PDF (801.7 KB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese

Rational Design and Innovative Application Strategy for the Insecticidal Protein Based on Bt Toxin

ChongXin XU1,2()JiaFeng JIN1,2XiaoMing SUN1Cheng SHEN1,3Xiao ZHANG1ChengYu CHEN1XianJin LIU1Yuan LIU1,2()
Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory of Food Quality and Safety-Laboratory for Food Quality and Safety State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu
College of Plant Protection, Nanjing Agricultural University, Nanjing 210023
Show Author Information

Abstract

Bt toxin is a macromolecular protein derived from Bacillus thuringiensis with special insecticidal function. Its preparation and transgenic crops have been widely used in pest control, and have produced huge economic and social ecological benefits. Exploiting and improving the application value of Bt toxin is a hot spot of continuous research. In particular, as the structure and function of Bt toxin and its mechanism of action appear clearer, it has created conditions for its functional modification and innovative application. As a result, the related research has flourished and achieved remarkable results. A large number of studies have shown that strategies such as site directed mutagenesis, domain replacement or fusion, and anti-idiotype antibody simulation are effective means to rationally design novel insecticidal proteins with higher activity, greater stability, wider insecticidal spectrum and higher non-target biosecurity. Those novel insecticidal proteins are different from parent Bt toxins, of which are mutants, structural heterozygotes and even functional effector antibodies. In addition, it is also an important approach to promote the application value of Bt toxin by use of innovative synergistic strategies such as catalytic toxin activation, driving toxin-targeted receptor binding, promoting toxin expression and the synergistic effect of combination or co-expression of homologous or heterologous insecticidal materials. This paper summarizes the structure and function of Bt toxin and its mechanism of action. It also reviews the research progress in rational design of novel insecticidal proteins such as mutants, structural heterozygotes and functional effector antibodies based on Bt toxin function modification, and innovative application strategies based on Bt toxin function enhancement. The future development trend and potential shortcut of rational design and innovative application strategy for insecticidal protein based on Bt toxin were discussed. Furthermore, the author’s team combined it with the latest achievements in targeting design and development of the insecticidal function effector antibodies simulating Bt toxin. This paper is expected to provide more comprehensive and valuable literature information and enlighten ideas for the related research based on Bt toxin.

References

[1]
WU J, WEI L, HE J, FU K, LI X, JIA L, WANG R, ZHANG W. Characterization of a novel Bacillus thuringiensis toxin active against Aedes aegypti larvae. Acta Tropica, 2021, 223: 106088.
[2]
ISAAA. Global status of commercialized biotech/GM crops in 2019: Biotech crops drive socio-economic development and sustainable environment in the new frontier. ISAAA Brief No. 55. ISAAA Ithaca (NY) (2020-11-30). https://www.isaaa.org/resources/publications/briefs/55/default.asp.
[3]
JURAT-FUENTES J L, HECKEL D G, FERRE J. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis. Annual Review of Entomology, 2021, 66: 121-140.
[4]
ENDO H, KOBAYASHI Y, HOSHINO Y, TANAKA S, KIKUTA S, TABUNOKI H, SATO R. Affinity maturation of Cry1Aa toxin to the Bombyx mori cadherin-like receptor by directed evolution based on phage display and biopanning selections of domain II loop 2 mutant toxins. MicrobiologyOpen, 2014, 3(4): 568-577.
[5]
LIU Y, ZHOU Z, WANG Z, ZHONG B, SHU C, ZHANG J. Replacement of loop2 and 3 of Cry1Ai in domain II affects specificity to the economically important insect Bombyx mori. Journal of Invertebrate Pathology, 2020, 169: 107296.
[6]
JIAO Y, YANG Y, MEISSLE M, PENG Y, LI Y. Comparison of susceptibility of Chilo suppressalis and Bombyx mori to five Bacillus thuringiensis proteins. Journal of Invertebrate Pathology, 2016, 136: 95-99.
[7]
SCHMIDT J E, BRAUN C U, WHITEHOUSE L P, HILBECK A. Effects of activated Bt transgene products (Cry1Ab, Cry3Bb) on immature stages of the ladybird Adalia bipunctata in laboratory ecotoxicity testing. Archives of Environmental Contamination and Toxicology, 2009, 56(2): 221-228.
[8]
GRIFFITTS J S, WHITACRE J L, STEVENS D E, AROIAN R V. Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme. Science, 2001, 293(5531): 860-864.
[9]
LUO H, XIONG J, ZHOU Q, XIA L, YU Z. The effects of Bacillus thuringiensis Cry6A on the survival, growth, reproduction, locomotion, and behavioral response of Caenorhabditis elegans. Applied Microbiology and Biotechnology, 2013, 97(23): 10135-10142.
[10]
LUCENA W A, PELEGRINI P B, MARTINS-DE-SA D, FONSECA F C, GOMES J E, MACEDO L L, SILVA M C, OLIVEIRA R S, GROSSI-DE-SA M F. Molecular approaches to improve the insecticidal activity of Bacillus thuringiensis Cry toxins. Toxins, 2014, 6(8): 2393-2423.
[11]
DEIST B R, RAUSCH M A, FERNANDEZ-LUNA M T, ADANG M J, BONNING B C. Bt toxin modification for enhanced efficacy. Toxins, 2014, 6(10): 3005-3027.
[12]
LIU Y L, WANG Q Y, WANG F X, DING X Z, XIA L Q. Residue 544 in domain III of the Bacillus thuringiensis Cry1Ac toxin is involved in protein structure stability. The Protein Journal, 2010, 29(6): 440-444.
[13]
CHEN D, MOAR W J, JERGA A, GOWDA A, MILLIGAN J S, BRETSYNDER E C, RYDEL T J, BAUM J A, SEMEAO A, FU X, GUZOV V, GABBERT K, HEAD G P, HAAS J A. Bacillus thuringiensis chimeric proteins Cry1A.2 and Cry1B.2 to control soybean lepidopteran pests: New domain combinations enhance insecticidal spectrum of activity and novel receptor contributions. PLoS ONE, 2021,16(6): e0249150.
[14]
XU C X, LIU Y, ZHANG X, LIU X J. Targeted innovative design of Bt Cry toxin insecticidal mimics. Chinese Journal of Biotechnology, 2023, 39(2): 446-458. (in Chinese)
[15]
WANG Y, WANG J, FU X, NAGEOTTE J R, SILVERMAN J, BRETSNYDER E C, CHEN D, RYDEL T J, BEAN G J, LI K S, et al. Bacillus thuringiensis Cry1Da_7 and Cry1B.868 protein interactions with novel receptors allow control of resistant fall armyworms, Spodoptera frugiperda (J. E. Smith). Applied and Environmental Microbiology, 2019, 85(16): e00579-19.
[16]
PENG D, XU X, YE W, YU Z, SUN M. Helicoverpa armigera cadherin fragment enhances Cry1Ac insecticidal activity by facilitating toxin-oligomer formation. Applied Microbiology and Biotechnology, 2010, 85(4): 1033-1040.
[17]
LU Q, ZHANG Y J, CAO G C, ZHANG L L, LIANG G M, LU Y H, WU K M, GAO X W, GUO Y Y. A fragment of cadherin-like protein enhances Bacillus thuringiensis Cry1B and Cry1C toxicity to Spodoptera exigua (Lepidoptera: Noctuidae). Journal of Integrative Agriculture, 2012, 11(4): 628-638.
