIN11WeiGuo HU9XiCheng WANG9Hong ZHAO9SuHong YAN8ZhaoSheng YANG8ZhiJian CHANG12Tao WANG7()WuYun YANG5()DengCai LIU6()HongJie LI13()JiuYuan DU4()
Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/State Key Laboratory of Plant Cell and Chromosome Engineering/The Innovative Academy of Seed Design, Beijing 100101
College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049
Hainan Yazhou Bay Seed Laboratory, Sanya 572024, Hainan
Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070
Crop Research Institute, Sichuan Academy of Agriculture Sciences, Chengdu 610066
Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan
Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041
Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan
Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002
Zhoukou Academy of Agricultural Sciences, Zhoukou 466001, Henan
College of Agronomy, Henan Agricultural University, Zhengzhou 450046
College of Agriculture, Shanxi Agricultural University/Institute of Crop Sciences, Taiyuan 030801
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
Show Author Information

Abstract

Wheat stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is a devastating disease threaten food security in China and worldwide. Epidemics of wheat stripe rust have been under control through applying resistant cultivars and crop protection approaches. However, due to climate change, innovation of cropping system, improvement of breeding technology, yield level enhancement of wheat cultivars, variation in structure and frequency of virulence genes in Pst populations in the new era, the current status of stripe rust resistance genes in wheat breeding programs need to be evaluated. The results could provide useful information for applying stripe rust resistance genes to develop new wheat cultivars with broad-spectrum and durable rust resistance. After multiple year’s stripe rust resistance survey, genetic analysis, molecular tagging and mining of stripe rust resistance genes in wheat cultivars and advanced breeding lines, the current status of major stripe rust resistance genes utilization was reviewed. We summarized the present situations of major stripe rust resistance gene discovery and germplasm innovation, the most frequently used stripe rust resistance genes, new strategy for pyramiding adult plant partial resistance and all stage resistance, and molecular marker assisted selection for developing wheat cultivars with broad spectrum and durable resistance in China. This review also proposes the major research areas in wheat stripe rust resistance breeding in the new era.

References

[1]
CHEN W Q, KANG Z S, MA Z H, XU S C, JIN S L, JIANG Y Y. Integrated management of wheat stripe rust caused by Puccinia striiformis f. sp. tritici in China. Scientia Agricultura Sinica, 2013, 46(20): 4254-4262. DOI: . (in Chinese)
[2]
LI Z Q, ZENG S M. Wheat Rust in China. Beijing: China Agriculture Press, 2002: 1-254. (in Chinese)
[3]
HAN D J, WANG Q L, ZHANG L, WEI G R, ZENG Q D, ZHAO J, WANG X J, HUANG L L, KANG Z S. Evaluation of resistance of current wheat cultivars to stripe rust in Northwest China, North China, and the Middle and Lower Reaches of Changjiang River epidemic area. Scientia Agricultura Sinica, 2010, 43(14): 2889-2896. DOI: . (in Chinese)
[4]
MCINTOSH R A, MU J, HAN D J, KANG Z S. Wheat stripe rust resistance gene Yr24/Yr26: A retrospective review. The Crop Journal, 2018, 6(4): 321-329.
[5]
MCINTOSH R A, DUBCOVSKY J, ROGERS W J, XIA X C, RAUPP W J. Catalogue of gene symbols for wheat: 2021 supplement. Annual Wheat Newsletter, 2021, 67: 104-113.
[6]
KLYMIUK V, CHAWLA H S, WIEBE K, ENS J, FATIUKHA A, GOVTA L, FAHIMA T, PONZNIAK C J. Discovery of stripe rust resistance with incomplete dominance in wild emmer wheat using bulked segregant analysis sequencing. Communications Biology, 2022, 5: 826.
[7]
MCINTOSH R A, WELLINGS C R, PARK R F. Wheat Rusts: An Atlas of Resistance Genes. Victoria, Australia: CSIRO Press, 1995.
