PDF (3.3 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese

Research Progress on Root System Architecture and Drought Resistance in Wheat

YuZhou ZHANG()YiZhao WANGRuXi GAOYiFan LIU
College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi
Show Author Information

Abstract

Wheat is the most important cereal crop, and drought is the most significant abiotic stress factor that severely affects wheat growth and development. Plant root system, as a primary organ for crops to acquire water and nutrients, directly determines the efficiency of soil water utilization. In recent years, increasing evidence has shown that plant root system architecture (RSA) plays an important role in plant tolerance to drought stress. This review summarizes the current research progress on the regulation of wheat drought tolerance determined by RSA. First, we present how root tropism especially root gravitropism shapes the RSA, summarize the relevant genes and molecular regulatory mechanism involved in root gravitropic growth, and explain how the root tropism-regulated RSA is implicated in wheat adaptation to drought stress. In addition to root tropic growth, the root development also participates in the RSA formation and the plant adaptability to drought stress. Therefore, this review further summarizes how wheat regulates root development to alter its root system morphology (including increasing root length, modifying lateral root number and root hair density, etc.), thereby enhancing its water acqusition from the soil and its adaption to drought environment. The identified genes involved in wheat root development under drought stress conditions are also systematically summarized. Furthermore, as the underground part of plants, the revelation of RSA has always been a challenging task, which hinders our understanding of the relationship between RSA and plant drought tolerance. Therefore, this review also summarized the available techniques used to analyze the RSA at two- and three-dimension levels. These techniques can measure and analyze wheat root length, density, growth direction, and morphology parameters, laying technical support for an insightful understanding of the relationship between wheat RSA and drought resistance. Finally, we discuss the prospect of the improvement of RSA in breeding wheat drought-resistant varieties, as well as provide an outlook for how to identify genes regulating wheat RSA and pinpoint their regulatory mechanism. In summary, the relationship between wheat RSA and drought resistant is closely associated. The continuous development of sequencing techniques, along with the deepening research on the regulatory mechanism of wheat RSA, will provide new means and strategies for the further breeding of drought-tolerance wheat varieties.

References

[1]
ZHAO H Y, ZHANG W Q, ZOU X K, ZHANG Q, SHEN Z Q, MEI P. Temporal and spatial characteristics of drought in China under climate change. Chinese Journal of Agrometeorology, 2021, 42(1): 69-79. (in Chinese)
[2]
XIAO G H, ZHANG Y Z. Adaptive growth: Shaping auxin-mediated root system architecture. Trends in Plant Science, 2020, 25(2): 121-123.
[3]
WEN W L, GUO X Y, ZHAO C J, WANG C Y, XIAO B X. Crop roots configuration and visualization: A review. Scientia Agricultura Sinica, 2015, 48(3): 436-448. doi: 10.3864/j.issn.0578-1752.2015.03.04. (in Chinese)
[4]
LI L, LI C N, MAO X G, WANG J Y, JING R L. Advances and perspectives of approaches to phenotyping crop root system. Scientia Agricultura Sinica, 2022, 55(3): 425-437. doi: 10.3864/j.issn.0578-1752.2022.03.001. (in Chinese)
[5]
SATO E M, HIJAZI H, BENNETT M J, VISSENBERG K, SWARUP R. New insights into root gravitropic signalling. Journal of Experimental Botany, 2015, 66(8): 2155-2165.
[6]
MAQBOOL S, HASSAN M A, XIA X C, YORK L M, RASHEED A, HE Z H. Root system architecture in cereals: Progress, challenges and perspective. The Plant Journal, 2022, 110(1): 23-42.
[7]
ZHANG Y Z, HE P, MA X F, YANG Z R, PANG C Y, YU J N, WANG G D, FRIML J, XIAO G H. Auxin-mediated statolith production for root gravitropism. The New Phytologist, 2019, 224(2): 761-774.