[18]
GARCIA-GOMEZ B I, CANO S N, ZAGAL E E, DANTAN- GONZALEZ E, BRAVO A, SOBERONA M. Insect Hsp90 chaperone assists Bacillus thuringiensis Cry toxicity by enhancing protoxin binding to the receptor and by protecting protoxin from gut protease degradation. mBio, 2019, 10(6): e02775-19.
[19]
ELLEUCH J, JAOUA S, GINIBRE C, CHANDRE F, TOUNSI S, ZGHAL R Z. Toxin stability improvement and toxicity increase against dipteran and lepidopteran larvae of Bacillus thuringiensis crystal protein Cry2Aa. Pest Management Science, 2016, 72(12): 2240-2246.
[20]
AKHTAR M, MIZUTA K, SHIMOKAWA T, MAEDA M, TALUKDER M M R, IKENO S. Enhanced insecticidal activity of Bacillus thuringiensis using a late embryogenesis abundant peptide co-expression system. Journal of Microbiological Methods, 2021, 188: 106207.
[21]
PROMDONKOY B, PROMDONKOY P, PANYIM S. Co-expression of Bacillus thuringiensis Cry4Ba and Cyt2Aa2 in Escherichia coli revealed high synergism against Aedes aegypti and Culex quinquefasciatus larvae. FEMS Microbiology Letters, 2005, 252: 121-126.
[22]
HU S B, LIU P, DING X Z, YAN L, SUN Y J, ZHANG Y M, LI W P, XIA L Q. Efficient constitutive expression of chitinase in the mother cell of Bacillus thuringiensis and its potential to enhance the toxicity of Cry1Ac protoxin. Applied Microbiology and Biotechnology, 2009, 82(6): 1157-1167.
[23]
TABOSA P M S, FILHO L C P, FRANCA R X, ROCHA-BEZERRA L C B, VASCONCELOS I M, CARVALHO A F U. Trypsin inhibitor from Enterolobium contortisiliquum seeds impairs Aedes aegypti development and enhances the activity of Bacillus thuringiensis toxins. Pest Management Science, 2020, 76(11): 3693-3701.
[24]
BODDUPALLY D, TAMIRISA S, GUNDRA S R, VUDEM D R, KHAREEDU V R. Expression of hybrid fusion protein (Cry1Ac:: ASAL) in transgenic rice plants imparts resistance against multiple insect pests. Scientific Reports, 2018, 8: 8458.
[25]
JUNG M P, CHOI J Y, TAO X Y, JIN B R, JE Y H, PARK H H. Insecticidal activity of recombinant baculovirus expressing both spider toxin isolated from Araneus ventricosus and Bacillus thuringiensis crystal protein fused to a viral polyhedrin. Entomological Research, 2012, 42: 339-346.
[26]
ADALAT R, SALEEM F, CRICKMORE N, NAZ S, SHAKOORI A R. In vivo crystallization of three-domain Cry toxins. Toxins, 2017, 9(3): 80.
[27]
BRAVO A, GILL S S, SOBERON M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 2007, 49: 423-435.
[28]
TIGUE N J, JACOBY J, ELLAR D J. The alpha-helix 4 residue, Asn135, is involved in the oligomerization of Cry1Ac1 and Cry1Ab5 Bacillus thuringiensis toxins. Applied and Environmental Microbiology, 2001, 67(12): 5715-5720.
[29]
XU C, WANG B C, YU Z, SUN M. Structural insights into Bacillus thuringiensis Cry, Cyt and parasporin toxins. Toxins, 2014, 6(9): 2732-2770.
[30]
LIU L, LI Z, LUO X, ZHANG X, CHOU S H, WANG J, HE J. Which is stronger? A continuing battle between Cry toxins and insects. Frontiers in Microbiology, 2021, 12: 665101.
[31]
SANAHUJA G, BANAKAR R, TWYMAN R M, CAPELL T, CHRISTOU P. Bacillus thuringiensis: A century of research, development and commercial applications. Plant Biotechnology Journal, 2011, 9(3): 283-300.
[32]
LACOMEL C J, DUNSTONE M A, SPICER B A. Branching out the aerolysin, ETX/MTX-2 and toxin_10 family of pore forming proteins. Journal of Invertebrate Pathology, 2021, 186: 107570.
[33]
LIU Y, WANG Y, SHU C, LIN K, SONG F, BRAVO A, SOBERON M, ZHANG J. Cry64Ba and Cry64Ca, two ETX/MTX2-type Bacillus thuringiensis insecticidal proteins active against hemipteran pests. Applied and Environmental Microbiology, 2018, 84(3): e01996-17.
[34]
MENDOZA-ALMANZA G, ESPARZA-IBARRA E L, AYALA- LUJAN J L, MERCADO-REYES M, GODINA-GONZALEZ S, HERNANDEZ-BARRALES M, OLMOS-SOTO J. The cytocidal spectrum of Bacillus thuringiensis toxins: From insects to human cancer cells. Toxins, 2020, 12(5): 301.
[35]
SOBERON M, LOPEZ-DIAZ J A, BRAVO A. Cyt toxins produced by Bacillus thuringiensis: A protein fold conserved in several pathogenic microorganisms. Peptides, 2013, 41: 87-93.
[36]
LEUBER M, ORLIK F, SCHIFFLER B, SICKMANN A, BENZ R. Vegetative insecticidal protein (Vip1Ac) of Bacillus thuringiensis HD201: Evidence for oligomer and channel formation. Biochemistry, 2006, 45(1): 283-288.
[37]
GENG J, JIANG J, SHU C, WANG Z, SONG F, GENG L, DUAN J, ZHANG J. Bacillus thuringiensis Vip1 functions as a receptor of Vip2 toxin for binary insecticidal activity against Holotrichia parallela. Toxins, 2019, 11(8): 440.
[38]
CHAKRABARTY S, JIN M, WU C, CHAKRABORTY P, XIAO Y. Bacillus thuringiensis vegetative insecticidal protein family Vip3A and mode of action against pest lepidoptera. Pest Management Science, 2020, 76(5): 1612-1617.
[39]
GUPTA M, KUMAR H, KAUR S. Vegetative insecticidal protein (Vip): A potential contender from Bacillus thuringiensis for efficient management of various detrimental agricultural pests. Frontiers in Microbiology, 2021, 12: 659736.
[40]
YIN Y, FLASINSKI S, MOAR W, BOWEN D, CHAY C, MILLIGAN J, KOUADIO J L, PAN A, WERNER B, BUCKMAN K, ZHANG J, MUELLER G, PREFTAKES C, HIBBARD B E, PRICE P, ROBERTS J. A new Bacillus thuringiensis protein for Western corn rootworm control. PLoS ONE, 2020, 15(11): e0242791.
[41]
WANG L, DING M Y, WANG J, GAO J G, LIU R M, LI H T. Effects of site-directed mutagenesis of cysteine on the structure of sip proteins. Frontiers in Microbiology, 2022, 13: 805325.
[42]
DANDAPAT A, BHATTACHARYYA J, GAYEN S, CHAKRABORTY A, BANGA A, MUKHERJEE R, MANDAL C C, HOSSAIN M A, ROY S, BASU A, SEN S K. Variant cry1Ab entomocidal Bacillus thuringiensis toxin gene facilitates the recovery of an increased number of lepidopteran insect resistant independent rice transformants against yellow stem borer (Scirpophaga incertulus) inflicted damage. Journal of Plant Biochemistry and Biotechnology, 2014, 23(1): 81-92.
