This study aimed to explore the differences of phosphorus (P) morphology and phosphatase activity in different aggregates sizes, and to clarify the change mechanism of soil P component contents and availability under different long-term chemical P application rates, so as to provide the theoretical support for the efficient utilization of soil P and sustainable agricultural development.
Long-term field experiment with different chemical P fertilizer application rates were established in calcareous brown soil. Soil samples in the topsoil (0-20 cm) were collected, which were treated with three gradients of P fertilizer application rates of 0 (P0, control), 120 (P120) and 210 (P210) kg P2O5·hm-2 annually. The soil aggregate content, P component contents and alkaline phosphatase activity of different soil aggregate sizes were determined. The effects of long-term chemical P application on P morphology and phosphatase activity of different aggregates sizes in calcareous brown soil were analyzed.
Compared with P0, the stability and P component content of different aggregates in calcareous brown soil were significantly improved after long-term P application. The content of acid-soluble inorganic P (Pi-HCl) was the highest in different P components, while the content of water-soluble P (Pi-H2O), sodium bicarbonate organic P (Po-NaHCO3) and sodium hydroxide inorganic P (Pi-NaOH) were relatively low. The changes of inorganic P pools in all aggregates were higher than those in organic P pools under different treatments. Compared with P120 treatment, the inorganic P content in large aggregate (>2 mm), small aggregate (0.25-2 mm) and micro-aggregate (<0.25 mm) were reduced by 21.5%, 27.0% and 18.7%, respectively, and the organic P content decreased by 15.6%, 12.8% and 12.2%, respectively. There were significant differences in organic P contents among different aggregate sizes and P application rates. The labile P (LP) content changed largest in different P availability forms. There were extremely significant differences among different particle size and P application rate. The contribution rate of inorganic P in large aggregates (Pi,>2 mm) was the highest, ranging from 27.6% to 38.3%, while that of organic P in small aggregates (Po, 0.25-2 mm) was the lowest, ranging from 2.9% to 4.9%. The contribution rate of stable P (SP) content to total P content was the highest, accounting for 84.3-91.2%. The contribution rate of SP in large aggregates (SP,>2 mm) was the highest, ranging from 52.6% to 55.2%. Soil phosphatase activity was significantly different in soil aggregates, which increased with the increase of aggregate size. In large aggregates, the phosphatase activity was significantly increased with the increase of P application rate. In small aggregates, the phosphatase activity of P120 treatment was the highest, and it was a significant difference between them. However, there was no significant difference in phosphatase activity of micro-aggregates between different treatments. The results of correlation analysis showed that the aggregate size was negatively correlated with the content of organic P content significantly, and positively correlated with the activity of alkaline phosphatase significantly. Structural equation model (SEM) analysis results showed that the P application rate could directly affect the inorganic P content in soil and then affect the P availability in soil. Soil aggregate structural could direct influence on the organic P content and alkaline phosphatase activities, and indirectly affect the inorganic P content and P availability.
Long-term application of chemical P fertilizer significantly increased the content of aggregates, the content of P components in each size aggregates, and the activity of alkaline phosphatase in calcareous brown soil. The large aggregates contributed the most to the soil P availability. P application rate and soil aggregate regulated soil P availability synergistically. Therefore, the scientific P application and increasing the proportion of soil large aggregates were important to improve the availability of soil P utilization.