[8]
BABA A I, MIR M Y, RIYAZUDDIN R, CSÉPLŐ Á, RIGÓ G, FEHÉR A. Plants in microgravity: Molecular and technological perspectives. International Journal of Molecular Sciences, 2022, 23(18): 10548.
[9]
MORITA M T, TASAKA M. Gravity sensing and signaling. Current Opinion in Plant Biology, 2004, 7(6): 712-718.
[10]
SU S H, GIBBS N M, JANCEWICZ A L, MASSON P H. Molecular mechanisms of root gravitropism. Current Biology, 2017, 27(17): R964-R972.
[11]
ZHANG Y Z, XIAO G H, WANG X J, ZHANG X X, FRIML J. Evolution of fast root gravitropism in seed plants. Nature Communications, 2019, 10: 3480.
[12]
WAIDMANN S, RUIZ ROSQUETE M, SCHÖLLER M, SARKEL E, LINDNER H, LARUE T, PETŘÍK I, DÜNSER K, MARTOPAWIRO S, SASIDHARAN R, NOVAK O, WABNIK K, DINNENY J R, KLEINE-VEHN J. Cytokinin functions as an asymmetric and anti-gravitropic signal in lateral roots. Nature Communications, 2019, 10(1): 3540.
[13]
OGURA T, GOESCHL C, FILIAULT D, MIREA M, SLOVAK R, WOLHRAB B, SATBHAI S B, BUSCH W. Root system depth in Arabidopsis is shaped by EXOCYST70A3 via the dynamic modulation of auxin transport. Cell, 2019, 178(2): 400-412, e16.
[14]
KITOMI Y, HANZAWA E, KUYA N, INOUE H, HARA N, KAWAI S, KANNO N, ENDO M, SUGIMOTO K, YAMAZAKI T, SAKAMOTO S, SENTOKU N, WU J Z, KANNO H, MITSUDA N, TORIYAMA K, SATO T, UGA Y. Root angle modifications by the DRO1 homolog improve rice yields in saline paddy fields. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(35): 21242-21250.
[15]
UGA Y, OKUNO K, YANO M. Dro1, a major QTL involved in deep rooting of rice under upland field conditions. Journal of Experimental Botany, 2011, 62(8): 2485-2494.
[16]
UGA Y, SUGIMOTO K, OGAWA S, RANE J, ISHITANI M, HARA N, KITOMI Y, INUKAI Y, ONO K, KANNO N, INOUE H, TAKEHISA H, MOTOYAMA R, NAGAMURA Y, WU J Z, MATSUMOTO T, TAKAI T, OKUNO K, YANO M. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 2013, 45(9): 1097-1102.
[17]
FENG X J, JIA L, CAI Y T, GUAN H R, ZHENG D, ZHANG W X, XIONG H, ZHOU H M, WEN Y, HU Y, ZHANG X M, WANG Q J, WU F K, XU J, LU Y L. ABA-inducible DEEPER ROOTING 1 improves adaptation of maize to water deficiency. Plant Biotechnology Journal, 2022, 20(11): 2077-2088.
[18]
TAKEDA H, TSUKAYA H. Analysis of gravitropic response in 133 cultivars of Japanese wheat (Triticum aestivum L.). Plant and Cell Physiology, 2005, 46(2): 375-381.
[19]
FRIEDLI C N, ABIVEN S, FOSSATI D, HUND A. Modern wheat semi-dwarfs root deep on demand: Response of rooting depth to drought in a set of Swiss era wheats covering 100 years of breeding. Euphytica, 2019, 215(4): 1-15.
[20]
CHRISTOPHER J, CHRISTOPHER M, JENNINGS R, JONES S, FLETCHER S, BORRELL A, MANSCHADI A M, JORDAN D, MACE E, HAMMER G. QTL for root angle and number in a population developed from bread wheats (Triticum aestivum) with contrasting adaptation to water-limited environments. Theoretical and Applied Genetics, 2013, 126(6): 1563-1574.