[43]
MANDAL C C, GAYEN S, BASU A, GHOSH K S, DASGUPTA S, MAITI M K, SEN S K. Prediction-based protein engineering of domain I of Cry2A entomocidal toxin of Bacillus thuringiensis for the enhancement of toxicity against lepidopteran insects. Protein Engineering, Design and Selection, 2007, 20: 599-606.
[44]
RAUSCH M A, CHOUGULE N P, DEIST B R, BONNING B C. Modification of Cry4Aa toward improved toxin processing in the gut of the pea aphid, Acyrthosiphon pisum. PLoS ONE, 2016, 11(5): e0155466.
[45]
WALTERS F S, STACY C M, LEE M K, PALEKAR N, CHEN J S. An engineered chymotrypsin/cathepsin G site in domain I renders Bacillus thuringiensis Cry3A active against Western corn rootworm larvae. Applied and Environmental Microbiology, 2008, 74(2): 367-374.
[46]
OLIVEIRA G R, SILVA M C, LUCENA W A, NAKASU E Y, FIRMINO A A, BENEVENTI M A, SOUZA D S L, GOMES J E, SOUZA J D, RIGDEN D J, RAMOS H B, SOCCOL C R, GROSSI-DE-SA M F. Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis). BMC Biotechnology, 2011, 11: 85.
[47]
XU L, PAN Z Z, ZHANG J, LIU B, ZHU Y J, CHEN Q X. Proteolytic activation of Bacillus thuringiensis Cry2Ab through a belt-and-braces approach. Journal of Agricultural and Food Chemistry, 2016, 64(38): 7195-7200.
[48]
GIRARD F, VACHON V, LEBEL G, PREFONTAINE G, SCHWARTZ J L, MASSON L, LAPRADE R. Chemical modification of Bacillus thuringiensis Cry1Aa toxin single-cysteine mutants reveals the importance of domain I structural elements in the mechanism of pore formation. Biochimica et Biophysica Acta, 2009, 1788: 575-580.
[49]
ABDULLAH M A, DEAN D. Enhancement of Cry19Aa mosquitocidal activity against Aedes aegypti by mutations in the putative loop regions of domain II. Applied and Environmental Microbiology, 2004, 70(6): 3769-3771.
[50]
RAJAMOHAN F, ALZATE O, COTRILL J, CURTISS A, DEAN D. Protein engineering of Bacillus thuringiensis delta-endotoxin: Mutations at domain II of CryIAb enhance receptor affinity and toxicity toward gypsy moth larvae. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(25): 14338-14343.
[51]
SHAO E, LIN L, CHEN C, CHEN H, ZHUANG H, WU S, SHA L, GUAN X, HUANG Z. Loop replacements with gut-binding peptides in Cry1Ab domain II enhanced toxicity against the brown planthopper, Nilaparvata lugens (Stal). Scientific Reports, 2016, 6: 20106.
[52]
ZHOU Z, LIU Y, LIANG G, HUANG Y, BRAVO A, SOBERON M, SONG F, ZHOU X, ZHANG J. Insecticidal specificity of Cry1Ah to Helicoverpa armigera is determined by binding of APN1 via domain II loops 2 and 3. Applied and Environmental Microbiology, 2017, 83(4): e02864-16.
[53]
LI S, WANG Z, ZHOU Y, LI C, WANG G, WANG H, ZHANG J, LIANG G, LANG Z. Expression of cry2Ah1 and two domain II mutants in transgenic tobacco confers high resistance to susceptible and Cry1Ac-resistant cotton bollworm. Scientific Reports, 2018, 8: 508.
[54]
DOMINGUEZ-FLORES T, ROMERO-BOSQUET M D, GANTIVA- DIAZ D M, LUQUE-NAVAS M J, BERRY C, OSUNA A, VILCHEZ S. Using phage display technology to obtain crybodies active against non-target insects. Scientific Reports, 2017, 7: 14922.
[55]
FUJII Y, TANAKA S, OTSUKI M, HOSHINO Y, ENDO H, SATO R. Affinity maturation of Cry1Aa toxin to the Bombyx mori cadherin-like receptor by directed evolution. Molecular Biotechnology, 2013, 54: 888-899.
[56]
GOMEZ I, OCELOTL J, SANCHEZ J, LIMA C, MARTINS E, ROSALES-JUAREZ A, AGUILAR-MEDEL S, ABAD A, DONG H, MONNERAT R, PENA G, ZHANG J, NELSON M, WU G, BRAVO A, SOBERON M. Enhancement of Bacillus thuringiensis Cry1Ab and Cry1Fa toxicity to Spodoptera frugiperda by domain III mutations indicates there are two limiting steps in toxicity as defined by receptor binding and protein stability. Applied and Environmental Microbiology, 2018, 84(20): e01393-18.
[57]
GOMEZ I, OCELOTL J, SANCHEZ J, AGUILAR-MEDEL S, PENA-CHORA G, LINA-GARCIA L, BRAVO A, SOBERON M. Bacillus thuringiensis Cry1Ab domain III beta-22 mutants with enhanced toxicity to Spodoptera frugiperda (J. E. Smith). Applied and Environmental Microbiology, 2020, 86: e01580.
[58]
XIANG W F, QIU X L, ZHI D X, MIN Z X, YUAN L, QUAN Y Z. N546 in β18-β19 loop is important for binding and toxicity of the Bacillus thuringiensis Cry1Ac toxin. Journal of Invertebrate Pathology, 2009, 101(2): 119-123.
[59]
LV Y, TANG Y, ZHANG Y, XIA L, WANG F, DING X, YI S, LI W, YIN J. The role of β20-β21 loop structure in insecticidal activity of Cry1Ac toxin from Bacillus thuringiensis. Current Microbiology, 2011, 62(2): 665-670.
[60]
PACHECO S, GOMEZ I, SANCHEZ J, GARCIA-GOMEZ B I, SOBERON M, BRAVO A. An intramolecular salt bridge in Bacillus thuringiensis Cry4Ba toxin is involved in the stability of helix α-3, which is needed for oligomerization and insecticidal activity. Applied and Environmental Microbiology, 2017, 83(20): e01515-17.
[61]
HOWLADER M T, KAGAWA Y, SAKAI H, HAYAKAWA T. Biological properties of loop-replaced mutants of Bacillus thuringiensis mosquitocidal Cry4Aa. Journal of Bioscience and Bioengineering, 2009, 108: 179-183.
[62]
PACHECO S, GOMZE I, ARENAS I, SAAB-RINCON G, RODRIGUEZ-ALMAZAN C, GILL S S, BRAVO A, SOBERON M. Domain II loop 3 of Bacillus thuringiensis Cry1Ab toxin is involved in a “ping pong” binding mechanism with Manduca sexta aminopeptidase-N and cadherin receptors. Journal of Biological Chemistry, 2009, 284(47): 32750-32757.
[63]
CANTON P E, REYES E Z, ESCUDERO I, BRAVO A, SOBERON M. Binding of Bacillus thuringiensis subsp. israelensis Cry4Ba to Cyt1Aa has an important role in synergism. Peptides, 2011, 32(3): 595-600.
[64]
TORRES-QUINTERO M C, GOMEZ I, PACHECO S, SANCHEZ J, FLORES H, OSUNA J, MENDOZA G, SOBERON M, BRAVO A. Engineering Bacillus thuringiensis Cyt1Aa toxin specificity from dipteran to lepidopteran toxicity. Scientific Reports, 2018, 8: 4989.
