PDF (1.3 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese

Cloning of the Promoters and Analysis of Expression Patterns of Maturity Genes E1 and E2 in Soybean

LuPing LIU1XueJie HU1Jin QI1Qiang CHEN1Zhi LIU1TianTian ZHAO1XiaoLei SHI1BingQiang LIU1QingMin MENG1MengChen ZHANG1TianFu HAN2()ChunYan YANG1()
Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/Hebei Laboratory of Crop Genetis and Breeding/Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050035
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Soybean Biology (Beijing), Ministry of Agriculture and Rural Affairs, Beijing 100081
Show Author Information

Abstract

【Objective】

Maturity time is an essential phenotypic measure of ecological adaptability of soybean and an important trait related to its yield formation. The study of promoters and expression patterns of major maturity genes E1 and E2 would provide basis for the study of gene function and molecular regulatory network of maturity time and lay foundation for adaptability improvement and yield increase in soybean.

【Method】

The promoter sequences of major maturity genes E1 and E2 were analyzed through the promoter cis-element analysis website PlantCARE, and the important regulatory elements were detected. The promoters of E1 and E2 were cloned, the GUS vectors were constructed, and transformation of Arabidopsis was performed to detect GUS activity in different tissues and organs of transgenic plants. Under low light and strong light conditions, the expression levels of E1 and E2 were compared between long day and short day conditions. The expression levels of E1 and E2 were detected in soybean varieties of different maturity groups, which is for the analysis of correlation between expression levels and maturity time of soybean varieties.

【Result】

Both E1 and E2 promoters contained multiple photoresponsive elements such as AE-box, Box4 and G-box, E1 promoter also contained auxin-response, abolic acid-response elements, and E2 promoter also contained low temperature-response, drought-response elements and meristem expression elements. In GUS activity detection of transgenic Arabidopsis, E1 promoter had strong transcriptional activity in all organs of the plant, and transcriptional activity of E2 promoter in fibrovascular tissues of seedling hypocotyl, leaf and root was relatively strong. Under both low light and strong light conditions, the expression level of E1 was significantly higher in long day than in short day. Under low light conditions, the expression level of E2 was higher in short day than in long day. Under strong light conditions, the expression level of E2 was higher in long day than in short day. With the increase of maturity time of different soybean varieties, expression level of E1 increased gradually, while E2 expression level did not change regularly.

【Conclusion】

The promoter of E1 gene was a widely expressed promoter, and its expression level was significantly regulated by photoperiod and significantly correlated with the maturity time of soybean varieties. The promoter of E2 was strongly expressed in vascular tissues of various organs, the photoperiodic regulation mode of this gene was different under strong light and low light conditions, and there was no significant correlation between expression level of E2 and maturity time.