[8]
HUERTA-ESPINO J, SINGH R, CRESPO-HERRERA L A, VILLASEÑOR-MIR H E, RODRIGUEZ-GARCIA M F, DREISIGACKER S, BARCENAS-SANTANA D, LAGUDAH E. Adult plant slow rusting genes confer high levels of resistance to rusts in bread wheat cultivars from Mexico. Frontier in Plant Science, 2020, 11: 824.
[9]
FU D L, UAUY C, DISTELFELD A, BLECHL A, EPSTEIN L, CHEN X M, SELA H, FAHIMA T, DUBCOVSKY J. A kinase- START gene confers temperature-dependent resistance to wheat stripe rust. Science, 2009, 323(5919): 1357-1360.
[10]
MARCHAL C, ZHANG J, ZHANG P, FENWICK P, STEUERNAGE B, ADAMSKI N M, BOYD L, MCINTOSH R A, WULFF B B H, BERRY S, LAGUDAH E, UAUY C. BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nature Plants, 2018, 4: 662-668.
[11]
NI F, ZHENG Y Y, LIU X K, YU Y, ZHANG G Q, EPSTEIN L, MAO X, WU J Z, YUAN C L, B, YU H X, LI J L, ZHAO Q, YANG Q Y, LIU J J, QI J, FU D L, WU J J. Sequencing trait-associated mutations to clone wheat rust-resistance gene YrNAM. Nature Communications, 2023, 14: 4353.
[12]
KLYMIUK V, YANIV E, HUANG L, RAATS D, FATIUKHA A, CHEN S S, FENG L H, FRENKEL Z, KRUGMAN T, LIDZBARSKY G, CHANG W, JÄÄSKELÄINEN M J, SCHUDOMA C, PAULIN L, LAINE P, BARIANA H, SELA H, SALEEM K, SØRENSEN C K, HOVMØLLER M S, DISTELFELD A, CHALHOUB B, DUBCOVSKY J, KOROL A B, SCHULMAN A H, FAHIMA Z. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase- pseudokinase family. Nature Communications, 2018, 9: 3735.
[13]
KRATTINGER S G, LAGUDAH E S, SPIELMEYER W, SINGH R P, HUERTA-ESPINO J, MCFADDEN H, BOSSOLINI E, SELTER L L, KELLER B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 2009, 323(5919): 1360-1363.
[14]
ATHIYANNAN N, ABROUK M, BOSHOFF WHP, CAUET S, RODDE N, KUDRNA D, MOHAMMED N, BETTGENHAEUSER J, BOTHA KS, DERMAN S S, WING R A, PRINS R, KRATTINGER S G. Long-read genome sequencing of bread wheat facilitates disease resistance gene cloning. Nature Genetics, 2022, 54(3): 227-231.
[15]
ZHANG C Z, HUANG L, ZHANG H F, HAO Q Q, LYU B, WANG M N, EPSTEIN L, LIU M, KOU C L, QI J, CHEN F J, LI M K, GAO G, NI F, ZHANG L Q, HAO M, WANG J R, CHEN X M, LUO M C, ZHENG Y L, WU J J, LIU D C, FU D L. An ancestral NB-LRR with duplicated 3’UTRs confers stripe rust resistance in wheat and barley. Nature Communications, 2019, 10(1): 4023.
[16]
MOORE J W, HERRERA-FOESSEL S, LAN C X, SCHNIPPENKOETTER W, AYLIFFE M, HUERTA-ESPINO J, LILLEMO M, VICCARS L, MILNE R, PERIYANNAN S. TALBOT M, BARIANA H, PATRICK J W, DODDS P, SINGH R, LAGUDAH E S. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nature Genetics, 2015, 47(12): 1494-1498.
[17]
WANG H, ZOU S H, LI Y W, LIN F Y, TANG D Z. Am ankyrin-repeat and WRKY-domain-containing immune receptor confers stripe rust resistance in wheat. Nature Communications, 2020, 11: 1353.
[18]
HE Y, FENG L H, JIANG Y, ZHANG L Q, YAN J, ZHAO G, WANG J R, CHEN G Y, WU B H, LIU D C, HUANG L, FAHIMA T. Distribution and nucleotide diversity of Yr15 in wild emmer populations and Chinese wheat germplasm. Pathogens, 2020, 9: 212.