[65]
CHOUGULE N P, LI H, LIU S, LINZ L B, NARVA K E, MEADE T, BONNING B C. Retargeting of the Bacillus thuringiensis toxin Cyt2Aa against hemipteran insect pests. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21): 8465-8470.
[66]
BANYULS N, QUAN Y, GONZALEZ-MARTINEZ R M, HERNANDEZ-MARTINEZ P, FERRE J. Effect of substitutions of key residues on the stability and the insecticidal activity of Vip3Af from Bacillus thuringiensis. Journal of Invertebrate Pathology, 2021, 186: 107439.
[67]
BANYULS N, HERNANDEZ-RODRIGUEZ C S, RIE J, FERRE J. Critical amino acids for the insecticidal activity of Vip3Af from Bacillus thuringiensis: Inference on structural aspects. Scientific Reports, 2018, 8: 7539.
[68]
YANG X, WANG Z, GENG L, CHI B, LIU R, LI H, GAO J, ZHANG J. Vip3Aa domain IV and V mutants confer higher insecticidal activity against Spodoptera frugiperda and Helicoverpa armigera. Pest Management Science, 2022, 78(6): 2324-2331.
[69]
CHI B, LUO G, ZHANG J, SHA J, LIU R, LI H, GAO J. Effect of C-terminus site-directed mutations on the toxicity and sensitivity of Bacillus thuringiensis Vip3Aa11 protein against three lepidopteran pests. Biocontrol Science and Technology, 2017, 27: 1363-1372.
[70]
SOONSANGA S, RUNGROD A, AUDTHO M, PROMDONKOY B. Tyrosine-776 of Vip3Aa64 from Bacillus thuringiensis is important for retained larvicidal activity during high-temperature storage. Current Microbiology, 2019, 76: 15-21.
[71]
WANG J, DING M Y, WANG J, LIU R M, LI H T, GAO J G. In silico structure-based investigation of key residues of insecticidal activity of Sip1Aa protein. Frontiers in Microbiology, 2020, 11: 984.
[72]
SHAN S, ZHANG Y, DING X, HU S, SUN Y, YU Z, LIU S, ZHU Z, XIA L. A Cry1Ac toxin variant generated by directed evolution has enhanced toxicity against Lepidopteran insects. Current Microbiology, 2011, 62(2): 358-365.
[73]
HERRERO S, GONZALEZ-CABRERA J, FERRE J, BAKKER P, MAAGD R. Mutations in the Bacillus thuringiensis Cry1Ca toxin demonstrate the role of domains II and III in specificity towards Spodoptera exigua larvae. The Biochemical Journal, 2004, 384(3): 507-513.
[74]
GUO Y, WANG Y, O’DONOGHUE A J, JIANG Z, CARBALLAR- LEJARAZU R, LIANG G, HU X, WANG R, XU L, GUAN X, ZHANG F, WU S. Engineering of multiple trypsin/chymotrypsin sites in Cry3A to enhance its activity against Monochamus alternatus Hope larvae. Pest Management Science, 2020, 76(9): 3117-3126.
[75]
WU S J, KOLLER C N, MILLER D L, BAUER L S, DEAN D H. Enhanced toxicity of Bacillus thuringiensis Cry3A δ-endotoxin in coleopterans by mutagenesis in a receptor binding loop. FEBS Letters, 2000, 473(2): 227-232.
[76]
SHU C, LIU R, WANG R, ZHANG J, FENG S, HUANG D, SONG F. Improving toxicity of Bacillus thuringiensis strain contains the cry8Ca gene specific to Anomala corpulenta larvae. Current Microbiology, 2007, 55(6): 492-496.
[77]
JIN L, ZHAO X D, LIAO J A, FU L J, LIN Y. Cry41-related mutants against Myzus persicae based on its interaction with cathepsin B. ACS Agricultural Science & Technology, 2023, 3: 350-358.
[78]
GOWDA A, RYDEL T J, WOLLACOTT A M, BROWN R S, AKBAR W, CLARK T L, FLASINSKI S, NAGEOTTE J R, READ A C, SHI X, WERNER B J, PLEAU M J, BAUM J A. A transgenic approach for controlling Lygus in cotton. Nature Communications, 2016, 7: 12213.
[79]
JIANG K, CHEN Z, SHI Y, ZANG Y, SHANG C, HUANG X, ZANG J, BAI Z, JIAO X, CAI J, GAO X. A strategy to enhance the insecticidal potency of Vip3Aa by introducing additional cleavage sites to increase its proteolytic activation efficiency. Engineering Microbiology, 2023, 3(4): 100083.
[80]
SHAH J V, YADAV R, INGLE S S. Engineered Cry1Ac-Cry9Aa hybrid Bacillus thuringiensis delta-endotoxin with improved insecticidal activity against Helicoverpa armigera. Archives of Microbiology, 2017, 199(7): 1069-1075.
[81]
HU X, LIU Z, LI Y, DING X, XIA L, HU S. PirB-Cry2Aa hybrid protein exhibits enhanced insecticidal activity against Spodoptera exigua larvae. Journal of Invertebrate Pathology, 2014, 120: 40-42.
[82]
LIU Y, HAN S, YANG S, CHEN Z, YIN Y, XI J, LIU Q, YAN W, SONG X, ZHAO F, GUO J, LIU X, HAO D. Engineered chimeric insecticidal crystalline protein improves resistance to lepidopteran insects in rice (Oryza sativa L.) and maize (Zea mays L.). Scientific Reports, 2022, 12: 12529.
[83]
AYRA-PARDO C, RODRIGUEZ-CABRERA L, FERNANDEZ- PARLA Y, TELLEZ-RODRIGUEZ P. Increased activity of a hybrid Bt toxin against Spodoptera frugiperda larvae from a maize field in Cuba. Biotecnología Aplicada, 2006, 23: 236-239.
[84]
DE MAAGD R A, WEEMEN-HENDRIKS M, STIEKEMA W, BOSCH D. Bacillus thuringiensis delta-endotoxin Cry1C domain III can function as a specificity determinant for Spodoptera exigua in different, but not all, Cry1-Cry1C hybrids. Applied and Environmental Microbiology, 2000, 66(4): 1559-1563.
[85]
KARLOVA R, WEEMEN-HENDRIKS M, NAIMOV S, CERON J, DUKIANDJIEV S, DE MAAGD R A. Bacillus thuringiensis delta-endotoxin Cry1Ac domain III enhances activity against Heliothis virescens in some, but not all Cry1-Cry1Ac hybrids. Journal of Invertebrate Pathology, 2005, 88(2): 169-172.
[86]
TAJNE S, BODDUPALLY D, SADUMPATI V, VUDEM D R, KHAREEDU V R. Synthetic fusion-protein containing domains of Bt Cry1Ac and Allium sativum lectin (ASAL) conferred enhanced insecticidal activity against major lepidopteran pests. Journal of Biotechnology, 2014, 171: 71-75.
[87]
HERNANDEZ-RODRIGUEZ C S, HERNANDEZ-MARTINEZ P, RIE J, ESCRICHE B, FERRE J. Shared midgut binding sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda. PLoS ONE, 2013, 8(7): e68164.