References

[1]
ZHAO L, LI M M, XU C J, YANG X, LI D M, ZHAO X, WANG K, LI Y H, ZHANG X M, LIU L X, DING F Q, DU H L, WANG C S, SUN J Z, LI W B. Natural variation in GmGBP1 promoter affects photoperiod control of flowering time and maturity in soybean. The Plant Journal, 2018, 96(1): 147-162.
[2]
LI X M, FANG C, YANG Y Q, LV T X, SU T, CHEN L Y, NAN H Y, LI S C, ZHAO X H, LU S J, DONG L D, CHENG Q, TANG Y, XU M L, ABE J, HOU X L, WELLER J L, KONG F J, LIU B H. Overcoming the genetic compensation response of soybean florigens to improve adaptation and yield at low latitudes. Current Biology, 2021, 31(17): 3755-3767.
[3]
KANTOLIC A G, SLAFER G A. Development and seed number in indeterminate soybean as affected by timing and duration of exposure to long photoperiods after flowering. Annals of Botany, 2007, 99(5): 925-933.
[4]
HAN T F, GAI J Y, QIU J X. A comparative study on pre- and post-flowering photoperiod response in various ecotypes of soybeans. Soybean Science, 1998, 17(2): 129-134. (in Chinese)
[5]
SONG W W, SUN S, IBRAHIM S E, XU Z J, WU H Y, HU X G, JIA H C, CHENG Y X, YANG Z L, JIANG S B, WU T T, SINEGOVSKII M, SAPEY E, NEPOMUCENO A, JIANG B J, HOU W S, SINEGOVSKAYA V, WU C X, GAI J Y, HAN T F. Standard cultivar selection and digital quantification for precise classification of maturity groups in soybean. Crop Science, 2019, 59(5): 1997-2006.
[6]
SONG W W, LIU L P, SUN S, WU T T, ZENG H Y, TIAN S Y, SUN B C, LI W B, LIU L J, WANG S M, XING H, ZHOU X A, NIAN H, LU W C, HAN X Z, WANG S Y, CHEN W Y, GUO T, SONG X Q, TIAN Z Y, CHENG Y X, SONG S H, FU L S, WANG H C, LUO R P, LIU X Y, LIU Q, ZHANG G H, LU S H, XU R, LI S Z, LU W G, ZHANG Q, WANG Z B, JIANG C G, SHEN W L, ZHANG M R, ZHU D H, WANG R Z, CHEN Y, WANG T J, ZHU X T, ZHAN Y, JIANG B J, XU C L, YUAN S, HOU W S, GAI J Y, WU C X, HAN T F. Precise classification and regional delineation of maturity groups in soybean cultivars across China. European Journal of Agronomy, 2023, 151(3): 126982.
[7]
XIA Z J, WATANABE S, YAMADA T, TSUBOKURA Y, NAKASHIMA H, ZHAI H, ANAI T, SATO S, YAMAZAKI T, S X, WU H Y, TABATA S, HARADA K. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(32): E2155-E2164.
[8]
WATANABE S, XIA Z J, HIDESHIMA R, TSUBOKURA Y, SATO S, YAMANAKA N, TAKAHASHI R, ANAI T, TABATA S, KITAMURA K, HARADA K. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics, 2011, 188(2): 395-407.
[9]
WATANABE S, HIDESHIMA R, XIA Z J, TSUBOKURA Y, SATO S, NAKAMOTO Y, YAMANAKA N, TAKAHASHI R, ISHIMOTO M, ANAI T, TABATA S, HARADA K. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics, 2009, 182(4): 1251-1262.
[10]
LIU B H, KANAZAWA A, MATSUMURA H, TAKAHASHI R, HARADA K, ABE J. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics. 2008, 180(2): 995-1007.
[11]
BONATO E R, VELLO N A. E6, a dominant gene conditioning early flowering and maturity in soybeans. Genetics and Molecular Biology, 1999, 22(2): 229-232.
[12]
COBER E R, VOLDENG H D. A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Science, 2001, 41(3): 698-701.
[13]
COBER E R, MOLNAR S J, CHARETTE M, VOLDENG H D. A new locus for early maturity in soybean. Crop Science, 2010, 50(2): 524-527.
[14]
KONG F J, NAN H Y, CAO D, LI Y, WU F F, WANG J L, LU S J, YUAN X H, COBER E R, ABE J, LIU B H. A new dominant gene E9 conditions early flowering and maturity in soybean. Crop Science, 2014, 54(6): 2529-2535.
[15]
SAMANFAR B, MOLNAR S J, CHARETTE M, SCHOENROCK A, DEHNE F, GOLSHANI A, BELZILE F, COBER E R. Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean. Theoretical and Applied Genetics, 2017, 130(2): 377-390.