[19]
XI L, WANG Y Q, ZHU W, WANG Y, CHEN G Y, PU Z J, ZHOU Y H, KANG H Y. Identification of resistance to wheat and molecular detection of resistance genes to wheat stripe rust of 78 wheat cultivars (lines) in Sichuan province. Acta Agronomica Sinica, 2021, 47(7): 1309-1323. (in Chinese)
[20]
BAI B, ZHANG H Z, DU J Y, ZHANG X Y, HE R, WU L, ZHANG Z, ZHANG Y H, CAO S Q, LIU Z Y. Current situation and strategy of stripe rust resistance genes utilization in winter wheat cultivars of Northwest over-summering region for Puccinia striiformis f. sp. tritici in China. Scientia Agricultura Sinica, 2024, 57(1): 4-17. DOI: . (in Chinese)
[21]
BARIANA H S, MCINTOSH R A. Characterization and origin of rust and powdery mildew resistance genes in VPM1 wheat. Euphytica, 1994, 76: 53-61.
[22]
FANG T L, CAMPBELL K G, LIU Z Y, CHEN X M, WAN A M, LI S, LIU Z J, CAO S H, CHEN Y H, BOWDEN R L, CARVER B F, YAN L L. Stripe rust resistance in the wheat cultivar Jagger is due to Yr17 and a novel resistance gene. Crop Science, 2011, 51: 2455-2465.
[23]
GAO L L, KOO D H, JULIANA P, RIFE T, SINGH D, SILVA C L, LUX T, DORN K M, CLINESMITH M, SILVA P, WANG X, SPANNAGL M, MONAT C, FRIEBE B, STEUERNAGEL B, MUEHLBAUER G J, WALKOWIAK S, POZNIAK C, SINGH R, STEIN N, MASCHER M, FRITZ A, POLAND J. The Aegilops ventricosa 2NvS segment in bread wheat: Cytology, genomics and breeding. Theoretical and Applied Genetics, 2020, 134(2): 529-542.
[24]
LU J L, CHEN C, LIU P, HE Z H, XIA X C. Identification of a new stripe rust resistance gene in Chinese winter wheat Zhongmai 175. Journal of Integrative Agriculture, 2016, 15(11): 2461-2468.
[25]
WANG Y, ZHANG H Z, XIE J Z, GUO B M, CHEN Y X, ZHANG H Y, LU P, WU Q H, LI M M, ZHANG D Y, GUO G H, YANG J, ZHANG P P, ZHANG Y, WANG X C, ZHAO H, CAO T J, LIU Z Y. Mapping stripe rust resistance genes by BSR-Seq: YrMM58 and YrHY1 on chromosome 2AS In Chinese wheat lines Mengmai 58 and Huaiyang 1 are Yr17. The Crop Journal, 2018, 6(1): 91-98.
[26]
HUANG S, LIU S, ZHANG Y, XIE Y, WANG X, JIAO H, WU S, ZENG Q, WANG Q, SINGH R P, BHAVANI S, KANG Z, WANG C, HAN D, WU J. Genome-wide wheat 55K SNP-based mapping of stripe rust resistance loci in wheat cultivar Shaannong 33 and their alleles frequencies in current Chinese wheat cultivars and breeding lines. Plant Disease, 2021, 105: 1048-1056.
[27]
LIU S J, WANG X T, ZHANG Y Y, JIN Y G, XIA Z H, XIANG M J, HUANG S, QIAO L Y, ZHENG W J, ZENG Q D, WANG Q L, YU R, SINGH R P, BHAVANI S, KANG Z S, HAN D J, WANG C F, WU J H. Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL. Theoretical and Applied Genetics, 2022, 135(1): 351-365.
[28]
JIA A L, REN Y, GAO F M, YIN G H, LIU J D, GUO L, ZHENG J Z, HE Z H, XIA X C. Mapping and validation of a new QTL for adult-plant resistance to powdery mildew in Chinese elite bread wheat line Zhou8425B. Theoretical and Applied Genetics, 2018, 131(5): 1063-1071.