[88]
WANG C, LI W, KESSENICH C R, PETRICK J S, RYDEL T J, STURMAN E J, LEE T C, GLENN K C, EDRINGTON T C. Safety of the Bacillus thuringiensis-derived Cry1A.105 protein: Evidence that domain exchange preserves mode of action and safety. Regulatory Toxicology and Pharmacology, 2018, 99: 50-60.
[89]
ZGHAL R Z, ELLEUCH J, ALI M, DARRIET F, REBAI A, CHANDRE F, JAOUA S, TOUNSI S. Towards novel Cry toxins with enhanced toxicity/broader: A new chimeric Cry4Ba/Cry1Ac toxin. Applied Microbiology and Biotechnology, 2017, 101(1): 113-122.
[90]
MEHLO L, GAHAKWA D, NGHIA P T, LOC N T, CAPELL T, GATEHOUSE J A, GATEHOUSE A M, CHRISTOU P. An alternative strategy for sustainable pest resistance in genetically enhanced crops. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(22): 7812-7816.
[91]
SELLAMI S, JEMLI S, ABDELMALEK N, CHERIF M, ABDELKEFI-MESRATI L, TOUNSI S, JAMOUSSI K. A novel Vip3Aa16-Cry1Ac chimera toxin: Enhancement of toxicity against Ephestia kuehniella, structural study and molecular docking. International Journal of Biological Macromolecules, 2018, 117: 752-761.
[92]
GUO C H, ZHAO S T, MA Y, HU J J, HAN X J, CHEN J, LU M Z. Bacillus thuringiensis Cry3Aa fused to a cellulase-binding peptide shows increased toxicity against the longhorned beetle. Applied Microbiology and Biotechnology, 2012, 93(3): 1249-1256.
[93]
QUILIS J, LOPEZ-GARCIA B, MEYNARD D, GUIDERDONI E, SEGUNDO B. Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice. Plant Biotechnology Journal, 2014, 12(3): 367-377.
[94]
BALLESTER V, GRANERO F, DE MAAGD R A, BOSCH D, MENSUA J L, FERRE J. Role of Bacillus thuringiensis toxin domains in toxicity and receptor binding in the diamondback moth. Applied and Environmental Microbiology, 1999, 65(5): 1900-1903.
[95]
RATHINAM M, KESIRAJU K, SINGH S, THIMMEGOWDA V, RAI V, PATTANAYAK D, SREEVATHSA R. Molecular interaction-based exploration of the broad spectrum efficacy of a Bacillus thuringiensis insecticidal chimeric protein, Cry1AcF. Toxins, 2019, 11(3): 143.
[96]
WALTERS F S, DE FONTES C M, HART H, WARREN G W, CHEN J S. Lepidopteran-active variable-region sequence imparts coleopteran activity in eCry3.1Ab, an engineered Bacillus thuringiensis hybrid insecticidal protein. Applied and Environmental Microbiology, 2010, 76(10): 3082-3088.
[97]
CHELLIAH A, GUPTA G P, KARUPPIAH S, KUMAR P A. Chimeric δ-endotoxins of Bacillus thuringiensis with increased activity against Helicoverpa armigera. International Journal of Tropical Insect Science, 2011, 31: 59-68.
[98]
MUSHTAQ R, SHAKOORI A R, JURAT-FUENTES J L. Domain III of Cry1Ac is critical to binding and toxicity against soybean looper (Chrysodeixis includens) but not to velvetbean caterpillar (Anticarsia gemmatalis). Toxins, 2018, 10(3): 95.
[99]
SINGH P, KUMAR M, CHATURVEDI C, YADAV D, TULI R. Development of a hybrid delta-endotoxin and its expression in tobacco and cotton for control of a polyphagous pest Spodoptera litura. Transgenic Research, 2004, 13(5): 397-410.
[100]
CHAE H, WEN Z, HOOTMAN T, HIMES J, DUAN Q, MCMATH J, DITILLO J, SESSLER R, CONVILLE J, NIU Y, MATTHEWS P, FRANCISCHINI F, HUANG F, BRAMLETT M. eCry1Gb.1Ig, a novel chimeric Cry protein with high efficacy against multiple fall armyworm (Spodoptera frugiperda) strains resistant to different GM traits. Toxins, 2022, 14(12): 852.
[101]
NAIMOV S, WEEMEN-HENDRIKS M, DUKIANDJIEV S, DE MAAGD R A. Bacillus thuringiensis delta-endotoxin Cry1 hybrid proteins with increased activity against the Colorado potato beetle. Applied and Environmental Microbiology, 2001, 67(11): 5328-5330.
[102]
DAS A, DATTA S, THAKUR S, SHUKLA A, ANSARI J, SUJAYANAND G K, CHATURVEDI S K, KUMAR P A, SINGH N P. Expression of a chimeric gene encoding insecticidal crystal protein Cry1Aabc of Bacillus thuringiensis in chickpea (Cicer arietinum L.) confers resistance to gram pod borer (Helicoverpa armigera Hubner.). Frontiers in Plant Science, 2017, 8: 1423.
[103]
XU C, CHENG J, LIN H, LIN C, GAO J, SHEN Z. Characterization of transgenic rice expressing fusion protein Cry1Ab/Vip3A for insect resistance. Scientific Reports, 2018, 8: 15788.
[104]
GOMIS-CEBOLLA J, SANTOS R, WANG Y, CABALLERO J, CABALLERO P, HE K, JURAT-FUENTES J L, FERRE J. Domain shuffling between Vip3Aa and Vip3Ca: Chimera stability and insecticidal activity against European, American, African, and Asian pests. Toxins, 2020, 12(2): 99.
[105]
SHU C, ZHOU J, CRICKMORE N, LI X, SONG F, LIANG G, HE K, HUANG D, ZHANG J. In vitro template-change PCR to create single crossover libraries: A case study with B. thuringiensis Cry2A toxins. Scientific Reports, 2016, 6: 23536.
[106]
LAN H, HONG P, LI R, SUO L, SHAN A, LI S, ZHENG X. Internal image anti-idiotypic antibody: A new strategy for the development a new category of prolactin receptor (PRLR) antagonist. Molecular Immunology, 2017, 87: 86-93.
[107]
XU C X, YU M Z, XIE Y J, ZHONG J F, CHEN W, LIN M M, HU X D, SHEN Y. Screening and identification of vancomycin anti-idiotypic antibodies for against Staphylococcus aureus from a human phage display domain antibody library. Immunology Letters, 2022, 246: 1-9.
[108]
SHI L, YU T, LUO M, WANG H. Preparation monoclonal beta-type anti-idiotype antibody of zearalenone and development of green ELISA quantitative detecting technique. Preparative Biochemistry & Biotechnology, 2020, 50(4): 419-424.
[109]
WANG Y, LI P, ZHANG Q, HU X, ZHANG W. A toxin-free enzyme-linked immunosorbent assay for the analysis of aflatoxins based on a VHH surrogate standard. Analytical and Bioanalytical Chemistry, 2016, 408(22): 6019-6026.
[110]
XU C X, ZHANG X, LIU Y, ZHONG J F, XIE Y J, LU L N, GAO M J, LIU X J. Screening and identification of humanized genetically engineered antibody targeting to simulate the anti-insect function of Bt Cry1C protein. Biotechnology Bulletin, 2022, 38(5): 191-200. (in Chinese)
[111]
PACHECO S, GOMEZ I, GILL S S, BRAVO A, SOBERON M. Enhancement of insecticidal activity of Bacillus thuringiensis Cry1A toxins by fragments of a toxin-binding cadherin correlates with oligomer formation. Peptides, 2009, 30(3): 583-588.