[21]
BORRILL P, HARRINGTON S A, UAUY C. Applying the latest advances in genomics and phenomics for trait discovery in polyploid wheat. The Plant Journal, 2019, 97(1): 56-72.
[22]
YAN L, LOUKOIANOV A, TRANQUILLI G, HELGUERA M, FAHIMA T, DUBCOVSKY J. Positional cloning of the wheat vernalization gene VRN1. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10): 6263-6268.
[23]
COCKRAM J, JONES H, LEIGH F J, O'SULLIVAN D, POWELL W, LAURIE D A, GREENLAND A J. Control of flowering time in temperate cereals: Genes, domestication, and sustainable productivity. Journal of Experimental Botany, 2007, 58(6): 1231-1244.
[24]
VOSS-FELS K P, SNOWDON R J, HICKEY L T. Designer roots for future crops. Trends in Plant Science, 2018, 23(11): 957-960.
[25]
VOSS-FELS K P, ROBINSON H, MUDGE S R, RICHARD C, NEWMAN S, WITTKOP B, STAHL A, FRIEDT W, FRISCH M, GABUR I, MILLER-COOPER A, CAMPBELL B C, KELLY A, FOX G, CHRISTOPHER J, CHRISTOPHER M, CHENU K, FRANCKOWIAK J, MACE E S, BORRELL A K, EAGLES H, JORDAN D R, BOTELLA J R, HAMMER G, GODWIN I D, TREVASKIS B, SNOWDON R J, HICKEY L T. VERNALIZATION1 modulates root system architecture in wheat and barley. Molecular Plant, 2018, 11(1): 226-229.
[26]
KIRSCHNER G K, ROSIGNOLI S, GUO L, VARDANEGA I, IMANI J, ALTMÜLLER J, MILNER S G, BALZANO R, NAGEL K A, PFLUGFELDER D, FORESTAN C, BOVINA R, KOLLER R, STÖCKER T G, MASCHER M, SIMMONDS J, UAUY C, SCHOOF H, TUBEROSA R, SALVI S, HOCHHOLDINGER F. ENHANCED GRAVITROPISM 2 encodes a STERILE ALPHA MOTIF-containing protein that controls root growth angle in barley and wheat. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(35): e2101526118.
[27]
FUSI R, ROSIGNOLI S, LOU H Y, SANGIORGI G, BOVINA R, PATTEM J K, BORKAR A N, LOMBARDI M, FORESTAN C, MILNER S G, DAVIS J L, LALE A, KIRSCHNER G K, SWARUP R, TASSINARI A, PANDEY B K, YORK L M, ATKINSON B S, STURROCK C J, MOONEY S J, HOCHHOLDINGER F, TUCKER M R, HIMMELBACH A, STEIN N, MASCHER M, NAGEL K A, DE GARA L, SIMMONDS J, UAUY C, TUBEROSA R, LYNCH J P, YAKUBOV G E, BENNETT M J, BHOSALE R, SALVI S. Root angle is controlled by EGT1 in cereal crops employing an antigravitropic mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(31): e2201350119.
[28]
TAKAHASHI N, YAMAZAKI Y, KOBAYASHI A, HIGASHITANI A, TAKAHASHI H. Hydrotropism interacts with gravitropism by degrading amyloplasts in seedling roots of Arabidopsis and radish. Plant Physiology, 2003, 132(2): 805-810.
[29]
IWATA S, MIYAZAWA Y, FUJII N, TAKAHASHI H. MIZ1-regulated hydrotropism functions in the growth and survival of Arabidopsis thaliana under natural conditions. Annals of Botany, 2013, 112(1): 103-114.
[30]
EAPEN D, MARTÍNEZ-GUADARRAMA J, HERNÁNDEZ- BRUNO O, FLORES L, NIETO-SOTELO J, CASSAB, G I. Synergy between root hydrotropic response and root biomass in maize (Zea mays L.) enhances drought avoidance. Plant Science, 2017, 265: 87-99.