[29]
DONG Y, XU D A, XU X W, REN Y, GAO F M, SONG J, JIA A L, HAO Y F, HE Z H, XIA X C. Fine mapping of QPm.caas-3BS, a stable QTL for adult-plant resistance to powdery mildew in wheat (Triticum aestivum L.) Theoretical and Applied Genetics, 2022, 135(3): 1083-1099.
[30]
MAGO R, BROWN-GUEDIRA G, DREISIGACKER S, BREEN J, JIN Y, SINGH R, APPELS R S, LAGUDAH E S, ELLIS J, SPIELMEYER W. An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theoretical and Applied Genetics, 2011, 122(4): 735-744.
[31]
WANG Y, XIE J Z, ZHANG H Z, GUO B M, NING S Z, CHEN Y X, LU P, WU Q H, LI M M, ZHANG D Y, GUO G H, ZHANG Y, LIU D C, ZOU S K, TANG J W, ZHAO H, WANG X C, LI J, YANG W Y, CAO T J, YIN G H, LIU Z Y. Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses. Theoretical and Applied Genetics, 2017, 130(10): 2191-2201.
[32]
LI Z F, ZHENG T C, HE Z H, LI G Q, XU S C, LI X P, YANG G Y, SINGH R P, XIA X C. Molecular tagging of stripe rust resistance gene YrZH84 in Chinese wheat line Zhou 8425B. Theoretical and Applied Genetics, 2006, 112(6): 1098-1103.
[33]
LIU X, YAN S H, LI W, YAN W L, YANG Z S. Molecular markers tightly linked to stripe rust resistance gene Yr1152 and their usage: China, CN109913577A, 2019. (in Chinese)
[34]
ZHANG H Z, XIE J Z, CHEN Y X, LIU X, WANG Y, YAN S H, YANG Z S, ZHAO H, WANG X C, JIA L H, CAO T J, LIU Z Y. Mapping stripe rust resistance gene YrZM103 in wheat cultivar Zhengmai 103 by BSR-Seq. Acta Agronomica Sinica, 2017, 43(11): 1643-1649. (in Chinese)
[35]
HAO W H, LIANG K, CHEN J, LU J, SI H Q, MA C X. Fine mapping and candidate gene identification of wheat stripe rust resistance gene YrJM22//The X National Wheat Genomics and Molecular Breeding Conference. 2019, Yantai, China. (in Chinese)
[36]
HUANG S, ZHANG Y, REN H, LI X, ZHANG X, ZHANG Z, ZHANG C, LIU S, WANG X, ZENG Q, WANG Q, SINGH R P, BHAVANI S, WU J, HAN D, KANG Z. Epistatic interaction effect between chromosome 1BL (Yr29) and a novel locus on 2AL facilitating resistance to stripe rust in Chinese wheat Changwu 357-9. Theoretical and Applied Genetics, 2022, 135: 2501-2513.
[37]
WU J C, XU D A, FU L P, WU L, HAO W H, LI J H, DONG Y, WANG F J, WU Y Y, HE Z H, SI H Q, MA C X, XIA X C. Fine mapping of a stripe rust resistance gene YrZM175 in bread wheat. Theoretical and Applied Genetics, 2022, 135: 3485-3496.
[38]
ZHAO H, WANG X C, FAN H J. New wheat line Bainong 64 with multiple resistance, wide adaptation, high quality, high and stable yielding. Henan Agriculture Sciences, 1997(9): 40. (in Chinese)
[39]
ZHANG P P, LI X, GEBREWAHID T W, LI H, XIA X C, HE Z H, LI Z F, LIU D Q. QTL mapping of adult-plant resistance to leaf and stripe rust resistance in wheat cross SW8588/Thatcher using the wheat 55K SNP array. Plant Disease, 2019, 103(12): 3041-3049.
[40]
YANG M Y, LI G R, WAN H S, LI L P, LI J, YANG W Y, PU Z J, YANG Z J, YANG E N. Identification of QTLs for stripe rust resistance in a recombinant inbred line population. International Journal of Molecular Sciences, 2019, 20(14): 3410.
