PDF (906.8 KB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese

Progress on Genetic Transformation of Sorghum

Hebei Open University, Shijiazhuang 050080
College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193
Show Author Information

Abstract

Sorghum is the fifth largest grain crop in the world and can be used for food, feed, brewing and bioenergy. Sorghum genetic transformation technology is an essential and important tool in the research of sorghum functional genomics and can also serve as an important complement to traditional breeding methods. In this review, we summarize the research progress of sorghum transformation in recent years, analyze the problems in sorghum genetic transformation and propose strategic solutions to them in order to provide a reference for further improvement of sorghum genetic transformation technology. By summarizing more than 50 literatures on sorghum tissue culture and genetic transformation in recent years, we introduced the current research status of sorghum genotypes, explant sources, and regeneration system construction for genetic transformation, and compared the advantages and disadvantages of four commonly used methods for sorghum genetic transformation: electroporation, pollen-mediated transformation, particle bombardment and Agrobacterium-mediated transformation, summarized the effects of the main components of genetic transformation vectors, including promoters, target genes, selective marker genes and reporter genes, on transformation efficiency, explained the current application status of sorghum genetic transformation, analyzed the main bottleneck problemns in sorghum genetic transformation technology, and studied countermeasures. Sorghum genotypes have a significant influence on tissue culture and P898012 and Tx430 are the most widely used. Gene bombardment and Agrobacterium-mediated transformation are the most commonly used methods for sorghum genetic transformation, and the advantages of Agrobacterium-mediated transformation are gradually emerging. In vector construction, CaMV35S and ubi1 are the most commonly used promoters, and antibiotic resistance genes (nptII, hpt), herbicide resistance genes (bar), and nutrient assimilation genes are the three commonly used selection markers. With the development of sorghum genetic transformation technology and CRISPR/Cas9-mediated gene editing technology, some genes with important agronomic traits have been successfully transferred into sorghum. However, strong genotype dependence, long tissue culture cycle, and poor genetic transformation stability are the main bottlenecks that limit the genetic transformation of sorghum. By introducing morphogenesis regulatory factors, somatic cell generation can be directly performed, which shortens the tissue culture cycle, improves the transformation efficiency, and expands the source of explants. This has become a major breakthrough in sorghum genetic transformation technology. The use of morphogenesis regulatory factors and adoption of cut-dip-budding (CDB) delivery system can further improve the sorghum genetic transformation technology. Combined with the application of CRISPR/Cas9 gene editing technology, they will surely provide an important technical basis for the sorghum molecular breeding and gene function identification.

References

[1]
HAN L J, CAI H W. Progress on genetic research of sorghum grain weight. Biotechnology Bulletin, 2019, 35(5): 15-27. (in Chinese)
[2]
PATERSON A H, BOWERS J E, BRUGGMANN R, DUBCHAK I, GRIMWOOD J, GUNDLACH H, HABERER G, HELLSTEN U, MITROS T, POLIAKOV A, SCHMUTZ J, SPANNAGL M, TANG H B, WANG X Y, WICKER T, BHARTI A K, CHAPMAN J, FELTUS F A, GOWIK U, GRIGORIEV I V, LYONS E, MAHER C A, MARTIS M, NARECHANIA A, OTILLAR R P, PENNING B W, SALAMOV A A, WANG Y, ZHANG L F, CARPITA N C, FREELING M, GINGLE A R, HASH C T, KELLER B, KLEIN P, KRESOVICH S, MCCANN M C, MING R, PETERSON D G, RAHMAN M, WARE D, WESTHOFF P, MAYER K F X, MESSING J, ROKHSAR D S. The Sorghum bicolor genome and the diversification of grasses. Nature, 2009, 457(7229): 551-556.
[3]
NI X L, ZHAO G L, LIU T P, ZHANG C W, CHEN G M, HU J L, DING G X. Advances in Sorghum resistance gene mapping. Fujian Journal of Agricultural Sciences, 2012, 27(6): 652-660. (in Chinese)
[4]
GIRIJASHANKAR V, SWATHISREE V. Genetic transformation of Sorghum bicolor. Physiology and Molecular Biology of Plants, 2009, 15(4): 287-302.