[16]
WANG F F, NAN H Y, CHEN L Y, FANG C, ZHANG H Y, SU T, LI S C, CHENG Q, DONG L D, LIU B H, KONG F J, LU S J. A new dominant locus, E11, controls early flowering time and maturity in soybean. Molecular Breeding, 2019, 39(5): 70.
[17]
LU S J, DONG L D, FANG C, LIU S L, KONG L P, CHENG Q, CHEN L Y, SU T, NAN H Y, ZHANG D, ZHANG L, WANG Z J, YANG Y Q, YU D Y, LIU X L, YANG Q Y, LIN X Y, TANG Y, ZHAO X H, YANG X Q, TIAN C G, XIE Q G, LI X, YUAN X H, TIAN Z X, LIU B H, WELLER J L, KONG F J. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nature Genetics, 2020, 52(4): 428-436.
[18]
DONG L D, LI S C, WANG L S, SU T, ZHANG C B, BI Y D, LAI Y C, KONG L P, WANG F, PEI X X, LI H Y, HOU Z H, DU H P, DU H, LI T, CHENG Q, FANG C, KONG F J, LIU B H. The genetic basis of high-latitude adaptation in wild soybean. Current Biology, 2023, 33(2): 252-262.
[19]
DONG L D, CHENG Q, FANG C, KONG L P, YANG H, HOU Z H, LI Y L, NAN H Y, ZHANG Y H, CHEN Q S, ZHANG C B, KOU K, SU T, WANG L S, LI S C, LI H Y, LIN X Y, TANG Y, ZHAO X H, LU S J, LIU B H, KONG F J. Parallel selection of distinct Tof5 alleles drove the adaptation of cultivated and wild soybean to high latitudes. Molecular Plant, 2022, 15(2): 308-321.
[20]
LI H Y, DU H P, HE M L, WANG J H, WANG F, YUAN W J, HUANG Z R, CHENG Q, GOU C J, CHEN Z, LIU B H, KONG F J, FANG C, ZHAO X H, YU D Y. Natural variation of FKF1 controls flowering and adaptation during soybean domestication and improvement. The New Phytologist, 2023, 238(4): 1671-1684.
[21]
LI H Y, DU H P, HUANG Z R, HE M L, KONG L P, FANG C, CHEN L Y, YANG H, ZHANG Y H, LIU B H, KONG F J, ZHAO X H. The AP2/ERF transcription factor TOE4b regulates photoperiodic flowering and grain yield per plant in soybean. Plant Biotechnology Journal, 2023, 21(8): 1682-1694.
[22]
DONG L D, FANG C, CHENG Q, SU T, KOU K, KONG L P, ZHANG C B, LI H Y, HOU Z H, ZHANG Y H, CHEN L Y, YUE L, WANG L S, WANG K, LI Y L, GAN Z R, YUAN X H, WELLER J L, LU S J, KONG F J, LIU B H. Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics. Nature Communications, 2021, 12(1): 5445.
[23]
KOU K, YANG H, LI H Y, FANG C, CHEN L Y, YUE L, NAN H Y, KONG L P, LI X M, WANG F, WANG J H, DU H P, YANG Z Y, BI Y D, LAI Y C, DONG L D, CHENG Q, SU T, WANG L S, LI S C, HOU Z H, LU S J, ZHANG Y H, CHE Z J, YU D Y, ZHAO X H, LIU B H, KONG F J. A functionally divergent SOC1 homolog improves soybean yield and latitudinal adaptation. Current Biology, 2022, 32(8): 1728-1742.
[24]
LU S J, ZHAO X H, HU Y L, LIU S L, NAN H Y, LI X M, FANG C, CAO D, SHI X Y, KONG L P, SU T, ZHANG F G, LI S C, WANG Z, YUAN X H, COBER E R, WELLER J L, LIU B H, HOU X L, TIAN Z X, KONG F J. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nature Genetics, 2017, 49(5): 773-779.
[25]
TSUBOKURA Y, WATANABE S, XIA Z J, KANAMORI H, YAMAGATA H, KAGA A, KATAYOSE Y, ABE J, ISHIMOTO M, HARADA K. Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Annals of Botany, 2014, 113(3): 429-441.
[26]
LIU L P, SONG W W, WANG L W, SUN X G, QI Y P, WU T T, SUN S, JIANG B J, WU C X, HOU W S, NI Z F, HAN T F. Allele combinations of maturity genes E1-E4 affect adaptation of soybean to diverse geographic regions and farming systems in China. PLoS ONE, 2020, 15(7): e0235397.
[27]
ZHAI H, S X, WU H Y, ZHANG Y P, ZHANG X Z, YANG J Y, WANG Y Y, YANG G, QIU H M, CUI T T, XIA Z J. Diurnal expression pattern, allelic variation, and association analysis reveal functional features of the E1 gene in control of photoperiodic flowering in soybean. PLoS ONE, 2015, 10(8): e0135909.
[28]