[41]
WANG Y, HU Y, GONG F, JIN Y, XIA Y, HE Y, JIANG Y, ZHOU Q, HE J, FENG L, CHEN G, ZHENG Y, LIU D, HUANG L, WU B. Identification and mapping of QTL for stripe rust resistance in the Chinese wheat cultivar Shumai126. Plant Disease, 2022, 106: 1278-1285.
[42]
HIEBERT C W, THOMAS J B, MCCALLUM B D, HUMPHREYS G D, DEPAUW R M, HAYDEN M J, MAGO R, SCHNIPENKOETTER W, HAYDEN M. An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theoretical and Applied Genetics, 2010, 121(6): 1083-1091.
[43]
LIU J, CHANG Z J, ZHANG X J, YANG Z J, LI X, JIA J Q, ZHAN H X, GUO H J, WANG J M. Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theoretical and Applied Genetics, 2013, 126(1): 265-274.
[44]
HOU L Y, JIA J Q, ZHANG X J, LI X, YANG Z J, MA J, GUO H J, ZHAN H X, QIAO L Y, CHANG Z J. Molecular mapping of the stripe rust resistance gene Yr69 on wheat chromosome 2AS. Plant Disease, 2016, 100(8): 1717-1724.
[45]
LIU D C, ZHANG L Q, HAO M, NING S Z, YUAN Z W, DAI S F, HUANG L, WU B H, YAN Z H, LAN X J, ZHENG Y L. Wheat breeding in the hometown of Chinese Spring. The Crop Journal, 2018, 6: 82-90.
[46]
GAO Y, TANG J W, ZOU S K, HU R Y, ZHANG G Y, SUN Y X, WANG L, YIN G H. Genetic diversity assessment on derivatives from wheat cultivar Zhoumai 22. Journal of Plant Genetic Resources, 2021, 22(1): 38-49. (in Chinese)
[47]
YANG Z M, TANG B R, SHEN K Q, XIA X C. A strategic problem in wheat resistance breeding – Building and utilization of sources of second-line resistance against rusts and mildew in China. Acta Agronomica Sinica, 1994, 20(4): 385-394. (in Chinese)
[48]
YANG Z M, XIE C J, SUN Q X. Situation of the sources of stripe rust resistance of wheat in the post-CY32 era in China. Acta Agronomica Sinica, 2003, 29(2): 161-168. (in Chinese)
[49]
SINGH R. SINGH P K, RUTKOSKI J, HODSON D P, HE X Y, JØRGENSEN L N, HOVMØLLER M S, HUERTA-ESPINO J. Disease impact on wheat yield potential and prospects of genetic control. Annual Review Phytopathology, 2016, 54: 303-322.
[50]
COBO N, WANJUGI H, LAGUDAH E S, DUBCOVSKY J. A high-resolution map of wheat QYr.ucw-1BL, an adult plant stripe rust resistance locus in the same chromosomal region as Yr29. Plant Genome, 2019, 12: 1-15.
[51]
NGOU B P M, DING P, JONES J D G. Thirty years of resistance: Zig-zag through the plant immune system. The Plant Cell, 2022, 34(5): 1447-1478.
[52]
BRUEGGEMAN, R. ROSTOKS N, KUDRNA D, KILIAN A, HAN F, CHEN J, DRUKA A, STEFFENSON B, KLEINHOFS A. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proceedings of the National Academy of Sciences of the USA, 2002, 99(14): 9328-9333.
[53]
LU P, GUO L, WANG Z Z, LI B B, LI J, LI Y H, QIU D, SHI W Q, YANG L J, WANG N, GUO G H, XIE J Z, WU Q H, CHEN Y X, LI M M, ZHANG H Z, DONG L L, ZHANG P P, ZHU K Y, YU D Z, ZHANG Y, DEAL K R, HUO N X, LIU C M, LUO M C, DVORAK J, GU Y Q, LI H J, LIU Z Y. A rare gain of function in a wheat tandem kinase confers resistance to powdery mildew. Nature Communications, 2020, 11: 680.