[5]
JEOUNG J M, KRISHNAVENI S, MUTHUKRISHNAN S, TRICK H N, LIANG G H. Optimization of sorghum transformation parameters using genes for green fluorescent protein and β-glucuronidase as visual markers. Hereditas, 2002, 137(1): 20-28.
[6]
LIU G Q, GODWIN I D. Highly efficient sorghum transformation. Plant Cell Reports, 2012, 31(6): 999-1007.
[7]
CASAS A M, KONONOWICZ A K, ZEHR U B, TOMES D T, AXTELL J D, BUTLER L G, BRESSAN R A, HASEGAWA P M. Transgenic sorghum plants via microprojectile bombardment. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(23): 11212-11216.
[8]
ZHAO Z Y, CAI T S, TAGLIANI L, MILLER M, WANG N, PANG H, RUDERT M, SCHROEDER S, HONDRED D, SELTZER J, PIERCE D. Agrobacterium-mediated sorghum transformation. Plant Molecular Biology, 2000, 44(6): 789-798.
[9]
ABLE J A, RATHUS C, GODWIN I D. The investigation of optimal bombardment parameters for transient and stable transgene expression in Sorghum. In Vitro Cellular & Developmental Biology Plant, 2001, 37(3): 341-348.
[10]
ZHANG M Z, TANG Q, CHEN Z L, LIU J, CUI H R, SHU Q Y, XIA Y W, ALTOSAAR I. Genetic transformation of Bt gene into Sorghum (Sorghum bicolor L.) mediated by Agrobacterium tumefaciens. Chinese Journal of Biotechnology, 2009, 25(3): 418-423. (in Chinese)
[11]
CHOU J, HUANG J, HUANG Y H. Simple and efficient genetic transformation of sorghum using immature inflorescences. Acta Physiologiae Plantarum, 2020, 42(3): 1-8.
[12]
KURIYAMA T, SHIMADA S, MATSUI M. Improvement of Agrobacterium-mediated transformation for tannin-producing sorghum. Plant Biotechnology, 2019, 36(1): 43-48.
[13]
CHE P, ANAND A, WU E, SANDER J D, SIMON M K, ZHU W W, SIGMUND A L, ZASTROW-HAYES G, MILLER M, LIU D L, LAWIT S J, ZHAO Z Y, ALBERTSEN M C, JONES T J. Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application. Plant Biotechnology Journal, 2018, 16(7): 1388-1395.
[14]
MOOKKAN M, NELSON-VASILCHIK K, HAGUE J, ZHANG Z J, KAUSCH A P. Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Reports, 2017, 36(9): 1477-1491.
[15]
NELSON-VASILCHIK K, HAGUE J, MOOKKAN M, ZHANG Z J, KAUSCH A. Transformation of recalcitrant Sorghum varieties facilitated by baby boom and Wuschel2. Current Protocols in Plant Biology, 2018, 3(4): e20076.
[16]
CHE P, WU E, SIMON M K, ANAND A, LOWE K, GAO H R, SIGMUND A L, YANG M Z, ALBERTSEN M C, GORDON-KAMM W, JONES T J. Wuschel2 enables highly efficient CRISPR/Cas- targeted genome editing during rapid de novo shoot regeneration in sorghum. Communications Biology, 2022, 5: 344.
[17]
JAMBAGI S, BHAT R, BHAT S, KURUVINASHETTI M S. Agrobacterium-mediated transformation studies in sorghum using an improved gfp reporter gene. Journal of SAT Agricultural Research, 2010, 8: 9.
[18]
WANG N, RYAN L, SARDESAI N, WU E, LENDERTS B, LOWE K, CHE P, ANAND A, WORDEN A, VAN DYK D, BARONE P, SVITASHEV S, JONES T, GORDON-KAMM W. Leaf transformation for efficient random integration and targeted genome modification in maize and sorghum. Nature Plants, 2023, 9(2): 255-270.
[19]
SHI T Y. Research progress of Sorghum tissue culture. Rain Fed Crops, 2003, 23(6): 340-343. (in Chinese)
[20]
CARVALHO C H S, ZEHR U B, GUNARATNA N, ANDERSON J, KONONOWICZ H H, HODGES T K, AXTELL J D. Agrobacterium- mediated transformation of sorghum: Factors that affect transformation efficiency. Genetics and Molecular Biology, 2004, 27(2): 259-269.