[31]
OBER E S, ALAHMAD S, COCKRAM J, FORESTAN C, HICKEY L T, KANT J, MACCAFERRI M, MARR E, MILNER M, PINTO F, RAMBLA C, REYNOLDS M, SALVI S, SCIARA G, SNOWDON R J, THOMELIN P, TUBEROSA R, UAUY C, VOSS-FELS K P, WALLINGTON E, WATT M. Wheat root systems as a breeding target for climate resilience. Theoretical and Applied Genetics, 2021, 134(6): 1645-1662.
[32]
OYANAGI A, TAKAHASHI H, SUGE H. Interactions between hydrotropism and gravitropism in the primary seminal roots of Triticum eastivum L.. Annals of Botany, 1995, 75(3): 229-235.
[33]
KOBAYASHI A, TAKAHASHI A, KAKIMOTO Y, MIYAZAWA Y, FUJII N, HIGASHITANI A, TAKAHASHI H. A gene essential for hydrotropism in roots. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(11): 4724-4729.
[34]
LI Y, YUAN W, LI L C, DAI H, DANG X L, MIAO R, BALUŠKA F, KRONZUCKER H J, LU C M, ZHANG J H, XU W F. Comparative analysis reveals gravity is involved in the MIZ1-regulated root hydrotropism. Journal of Experimental Botany, 2020, 71(22): 7316-7330.
[35]
BACHER H, MONTAGU A, HERRMANN I, WALIA H, SCHWARTZ N, PELEG Z. Stress-induced deeper rooting introgression enhances wheat yield under terminal drought. Journal of Experimental Botany, 2023: erad059.
[36]
GABAY G, WANG H C, ZHANG J L, MORICONI J I, BURGUENER G F, GUALANO L D, HOWELL T, LUKASZEWSKI A, STASKAWICZ B, CHO M J, TANAKA J, FAHIMA T, KE H Y, DEHESH K, ZHANG G L, GOU J Y, HAMBERG M, SANTA-MARÍA G E, DUBCOVSKY J. Dosage differences in 12-OXOPHYTODIENOATE REDUCTASE genes modulate wheat root growth. Nature Communications, 2023, 14(1): 539.
[37]
LIU G Z, LI X L, JIN S X, LIU X Y, ZHU L F, NIE Y C, ZHANG X L. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS ONE, 2014, 9(1): e86895.
[38]
JEONG J S, KIM Y S, REDILLAS M C, JANG G, JUNG H, BANG S W, CHOI Y D, HA S H, REUZEAU C, KIM J K. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Journal of Plant Biotechnology, 2013, 11(1): 101-114.
[39]
XUE G P, BOWER N I, MCINTYRE C L, RIDING G A, KAZAN K, SHORTER R. TaNAC69 from the NAC superfamily of transcription factors is up-regulated by abiotic stresses in wheat and recognises two consensus DNA-binding sequences. Functional Plant Biology, 2006, 33(1): 43-57.
[40]
WANG Y, MA N N, QIU S C. ZOU H Y, ZANG G C, KANG Z H, WANG G X, HUANG J L. Regulation of the α-expansin gene OsEXPA8 expression affects root system architecture in transgenic rice plants. Molecular Breeding, 2014, 34(1): 47-57.
[41]
YANG J J, ZHANG G Q, AN J, LI Q X, CHEN Y H, ZHAO X Y, WU J J, WANG Y, HAO Q Q, WANG W Q, WANG W. Expansin gene TaEXPA2 positively regulates drought tolerance in transgenic wheat (Triticum aestivum L.). Plant Science, 2020, 298: 110596.
[42]
OROSA-PUENTE B, LEFTLEY N, VON WANGENHEIM D, BANDA J, SRIVASTAVA A K, HILL K, TRUSKINA J, BHOSALE R, MORRIS E, SRIVASTAVA M, KÜMPERS B, GOH T, FUKAKI H, VERMEER J E M, VERNOUX T, DINNENY J R, FRENCH A P, BISHOPP A, SADANANDOM A, BENNETT M J. Root branching toward water involves posttranslational modification of transcription factor ARF7. Science, 2018, 362(6421): 1407-1410.