[112]
REN X L, CHEN R R, ZHANG Y, MA Y, CUI J J, HAN Z J, MU L L, LI G Q. A Spodoptera exigua cadherin serves as a putative receptor for Bacillus thuringiensis Cry1Ca toxin and shows differential enhancement of Cry1Ca and Cry1Ac toxicity. Applied and Environmental Microbiology, 2013, 79(18): 5576-5583.
[113]
HOU J, CONG R, IZUMI-WILLCOXON M, ALI H, ZHENG Y, BERMUDEZ E, MCDONALD M, NELSON M, YAMAMOTO T. Engineering of Bacillus thuringiensis Cry proteins to enhance the activity against western corn rootworm. Toxins, 2019, 11(3): 162.
[114]
FANG S, WANG L, GUO W, ZHANG X, PENG D, LUO C, YU Z, SUN M. Bacillus thuringiensis bel protein enhances the toxicity of Cry1Ac protein to Helicoverpa armigera larvae by degrading insect intestinal mucin. Applied and Environmental Microbiology, 2009, 75(16): 5237-5243.
[115]
NAIR K, AL-THANI R, JAOUA S. Bacillus thuringiensis strain QBT220 pBtoxis plasmid structural instability enhances delta- endotoxins synthesis and bioinsecticidal activity. Ecotoxicology and Environmental Safety, 2021, 228: 112975.
[116]
LI X, ZHANG Y, ZHAN Y, TIAN H, YAN B, CAI J. Utilization of a strong promoter combined with the knockout of protease genes to improve the yield of Vip3Aa in Bacillus thuringiensis BMB171. Pest Management Science, 2023, 79(5): 1713-1720.
[117]
ASHRAF M A, SHAHID A A, RAO A Q, BROWN J K, HUSNAIN T. Development and evaluation of the cotton leaf curl kokhran virus-burewala bidirectional promoter for enhanced Cry1Ac endotoxin expression in Bt transgenic cotton. Applied Sciences, 2022, 12(21): 11275.
[118]
WANG Y, LANG Z, ZHANG J, HE K, SONG F, HUANG D. Ubi1 intron-mediated enhancement of the expression of Bt cry1Ah gene in transgenic maize (Zea mays L.). Chinese Science Bulletin, 2008, 53: 3185-3190.
[119]
LI Z, ZHAO M, LI L, YUAN Y Y, CHEN F J, PARAJULEE M N, GE F. Azotobacter inoculation can enhance the resistance of Bt cotton to cotton bollworm, Helicoverpa armigera. Insect Science, 2023, doi: .
[120]
TAMBEL L I M, ZHOU M, CHEN Y, ZHANG X, CHEN Y, CHEN D. Amino acids application enhances flowers insecticidal protein content in Bt cotton. Journal of Cotton Research, 2019, 2: 7.
[121]
PACHECO S, CANTON E, ZUNIGA-NAVARRETE F, PECORARI F, BRAVO A, SOBERON M. Improvement and efficient display of Bacillus thuringiensis toxins on M13 phages and ribosomes. AMB Express, 2015, 5: 73.
[122]
BIDESHI D, WALDROP G, FERNANDEZ-LUNA M, DIAZ- MENDOZA M, WIRTH M, JOHNSON J, PARK H W, FEDERICI B. Intermolecular interaction between Cry2Aa and Cyt1Aa and its effect on larvicidal activity against Culex quinquefasciatus. Journal of Microbiology and Biotechnology, 2013, 23(8): 1107-1115.
[123]
LI X, MIYAMOTO K, TAKASU Y, WADA S, IIZUKA T, ADEGGAWA S, SATO R, WATANABE K. ATP-binding cassette subfamily a member 2 is a functional receptor for Bacillus thuringiensis Cry2A toxins in Bombyx mori, but not for Cry1A, Cry1C, Cry1D, Cry1F, or Cry9A toxins. Toxins, 2020, 12(2): 104.
[124]
SATO R, ADEGAWA S, LI X, TANAKA S, ENDO H. Function and role of ATP-binding cassette transporters as receptors for 3D-Cry toxins. Toxins, 2019, 11(2): 124.
[125]
CHEN J, AIMANOVA K, GILL S S. Functional characterization of Aedes aegypti alkaline phosphatase ALP1 involved in the toxicity of Cry toxins from Bacillus thuringiensis subsp. israelensis and jegathesan. Peptides, 2017, 98: 78-85.
[126]
DOMINGUEZ-ARRIZABALAGA M, VILLANUEVA M, ESCRICHE B, ANCIN-AZPILICUETA C, CABALLERO P. Insecticidal activity of Bacillus thuringiensis proteins against coleopteran pests. Toxins, 2020, 12(7): 430.
[127]
GONZALEZ-VILLARREAL S E, GARCIA-MONTELONGO M, IBARRA J E. Insecticidal activity of a Cry1Ca toxin of Bacillus thuringiensis Berliner (Firmicutes: Bacillaceae) and its synergism with the Cyt1Aa toxin against Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 2020, 57(6): 1852-1856.
[128]
VALTIERRA-DE-LUIS D, VILLANUEVA M, LAI L, WILLIAMS T, CABALLERO P. Potential of Cry10Aa and Cyt2Ba, two minority delta-endotoxins produced by Bacillus thuringiensis ser. israelensis, for the control of Aedes aegypti larvae. Toxins, 2020, 12(6): 355.
[129]
LAI L, VILLANUEVA M, MURUZABAL-GALARZA A, FERNANDEZ A B, UNZUE A, TOLEDO-ARANA A, CABALLERO P, CABALLERO C J. Bacillus thuringiensis Cyt proteins as enablers of activity of Cry and Tpp toxins against Aedes albopictus. Toxins, 2023, 15(3): 211.
[130]
HAYAKAWA T, YONEDA N, OKADA K, HIGAKI A, HOWLADER M T H, IDE T. Bacillus thuringiensis Cry11Ba works synergistically with Cry4Aa but not with Cry11Aa for toxicity against mosquito Culex pipiens (Diptera: Culicidae) larvae. Applied Entomology and Zoology, 2017, 52: 61-68.
[131]
WANG Z, FANG L, ZHOU Z, PACHECO S, GOMEZ I, SONG F, SOBERON M, ZHANG J, BRAVO A. Specific binding between Bacillus thuringiensis Cry9Aa and Vip3Aa toxins synergizes their toxicity against asiatic rice borer (Chilo suppressalis). Journal of Biological Chemistry, 2018, 293(29): 11447-11458.
[132]
WANG Z, WANG K, BRAVO A, SOBERON M, CAI J, SHU C, ZHANG J. Coexistence of cry9 with the vip3A gene in an identical plasmid of Bacillus thuringiensis indicates their synergistic insecticidal toxicity. Journal of Agricultural and Food Chemistry, 2020, 68(47): 14081-14090.
[133]
YANG J, QUAN Y, SIVAPRASATH P, SHABBIR M Z, WANG Z, FERRE J, HE K. Insecticidal activity and synergistic combinations of ten different Bt toxins against Mythimna separata (Walker). Toxins, 2018, 10(11): 454.