[21]
HOWE A, SATO S, DWEIKAT I, FROMM M, CLEMENTE T. Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Reports, 2006, 25(8): 784-791.
[22]
WU E, LENDERTS B, GLASSMAN K, BEREZOWSKA-KANIEWSKA M, CHRISTENSEN H, ASMUS T, ZHEN S F, CHU U, CHO M J, ZHAO Z Y. Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants. In Vitro Cellular & Developmental Biology-Plant, 2014, 50(1): 9-18.
[23]
BELIDE S, VANHERCKE T, PETRIE J R, SINGH S P. Robust genetic transformation of Sorghum (Sorghum bicolor L.) using differentiating embryogenic callus induced from immature embryos. Plant Methods, 2017, 13: 109.
[24]
KUMAR V, CAMPBELL L M, RATHORE K S. Rapid recovery- and characterization of transformants following Agrobacterium-mediated T-DNA transfer to sorghum. Plant Cell, Tissue and Organ Culture, 2011, 104(2): 137-146.
[25]
NGUYEN T V, THU T T, CLAEYS M, ANGENON G. Agrobacterium-mediated transformation of Sorghum (Sorghum bicolor (L.) Moench) using an improved in vitro regeneration system. Plant Cell, Tissue and Organ Culture, 2007, 91(2): 155-164.
[26]
LIU X Y, LIU S J, SONG S Q. Research on establishment of a highly frequent and efficient regeneration system of Sorghum bicolor. Scientia Agricultura Sinica, 2010, 43(23): 4963-4969. doi: 10.3864/j.issn.0578-1752.2010.23.023. (in Chinese)
[27]
SAI N K, VISARADA K, LAKSHMI Y A, PASHUPATINATH E, RAO S V, SEETHARAMA N. In vitro culture methods in sorghum with shoot tip as the explant material. Plant Cell Reports, 2006, 25(3): 174-182.
[28]
GIRIJASHANKAR V, SHARMA H C, SHARMA K K, SWATHISREE V, PRASAD L S, BHAT B V, ROYER M, SECUNDO B S, NARASU M L, ALTOSAAR I, SEETHARAMA N. Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo partellus). Plant Cell Reports, 2005, 24(9): 513-522.
[29]
LI J Q, WANG L H, ZHAN Q W, FAN F F, ZHAO T, WAN H B. Development of a simple and efficient method for Agrobacterium- mediated transformation in Sorghum. International Journal of Agriculture and Biology, 2015, 18(1): 134-138.
[30]
OU-LEE T M, TURGEON R, WU R. Expression of a foreign gene linked to either a plant-virus or a Drosophila promoter, after electroporation of protoplasts of rice, wheat, and sorghum. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(18): 6815-6819.
[31]
BATTRAW M, HALL T C. Stable transformation of Sorghum bicolor protoplasts with chimeric neomycin phosphotransferase Ⅱ and β-glucuronidase genes. Theoretical and Applied Genetics, 1991, 82(2): 161-168.
[32]
HAGIO T, BLOWERS A D, EARLE E D. Stable transformation of sorghum cell cultures after bombardment with DNA-coated microprojectiles. Plant Cell Reports, 1991, 10(5): 260-264.
[33]
SHI T Y, YANG L G, WANG Y, ZHENG W J, GAO L J. Transfering broad-spectrum resistant PYH157 gene into sorghum and screening transgenic plants. Rain Fed Crops, 2001, 21(1): 12-14. (in Chinese)
[34]
WANG W Q, WANG J X, YANG C P, LI Y H, LIU L, XU J. Pollen-mediated transformation of Sorghum bicolor plants. Biotechnology and Applied Biochemistry, 2007, 48(Pt2): 79-83.
[35]
CASAS A M, KONONOWICZ A K, HAAN T G, ZHANG L Y, TOMES D T, BRESSAN R A, HASEGAWA P M. Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cellular & Developmental Biology-Plant, 1997, 33(2): 92-100.