[43]
ZHAN A, SCHNEIDER H, LYNCH J P. Reduced lateral root branching density improves drought tolerance in maize. Plant Physiology, 2015, 168(4): 1603-1615.
[44]
WANG H F, HU Z R, HUANG K, HAN Y, ZHAO A J, HAN H M, SONG L, FAN C F, LI R, XIN M M, PENG H R, YAO Y Y, SUN Q X, NI Z F. Three genomes differentially contribute to the seedling lateral root number in allohexaploid wheat: evidence from phenotype evolution and gene expression. The Plant Journal, 2018, 95(6): 976-987.
[45]
PLACIDO D F, SANDHU J, SATO S J, NERSESIAN N, QUACH T, CLEMENTE T E, STASWICK P E, WALIA H. The LATERAL ROOT DENSITY gene regulates root growth during water stress in wheat. Plant Biotechnology Journal, 2020, 18(9): 1955-1968.
[46]
MARIN M, FEENEY D S, BROWN L K, NAVEED M, RUIZ S, KOEBERNICK N, BENGOUGH A G, HALLETT P D, ROOSE T, PUÉRTOLAS J, DODD I C, GEORGE T S. Significance of root hairs for plant performance under contrasting field conditions and water deficit. Annals of Botany, 2021, 128(1): 1-16.
[47]
DOLAN L. Root hair development in grasses and cereals (Poaceae). Current Opinion in Genetics and Development, 2017, 45: 76-81.
[48]
HOCHHOLDINGER F, YU P, MARCON C. Genetic control of root system development in maize. Trends in Plant Science, 2018, 23(1): 79-88.
[49]
HAN Y, XIN M M, HUANG K, XU Y Y, LIU Z S, HU Z R, YAO Y Y, PENG H R, NI Z F, SUN Q X. Altered expression of TaRSL4 gene by genome interplay shapes root hair length in allopolyploid wheat. The New Phytologist, 2016, 209(2): 721-732.
[50]
ZHANG X M, MI Y, MAO H D, LIU S X, CHEN L M, QIN F. Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize. Plant Biotechnology Journal, 2020, 18(5): 1271-1283.
[51]
LI L, PENG Z, MAO X G, WANG J Y, CHANG X P, REYNOLDS M, JING R L. Genome-wide association study reveals genomic regions controlling root and shoot traits at late growth stages in wheat. Annals of Botany, 2019, 124(6): 993-1006.
[52]
LIU X L, LI R Z, CHANG X P, JING R L. Mapping QTLs for seedling root traits in a doubled haploid wheat population under different water regimes. Euphytica, 2013, 189(1): 51-66.
[53]
WALLER S, WILDER S L, SCHUELLER M J, HOUSH A B, FERRIERI R A. Quantifying plant-borne carbon assimilation by root-associating bacteria. Microorganisms, 2020, 8(5): 700.
[54]
ZHAO C J, LU S L, GUO X Y, XIAO B X, WEN W L. Exploration of digital plant and its technology system. Scientia Agricultura Sinica, 2010, 43(10): 2023-2030. doi: 10.3864/j.issn.0578-1752.2010.10.007. (in Chinese)
[55]
MAJDI H. Root sampling methods - Applications and limitations of the minirhizotron technique. Plant and Soil, 1996, 185(2): 255-258.
[56]
CUI X H, CHEN J, GUAN L L. The application of ground penetrating radar to plant root system detection. Advances in Earth Science, 2009, 24(6): 606-611. (in Chinese)
[57]
SCHULZ H, POSTMA J A, VAN DUSSCHOTEN D, SCHARR H, BEHNKE S. Plant root system analysis from MRI images. Communications in Computer and Information Science, 2013(359): 411-425.