[134]
NASCIMENTO N A, TORRES-QUINTERO M C, MOLINA S L, PACHECO S, ROMAO T P, PEREIRA-NEVES A, SOBERON M, BRAVO A, SILVA-FILHA M H N L. Functional Bacillus thuringiensis Cyt1Aa is necessary to synergize Lysinibacillus sphaericus binary toxin (Bin) against Bin-resistant and -refractory mosquito species. Applied and Environmental Microbiology, 2020, 86(7): e02770-19.
[135]
XU C X, JIN J F, SHEN C, ZHU Q, ZHANG X, LIU Y, LIU X J. Research progress of protein-type biological materials with insecticidal function. Chinese Journal of Pesticide Science, 2023, 25(5): 990-1003. (in Chinese)
[136]
YE D X, ZHOU Y L, ZHANG Y M, IQBAL C, YANG X L. Research progress of insecticidal peptides: A review. Chinese Journal of Pesticide Science, 2022, 24(5): 962-981. (in Chinese)
[137]
PAN Z Z, XU L, ZHENG Y S, NIU L Y, LIU B, FU N Y, SHI Y, CHEN Q X, ZHU Y J, GUAN X. Synthesis and characterization of Cry2Ab-AVM bioconjugate: Enhanced affinity to binding proteins and insecticidal activity. Toxins, 2019, 11(9): 497.
[138]
KONECKA E, KAZNOWSKI A, TOMKOWIAK D. Insecticidal activity of mixtures of Bacillus thuringiensis crystals with plant oils of Sinapis alba and Azadirachta indica. Annals of Applied Biology, 2019, 174(3): 364-371.
[139]
WANG S, ZHANG M, HUANG J, LI L, HUANG K, ZHANG Y, LI Y, DENG Z, NI X, LI X. Inductive and synergistic interactions between plant allelochemical flavone and Bt toxin Cry1Ac in Helicoverpa armigera. Insect Science, 2021, 28(6): 1756-1765.
[140]
DENG S Q, ZOU W H, LI D L, CHEN J T, HUANG Q, ZHOU L J, TIAN X X, CHEN Y J, PENG H J. Expression of Bacillus thuringiensis toxin Cyt2Ba in the entomopathogenic fungus Beauveria bassiana increases its virulence towards Aedes mosquitoes. PLoS Neglected Tropical Diseases, 2019, 13(7): e0007590.
[141]
PARK Y. Entomopathogenic bacterium, Xenorhabdus nematophila and Photorhabdus luminescens, enhances Bacillus thuringiensis Cry4Ba toxicity against yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). Journal of Asia-Pacific Entomology, 2015, 18: 459-463.
[142]
EL-MENOFY W, OSMAN G, ASSAEEDI A, SALAMA M. A novel recombinant baculovirus overexpressing a Bacillus thuringiensis Cry1Ab toxin enhances insecticidal activity. Biological Procedures Online, 2014, 16: 7.
[143]
SHIM H J, CHOI J Y, WANG Y, TAO X Y, LIU Q, ROH J Y, KIM J S, KIM W J, WOO S D, JIN B R, JE Y H. NeuroBactrus, a novel, highly effective, and environmentally friendly recombinant baculovirus insecticide. Applied and Environmental Microbiology, 2013, 79(1): 141-149.
[144]
GUAN R, LI H, MIAO X. RNAi pest control and enhanced Bt insecticidal efficiency achieved by dsRNA of chymotrypsin-like genes in Ostrinia furnacalis. Journal of Pest Science, 2017, 90: 745-757.
[145]
KINKAR O U, PRASHAR A, KUMAR A, HADAPAD A B, HIRE R S, MAKDE R D. Txp40, an insecticidal toxin protein from Xenorhabdus nematophila: Purification, toxicity assessment and biophysical characterization. Toxicon, 2022, 218: 40-46.
[146]
MARINI G, POLAND B, LEININGER C, LUKOYANOVA N, SPIELBAUER D, BARRY J K, ALTIER D, LUM A, SCOLARO E, ORTEGA C P, et al. Structural journey of an insecticidal protein against western corn rootworm. Nature Communications, 2023, 14: 4171.
[147]
MATHUR C, PHANI V, KUSHWAH J, SOMVANSHI V S, DUTTA T K. TcaB, an insecticidal protein from Photorhabdus akhurstii causes cytotoxicity in the greater wax moth, Galleria mellonella. Pesticide Biochemistry and Physiology, 2019, 157: 219-229.
[148]
RAHMAN K, ABDULLAH M A, AMBATI S, TAYLOR M D, ADANG M J. Differential protection of Cry1Fa toxin against Spodoptera frugiperda larval gut proteases by cadherin orthologs correlates with increased synergism. Applied and Environmental Microbiology, 2012, 78(2): 354-362.
[149]
PARK Y, ABDULLAH M A, TAYLOR M D, RAHMAN K, ADANG M J. Enhancement of Bacillus thuringiensis Cry3Aa and Cry3Bb toxicities to coleopteran larvae by a toxin-binding fragment of an insect cadherin. Applied and Environmental Microbiology, 2009, 75(10): 3086-3092.
[150]
SANGADALA S, WALTERS F S, ENGLISH L H, ADANG M J. A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and 86Rb+-K+ efflux in vitro. Journal of Biological Chemistry, 1994, 269(13): 10088-10092.
[151]
XUE J L, CAI Q X, ZHENG D S, YUAN Z M. The synergistic activity between Cry1Aa and Cry1c from Bacillus thuringiensis against Spodoptera exigua and Helicoverpa armigera. Letters in Applied Microbiology, 2005, 40(6): 460-465.
[152]
DUBOVSKIY I M, GRIZANOVA E V, TERESHCHENKO D, KRYTSYNA T I, ALIKINA T, KALMYKOVA G, KABILOV M, COATES C J. Bacillus thuringiensis spores and Cry3A toxins act synergistically to expedite Colorado potato beetle mortality. Toxins, 2021, 13(11): 746.
[153]
IATSENKO I, BOICHENKO I, SOMMER R J. Bacillus thuringiensis DB27 produces two novel protoxins, Cry21Fa1 and Cry21Ha1, which act synergistically against nematodes. Applied and Environmental Microbiology, 2014, 80(10): 3266-3275.
[154]
WIRTH M C, YANG Y, WALTON W E, FEDERICI B A, BERRY C. Mtx toxins synergize Bacillus sphaericus and Cry11Aa against susceptible and insecticide-resistant Culex quinquefasciatus larvae. Applied and Environmental Microbiology, 2007, 73(19): 6066-6071.
[155]
LUO X, CHEN L, HUANG Q, ZHENG J, ZHOU W, PENG D, RUAN L, SUN M. Bacillus thuringiensis metalloproteinase Bmp1 functions as a nematicidal virulence factor. Applied and Environmental Microbiology, 2013, 79(2): 460-468.
[156]
DING X, LUO Z, XIA L, GAO B, SUN Y, ZHANG Y. Improving the insecticidal activity by expression of a recombinant cry1Ac gene with chitinase-encoding gene in acrystalliferous Bacillus thuringiensis. Current Microbiology, 2008, 56(5): 442-446.
[157]
CHEN L, JIANG H, CHENG Q, CHEN J, WU G, KUMAR A, SUN M, LIU Z. Enhanced nematicidal potential of the chitinase pachi from Pseudomonas aeruginosa in association with Cry21Aa. Scientific Reports, 2015, 5: 14395.
[158]
LIU X D, ZHAI B P, ZHANG X X, ZONG J M. Impact of transgenic cotton plants on a non-target pest, Aphis gossypii Glover. Ecological Entomology, 2005, 30(3): 307-315.