[36]
ZHU H, MUTHRUKRISHNAN S, KRISHNAVENI S, WILDE G, JEOUNG J M, LIANG G H. Biolistic transformation of sorghum using a rice chitinase gene. Journal of Genetics and Breeding, 1998, 52: 243-252.
[37]
EMANI C, SUNILKUMAR G, RATHORE K S. Transgene silencing and reactivation in sorghum. Plant Science, 2002, 162(2): 181-192.
[38]
SHI T Y, YANG L G, XIAO J. Transgenic plant were obtained by bombardment sorghum callus with gene gun. Liaoning Agricultural Science, 2003(6): 9-10. (in Chinese)
[39]
TADESSE Y, SÁGI L, SWENNEN R, JACOBS M. Optimisation of transformation conditions and production of transgenic Sorghum (Sorghum bicolor) via microparticle bombardment. Plant Cell, Tissue and Organ Culture, 2003, 75(1): 1-18.
[40]
RAGHUWANSHI A, BIRCH R G. Genetic transformation of sweet sorghum. Plant Cell Reports, 2010, 29(9): 997-1005.
[41]
GROOTBOOM A W, MKHONZA N L, O`KENNEDY M M, CHAKAUYA E, KUNERT K, CHIKWAMBA R K. Biolistic mediated Sorghum (Sorghum bicolor L. Moench) transformation via mannose and bialaphos based selection systems. International Journal of Botany, 2010, 6(2): 89-94.
[42]
HAN L J. QTL analysis of grain weight and fine mapping of qGW1 in sorghum (Sorghum bicolor L.) [D]. Beijing: China Agricultural University, 2016. (in Chinese)
[43]
WANG L H, GAO L, LIU G Q, MENG R R, LIU Y L, LI J Q. An efficient sorghum transformation system using embryogenic calli derived from mature seeds. PeerJ, 2021, 9: e11849.
[44]
GAO Z S, JAYARAJ J, MUTHUKRISHNAN S, CLAFLIN L, LIANG G H. Efficient genetic transformation of Sorghum using a visual screening marker. Genome, 2005, 48(2): 321-333.
[45]
GAO Z S, XIE X J, LING Y, MUTHUKRISHNAN S, LIANG G H. Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotechnology Journal, 2005, 3(6): 591-599.
[46]
GUREL S, GUREL E, KAUR R, WONG J, MENG L, TAN H Q, LEMAUX P G. Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Reports, 2009, 28(3): 429-444.
[47]
LU L, WU X R, YIN X Y, MORRAND J, CHEN X L, FOLK W R, ZHANG Z J. Development of marker-free transgenic Sorghum (Sorghum bicolor (L.) Moench) using standard binary vectors with bar as a selectable marker. Plant Cell, Tissue and Organ Culture, 2009, 99(1): 97-108.
[48]
INDRAARULSELVI P, MICHAEL P, UMAMAHESWARI S, KRISHNAVENI S. Agrobacterium mediated transformation of Sorghum bicolor for disease resistance. International Journal of Pharma and Bio Sciences, 2010, 1: 272-281.
[49]
IGNACIMUTHU S, PREMKUMAR A. Development of transgenic Sorghum bicolor (L.) Moench resistant to the Chilo partellus (Swinhoe) through Agrobacterium-mediated transformation. Molecular Biology and Genetic Engineering, 2014, 2(1): 1-8.
[50]
DO P T, LEE H, MOOKKAN M, FOLK W R, ZHANG Z J. Rapid and efficient Agrobacterium-mediated transformation of Sorghum (Sorghum bicolor) employing standard binary vectors and bar gene as a selectable marker. Plant Cell Reports, 2016, 35(10): 2065-2076.
[51]
SATO-IZAWA K, TOKUE K, EZURA H. Development of a stable Agrobacterium-mediated transformation protocol for Sorghum bicolor Tx430. Plant Biotechnology, 2018, 35(2): 181-185.
[52]
LIU X Y, WANG Q Y, LIU S J, SONG S Q. Advances in the genetic transformation of Sorghum bicolor. Chinese Bulletin of Botany, 2011, 46(2): 216-223. (in Chinese)
[53]
SCHNIPPENKOETTER W, LO C, LIU G Q, DIBLEY K, CHAN W L, WHITE J, MILNE R, ZWART A, KWONG E, KELLER B, GODWIN I, KRATTINGER S G, LAGUDAH E. The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum. Plant Biotechnology Journal, 2017, 15(11): 1387-1396.
