Wheat is the most important cereal crop, and drought is the most significant abiotic stress factor that severely affects wheat growth and development. Plant root system, as a primary organ for crops to acquire water and nutrients, directly determines the efficiency of soil water utilization. In recent years, increasing evidence has shown that plant root system architecture (RSA) plays an important role in plant tolerance to drought stress. This review summarizes the current research progress on the regulation of wheat drought tolerance determined by RSA. First, we present how root tropism especially root gravitropism shapes the RSA, summarize the relevant genes and molecular regulatory mechanism involved in root gravitropic growth, and explain how the root tropism-regulated RSA is implicated in wheat adaptation to drought stress. In addition to root tropic growth, the root development also participates in the RSA formation and the plant adaptability to drought stress. Therefore, this review further summarizes how wheat regulates root development to alter its root system morphology (including increasing root length, modifying lateral root number and root hair density, etc.), thereby enhancing its water acqusition from the soil and its adaption to drought environment. The identified genes involved in wheat root development under drought stress conditions are also systematically summarized. Furthermore, as the underground part of plants, the revelation of RSA has always been a challenging task, which hinders our understanding of the relationship between RSA and plant drought tolerance. Therefore, this review also summarized the available techniques used to analyze the RSA at two- and three-dimension levels. These techniques can measure and analyze wheat root length, density, growth direction, and morphology parameters, laying technical support for an insightful understanding of the relationship between wheat RSA and drought resistance. Finally, we discuss the prospect of the improvement of RSA in breeding wheat drought-resistant varieties, as well as provide an outlook for how to identify genes regulating wheat RSA and pinpoint their regulatory mechanism. In summary, the relationship between wheat RSA and drought resistant is closely associated. The continuous development of sequencing techniques, along with the deepening research on the regulatory mechanism of wheat RSA, will provide new means and strategies for the further breeding of drought-tolerance wheat varieties.