DISSANAYAKA A, RODRIGUEZ T O, DI S K, YAN F, GITHIRI S M, RODAS F R, ABE J, TAKAHASHI R. Quantitative trait locus mapping of soybean maturity gene E5. Breeding Science, 2016, 66(3): 407-415.
[29]
LIU L P. Identification of soybean maturity gene haplotypes and study of their geographic distribution[D]. Beijing: China Agricultural University, 2020. (in Chinese)
[30]
CHANG S S, PARK S K, KIM B C, KANG B J, KIM D U, NAM H G. Stable genetic transformation of Arabidopsis thaliana by Agrobacterium inoculation in planta. The Plant Journal, 1994, 5(4): 551-558.
[31]
LIN X Y, LIU B H, WELLER J L, ABE J, KONG F J. Molecular mechanisms for the photoperiodic regulation of flowering in soybean. Journal of Integrative Plant Biology, 2021, 63(6): 981-994.
[32]
HU X J, LIU L P, WANG F M, HAN Y H, SUN B C, MA Q B, HUANG Z P, FENG Y, CHEN Q, YANG C Y, ZHANG M C, ZHANG K, QIN J. Construction of ms1 basic recurrent populations adapted to different ecological regions using maturity genes E1 and E2 in soybean. Scientia Agricultura Sinica, 2024, 57(17): 3305-3317. doi: 10.3864/j.issn.0578-1752.2024.17.001. (in Chinese)
[33]
LI Y L, HOU Z H, LI W W, LI H Y, LU S J, GAN Z R, DU H, LI T, ZHANG Y H, KONG F J, CHENG Y H, HE M L, MA L X, LIAO C M, LI Y R, DONG L D, LIU B H, CHENG Q. The legume-specific transcription factor E1 controls leaf morphology in soybean. BMC Plant Biology, 2021, 21(1): 531.
[34]
WAN Z, LIU Y X, GUO D D, FAN R, LIU Y, XU K, ZHU J L, QUAN L, LU W T, BAI X, ZHAI H. CRISPR/Cas9-mediated targeted mutation of the E1 decreases photoperiod sensitivity, alters stem growth habits, and decreases branch number in soybean. Frontiers in Plant Science, 2022, 13: 1066820.
[35]
MISHRA P, PANIGRAHI K C. GIGANTEA-an emerging story. Frontiers in Plant Science, 2015, 6: 8.
[36]
MARTIN-TRYON E L, KREPS J A, HARMER S L. GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation. Plant Physiology, 2007, 143(1): 473-486.
[37]
ZHAO X H, LI H Y, WANG L S, WANG J H, HUANG Z R, DU H P, LI Y R, YANG J H, HE M L, CHENG Q, LIN X Y, LIU B H, KONG F J. A critical suppression feedback loop determines soybean photoperiod sensitivity. Developmental Cell, 2024, 59(13): 1750-1763.
[38]
LI F, ZHANG X M, HU R B, WU F Q, MA J H, MENG Y, FU Y F. Identification and molecular characterization of FKF1 and GI homologous genes in soybean. PLoS ONE, 2013, 8(11): e79036.
[39]
S X. Studies on molecular mechanism regulating the expression of E1 in soybean [Glycine Max (L.) Merr.][D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Science, 2015. (in Chinese)
[40]
LIU W, JIANG B J, MA L M, ZHANG S W, ZHAI H, XU X, HOU W S, XIA Z J, WU C X, SUN S, WU T T, CHEN L, HAN T F. Functional diversification of Flowering Locus T homologs in soybean: GmFT1a and GmFT2a/5a have opposite roles in controlling flowering and maturation. The New Phytologist, 2018, 217(3): 1335-1345.
[41]
WANG Y, GU Y Z, GAO H H, QIU L J, CHANG R Z, CHEN S Y, HE C Y. Molecular and geographic evolutionary support for the essential role of GIGANTEAa in soybean domestication of flowering time. BMC Evolutionary Biology, 2016, 16: 79-91.
[42]
CAO D, TAKESHIMA R, ZHAO C, LIU B H, JUN A, KONG F J. Molecular mechanisms of flowering under long days and stem growth habit in soybean. Journal of Experimental Botany, 2017, 68(8): 1873-1884.
Scientia Agricultura Sinica
Pages 840-850
Cite this article:
LIU L, HU X, QI J, et al. Cloning of the Promoters and Analysis of Expression Patterns of Maturity Genes E1 and E2 in Soybean. Scientia Agricultura Sinica, 2025, 58(5): 840-850. https://doi.org/10.3864/j.issn.0578-1752.2025.05.002
Metrics & Citations  
Article History
Copyright
Return