[58]
STINGACIU L, SCHULZ H, POHLMEIER A, BEHNKE S, ZILKEN H, JAVAUX M, VEREECKEN H. In situ root system architecture extraction from magnetic resonance imaging for water uptake modeling. Vadose Zone Journal, 2013, 12(1): 1-9.
[59]
BEKKERING C S, HUANG J, TIAN L. Image-based, organ-level plant phenotyping for wheat improvement. Agronomy, 2020, 10(9): 1287.
[60]
TAKAHASHI H, PRADAL C. Root phenotyping: Important and minimum information required for root modeling in crop plants. Breeding Science, 2021, 71(1): 109-116.
[61]
LOBET G, PAGÈS L, DRAYE X. A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiology, 2011, 157(1): 29-39.
[62]
PANG W, CROW W T, LUC J E, MCSORLEY R, GIBLIN-DAVIS R M, KENWORTHY K E, KRUSE J K. Comparison of water displacement and WINRHIZO software for plant root parameter assessment. Plant Disease, 2011, 95(10): 1308-1310.
[63]
POUND M P, FRENCH A P, ATKINSON J A, WELLS D M, BENNETT M J, PRIDMORE T. RootNav: Navigating images of complex root architectures. Plant Physiology, 2013, 162(4): 1802-1814.
[64]
BORIANNE P, SUBSOL G, FALLAVIER F, DARDOU A, AUDEBERT A. GT-RootS: An integrated software for automated root system measurement from high-throughput phenotyping platform images. Computers and Electronics in Agriculture, 2018, 150: 328-342.
[65]
CLARK R T, MACCURDY R B, JUNG J K, SHAFF J E, MCCOUCH S R, ANESHANSLEY D J, KOCHIAN L V. Three- dimensional root phenotyping with a novel imaging and software platform. Plant Physiology, 2011, 156(2): 455-465.
[66]
MAIRHOFER S, ZAPPALA S, TRACY S R, STURROCK C, BENNETT M, MOONEY S J, PRIDMORE T. RooTrak: Automated recovery of three-dimensional plant root architecture in soil from X-ray microcomputed tomography images using visual tracking. Plant Physiology, 2012, 158(2): 561-569.
[67]
VAN DUSSCHOTEN D, METZNER R, KOCHS J, POSTMA J A, PFLUGFELDER D, BÜEHLER J, SCHURR U, JAHNKE S. Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging. Plant Physiology, 2016, 170(3): 1176-1188.
[68]
LI C N, LI L, REYNOLDS M P, WANG J Y, CHANG X P, MAO X G, JING R L. Recognizing the hidden half in wheat: Root system attributes associated with drought tolerance. Journal of Experimental Botany, 2021, 72(14): 5117-5133.
[69]
STEELE K A, PRICE A H, WITCOMBE J R, SHRESTHA R, SINGH B N, GIBBONS J M, VIRK D S. QTLs associated with root traits increase yield in upland rice when transferred through marker-assisted selection. Theoretical and Applied Genetics, 2013, 126(1): 101-108.
[70]
ZHAO H, MA T, WANG X, DENG Y, MA H, ZHANG R, ZHAO J. OsAUX1 controls lateral root initiation in rice (Oryza sativa L.). Plant Cell and Environment, 2015, 38(11): 2208-2222.
[71]
BENNETT M J, MARCHANT A, GREEN H G, MAY S T, WARD S P, MILLNER P A, WALKER A R, SCHULZ B, FELDMANN K A. Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism. Science, 1996, 273(5277): 948-950.
Scientia Agricultura Sinica
Pages 1633-1645
Cite this article:
ZHANG Y, WANG Y, GAO R, et al. Research Progress on Root System Architecture and Drought Resistance in Wheat. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645. https://doi.org/10.3864/j.issn.0578-1752.2024.09.002
Metrics & Citations  
Article History
Copyright
Return