[159]
SALIM M, BAKHSH A, GOKCE A. Stacked insecticidal genes in potatoes exhibit enhanced toxicity against colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Plant Biotechnology Reports, 2021, 15: 197-215.
[160]
DIN S U, AZAM S, RAO A Q, SHAD M, AHMED M, GUL A, LATIF A, ALI M A, HUSNAIN T, SHAHID A A. Development of broad-spectrum and sustainable resistance in cotton against major insects through the combination of Bt and plant lectin genes. Plant Cell Reports, 2021, 40(4): 707-721.
[161]
KHABBAZI S D, KHABBAZI A D, ÖZCAN S F, BAKHSH A, BASALMA D, ÖZCAN S. Expression of GNA and biting site-restricted cry1Ac in cotton; an efficient attribution to insect pest management strategies. Plant Biotechnology Reports, 2018, 12: 273-282.
[162]
KIANI S, MOHAMED B B, SHEHZAD K, JAMAL A, SHAHID M N, SHAHID A A, HUSNAIN T. Chloroplast-targeted expression of recombinant crystal-protein gene in cotton: An unconventional combat with resistant pests. Journal of Biotechnology, 2013, 166(3): 88-96.
[163]
XIA L, LONG X, DING X, ZHANG Y. Increase in insecticidal toxicity by fusion of the cry1Ac gene from Bacillus thuringiensis with the neurotoxin gene hwtx-I. Current Microbiology, 2009, 58(1): 52-57.
[164]
LI W P, XIA L Q, DING X Z, LV Y, LUO Y S, HU S B, YIN J, YAN F. Expression and characterization of a recombinant Cry1Ac crystal protein fused with an insect-specific neurotoxin ω-ACTX-Hv1a in Bacillus thuringiensis. Gene, 2012, 498(2): 323-327.
[165]
CHEN J J, LIU F, LIAO X Q, ZHANG Z G, MIN Y, RAO B, YANG Z W, ZHOU R H, LIU X Y. Fusion expression and insecticidal activity of two spider toxin peptides with Cry1Ac protein from Bacillus thuringiensis. Chinese Journal of Biological Control, 2018, 34(6): 838-847. (in Chinese)
[166]
YAN F, CHENG X, DING X, YAO T, CHEN H, LI W, HU S, YU Z, SUN Y, ZHANG Y, XIA L. Improved insecticidal toxicity by fusing Cry1Ac of Bacillus thuringiensis with Av3 of Anemonia viridis. Current Microbiology, 2014, 68(5): 604-609.
[167]
LEETACHEWA S, KHOMKHUM N, SAKDEE S, WANG P, MOONSOM S. Enhancement of insect susceptibility and larvicidal efficacy of Cry4Ba toxin by calcofluor. Parasites and Vectors, 2018, 11(1): 515.
[168]
DENG S Q, DENG M Z, CHEN J T, ZHENG L L, PENG H J. Larvicidal activity of recombinant Escherichia coli expressing scorpion neurotoxin AaIT or B.t.i toxin Cyt2Ba against mosquito larvae and formulations for enhancing the effects. Journal of Southern Medical University, 2017, 37(6): 750-754. (in Chinese)
[169]
KONECKA E, KAZNOWSKI A, GRZESIEK W, NOWICKI P, CZARNIEWSKA E, BARANEK J. Synergistic interaction between carvacrol and Bacillus thuringiensis crystalline proteins against Cydia pomonella and Spodoptera exigua. BioControl, 2020, 65: 447-460.
[170]
QIN Y, YING S H, CHEN Y, SHEN Z C, FENG M G. Integration of insecticidal protein Vip3Aa1 into Beauveria bassiana enhances fungal virulence to Spodoptera litura larvae by cuticle and per os infection. Applied and Environmental Microbiology, 2010, 76(14): 4611-4618.
[171]
LEI X Y, ZHANG F J, ZHANG J. Gut microbiota accelerate the insecticidal activity of plastid-expressed Bacillus thuringiensis Cry3Bb to a leaf beetle, Plagiodera versicolora. Microbiology Spectrum, 2023, 11(2): e05049-22.
[172]
IBUKI T, IWASAWA S, LIAN A A, LYE P Y, MARUTA R, ASANO S I, KOTANI E, MORI H. Development of a cypovirus protein microcrystal-encapsulated Bacillus thuringiensis UV-tolerant and mosquitocidal delta-endotoxin. Biology Open, 2022, 11(9): bio059363.
[173]
CHOI J Y, JUNG M P, PARK H H, TAO X Y, JIN B R, JE Y H. Insecticidal activity of recombinant baculovirus co-expressing Bacillus thuringiensis crystal protein and kunitz-type toxin isolated from the venom of bumblebee Bombus ignitus. Journal of Asia-Pacific Entomology, 2013, 16: 75-80.
[174]
KIM E, PARK Y, KIM Y. A transformed bacterium expressing double-stranded RNA specific to integrin beta1 enhances Bt toxin efficacy against a polyphagous insect pest, Spodoptera exigua. PLoS ONE, 2015, 10(7): e0132631.
[175]
XIE Y J, XU C X, GAO M J, ZHANG X, LU L N, HU X D, CHEN W, JURAT-FUENTES J L, ZHU Q, LIU Y, LIN M, ZHONG J F, LIU X J. Docking-based generation of antibodies mimicking Cry1A/1B protein binding sites as potential insecticidal agents against diamondback moth (Plutella xylostella). Pest Management Science, 2021, 77(10): 4593-4606.
[176]
VINEELA V, NATARAJ T, REDDY G, DEVI P S. Enhanced bioefficacy of Bacillus thuringiensis var. kurstaki against Spodoptera litura (Lepidoptera: Noctuidae) through particle size reduction and formulation as a suspension concentrate. Biocontrol Science and Technology, 2017, 27: 58-69.
[177]
ZHU Z, CHEN W, ZHOU H, CHENG H, LUO S, ZHOU K, ZHOU P, XIA L, DING X. ARTP and NTG compound mutations improved Cry protein production and virulence of Bacillus thuringiensis X023. Applied Microbiology and Biotechnology, 2022, 106(11): 4211-4221.
[178]
BATOOL K, ALAM I, LIU P, SHU Z, ZHAO S, YANG W, JIE X, GU J, CHEN X G. Recombinant mosquito densovirus with Bti toxins significantly improves pathogenicity against Aedes albopictus. Toxins, 2022, 14(2): 147.
[179]
DOWNING K J, THOMSON J A. Introduction of the Serratia marcescens chiA gene into an endophytic Pseudomonas fluorescens for the biocontrol of phytopathogenic fungi. Canadian Journal of Microbiology, 2000, 46(4): 363-369.
[180]
ZHANG X, LI J, QI G, WEN K, LU J, ZHAO X. Insecticidal effect of recombinant endophytic bacterium containing Pinellia ternata agglutinin against white backed planthopper, Sogatella furcifera. Crop Protection, 2011, 30(11): 1478-1484.
Scientia Agricultura Sinica
Pages 96-125
Cite this article:
XU C, JIN J, SUN X, et al. Rational Design and Innovative Application Strategy for the Insecticidal Protein Based on Bt Toxin. Scientia Agricultura Sinica, 2024, 57(1): 96-125. https://doi.org/10.3864/j.issn.0578-1752.2024.01.008
Metrics & Citations  
Article History
Copyright
Return