[54]
MAHESWARI M, VARALAXMI Y, VIJAYALAKSHMI A, YADAV S K, SHARMILA P, VENKATESWARLU B, VANAJA M, SARADHI P P. Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in sorghum. Biologia Plantarum, 2010, 54(4): 647-652.
[55]
ZHANG H L, YU F F, XIE P, SUN S Y, QIAO X H, TANG S Y, CHEN C X, YANG S, MEI C, YANG D K, WU Y R, XIA R, LI X, LU J, LIU Y X, XIE X W, MA D M, XU X, LIANG Z W, FENG Z H, HUANG X H, YU H, LIU G F, WANG Y C, LI J Y, ZHANG Q F, CHEN C, OUYANG Y D, XIE Q. A Gγ protein regulates alkaline sensitivity in crops. Science, 2023, 379(6638): eade8416.
[56]
ZHAO Z, TOMES D. Sorghum Transformation. Genetic Transformation of Plants. Berlin Heidelberg: Springer Verlag Press, 2003: 91-107.
[57]
JIANG W Z, ZHOU H B, BI H H, FROMM M, YANG B, WEEKS D P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 2013, 41(20): e188.
[58]
LI A X, JIA S G, YOBI A, GE Z X, SATO S J, ZHANG C, ANGELOVICI R, CLEMENTE T E, HOLDING D R. Editing of an alpha-kafirin gene family increases, digestibility and protein quality in Sorghum. Plant Physiology, 2018, 177(4): 1425-1438.
[59]
ZHANG D, TANG S Y, XIE P, YANG D K, WU Y R, CHENG S J, DU K, XIN P Y, CHU J F, YU F F, XIE Q. Creation of fragrant sorghum by CRISPR/Cas9. Journal of Integrative Plant Biology, 2022, 64(5): 961-964.
[60]
TESSO T, KAPRAN I, GRENIER C, SNOW A, SWEENEY P, PEDERSEN J, MARX D, BOTHMA G, EJETA G. The potential for crop-to-wild gene flow in Sorghum in Ethiopia and Niger: A geographic survey. Crop Science, 2008, 48(4): 1425-1431.
[61]
SILVA T N, THOMAS J B, DAHLBERG J, RHEE S Y, MORTIMER J C. Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the bioeconomy. Journal of Experimental Botany, 2022, 73(3): 646-664.
[62]
HAN Y, BROUGHTON S, LIU L, ZHANG X Q, ZENG J B, HE X Y, LI C D. Highly efficient and genotype-independent barley gene editing based on anther culture. Plant Communications, 2021, 2(2): 100082.
[63]
DEY M, BAKSHI S, GALIBA G, SAHOO L, PANDA S K. Development of a genotype independent and transformation amenable regeneration system from shoot apex in rice (Oryza sativa spp. indica) using TDZ. 3 Biotech, 2012, 2(3): 233-240.
[64]
MA Z Y, LIU J F, WANG X F. Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) shoot apex with a fungal phytase gene improves phosphorus acquisition. Methods in Molecular Biology, 2013, 958: 211-222.
[65]
CAO X S, XIE H T, SONG M L, LU J H, MA P, HUANG B Y, WANG M G, TIAN Y F, CHEN F, PENG J, LANG Z B, LI G F, ZHU J K. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture. The Innovation, 2023, 4(1): 100345.
[66]
DEMIRER G S, ZHANG H, MATOS J L, GOH N S, CUNNINGHAM F J, SUNG Y, CHANG R, ADITHAM A J, CHIO L, CHO M J, STASKAWICZ B, LANDRY M P. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nature Nanotechnology, 2019, 14(5): 456-464.
Scientia Agricultura Sinica
Pages 454-468
Cite this article:
HAN L, CAI H. Progress on Genetic Transformation of Sorghum. Scientia Agricultura Sinica, 2024, 57(3): 454-468. https://doi.org/10.3864/j.issn.0578-1752.2024.03.003
Metrics & Citations  
Article History
Copyright
Return