[54]
ZHANG G, LIU W, WANG L, CHENG X, TIAN X, DU Z, KANG Z, ZHAO J. Evaluation of the potential risk of the emerging Yr5-virulent races of Puccinia striiformis f. sp. tritici to 165 Chinese wheat cultivars. Plant Disease, 2022, 106: 1867-1874.
[55]
ZHOU X C, WU L R, SONG J R, JIN S L. Control of wheat stripe rust based on genetic diversity of cultivars in Longnan. Acta Phytophylacica Sinica, 2008, 35(2): 97-101. (in Chinese)
[56]
ZHOU X C, DU J Y, LU Q L. Study on selection of resistance sources to stripe rust and gene bank setup for stripe rust resistance wheat breeding. Journal of Triticeae Crops, 2005, 25(1): 6-12. (in Chinese)
[57]
CAO S Q, SUN Z Y, FENG J, WANG W J, JIA Q Z, HUANG J, ZHANG B, JIN S L, ZHANG Y H, LUO H S. Analysis on resistance of winter wheat varieties of Tianxuan lines to stripe rust in Gansu province. Journal of Triticeae Crops, 2017, 37(2): 268-274. (in Chinese)
[58]
WANG Y, HU Y, GONG F, JIN Y, XIA Y, HE Y, JIANG Y, ZHOU Q, HE J, FENG L, CHEN G, ZHENG Y, LIU D, HUANG L, WU B. Identification and mapping of QTL for stripe rust resistance in the Chinese wheat cultivar Shumai126. Plant Disease, 2022, 106: 1278-1285.
[59]
XIAO J, LIU B, YAO Y Y, GUO Z F, JIA H Y, KONG L R, ZHANG A M, MA W J, NI Z F, XU S B, LU F, JIAO Y N, YANG W Y, LIN X L, SUN S L, LU Z F, GAO L F, ZHAO G Y, CAO S H, CHEN Q, ZHANG K P, WANG M C, WANG M, HU Z R, GUO W L, LI G Q, MA X, LI J M, FU X D, MA Z Q, WANG D W, ZHANG X Y, LING H Q, XIA G M, TONG Y P, LIU Z Y, HE Z H, JIA J Z, CONG K. Wheat genomics study for genetic improvement of traits in China. Science China Life Science, 2022, 65(9): 1718-1775.
[60]
CAO T J, CHEN Y X, LI D, ZHANG Y, WANG X C, ZHAO H, LIU Z Y. Identification and molecular detection of powdery mildew resistance of new red wheat varieties (lines) in Henan province, China. Acta Agronomica Sinica, 2015, 41(8): 1172-1182. (in Chinese)
[61]
ZHANG J, DONG S M, WANG W, ZHAO J H, CHEN X W, GUO H S, HE G C, HE Z H, KANG Z S, LI Y, PENG Y L, WANG G L, ZHOU X P, WANG Y C, ZHOU J M. Plant immunity and sustainable control of pests in China: Advances, opportunities and challenges. Science China Life Science, 2019, 49(11): 1479-1507. (in Chinese)
[62]
KONG L R. Breaking the gene code conferring broad-spectrum resistance to rust fungi. Chinese Bulletin of Botany, 2022, 57(4): 1-4. (in Chinese)
[63]
WANG N, TANG C L, FAN X, HE M Y, GAN P F, ZHANG S, HU Z Y, WANG X D, YAN T, SHU W X, YU L G, ZHAO J R, HE J N, LI L L, WANG J F, HAUNG X L, HAUNG L L, ZHOU J M, KANG Z S, WANG X J. Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi. Cell, 2022, 185: 1-14.
Scientia Agricultura Sinica
Pages 34-51
Cite this article:
LIU Z, ZHANG H, BAI B, et al. Current Status and Strategies for Utilization of Stripe Rust Resistance Genes in Wheat Breeding Program of China. Scientia Agricultura Sinica, 2024, 57(1): 34-51. https://doi.org/10.3864/j.issn.0578-1752.2024.01.004
Metrics & Citations  
Article History
Copyright
Return