PDF (11.5 MB)
Collect
Submit Manuscript
Research Article | Open Access

Structure preserved ordinal unsupervised domain adaptation

Qing Tian1,2,3()Canyu Sun1
School of Software, Nanjing University of Information Science and Technology, Nanjing 210044, China
Wuxi Institute of Technology, Nanjing University of Information Science and Technology, Wuxi 214000, China
MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
Show Author Information

Abstract

Unsupervised domain adaptation (UDA) aims to transfer the knowledge from labeled source domain to unlabeled target domain. The main challenge of UDA stems from the domain shift between the source and target domains. Currently, in the discrete classification problems, most existing UDA methods usually adopt the distribution alignment strategy while enforcing unstable instances to pass through the low-density areas. However, the scenario of ordinal regression (OR) is rarely researched in UDA, and the traditional UDA methods cannot preferably handle OR since they do not preserve the order relationships in data labels, like in human age estimation. To address this issue, we proposed a structure-oriented adaptation strategy, namely, structure preserved ordinal unsupervised domain adaptation (SPODA). More specifically, on one hand, the global structure information was modeled and embedded into an auto-encoder framework via a low-rank transferred structure matrix. On the other hand, the local structure information was preserved through a weighted pair-wise strategy in the latent space. Guided by both the local and global structure information, a well-performance latent space was generated, whose geometric structure was adopted to further obtain a more discriminant ordinal regressor. To further enhance its generalization, a counterpart of SPODA with deep architecture was developed. Finally, extensive experiments indicated that in addressing the OR problem, SPODA was more effective and advanced than existing related domain adaptation methods.

References

1
Y. Liu, Z. Zhou, B. Sun, Cot: Unsupervised domain adaptation with clustering and optimal transport, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2023), 19998–20007. https://doi.org/10.1109/CVPR52729.2023.01915
2

M. Wang, S. Wang, X. Yang, J. Yuan, W. Zhang, Equity in unsupervised domain adaptation by nuclear norm maximization, IEEE Trans. Circuits Syst. Video Technol., 34 (2024), 5533–5545. https://doi.org/10.1109/TCSVT.2023.3346444

3

M. Wang, Y. Liu, J. Yuan, S. Wang, Z. Wang, W. Wang, Inter-class and inter-domain semantic augmentation for domain generalization, IEEE Trans. Image Process., 33 (2024), 1338–1347. https://doi.org/10.1109/TIP.2024.3354420

4
T. Mikolov, M. Karafiát, L. Burget, J.Cernockỳ, S. Khudanpur, Recurrent neural network based language model, in 11th Annual Conference of the International Speech Communication Association, (2010), 1045–1048. https://doi.org/10.21437/INTERSPEECH.2010-343
5
I. Sutskever, J. Martens, G. Hinton, Generating text with recurrent neural networks, in Proceedings of the 28th international conference on machine learning, (2011), 1017–1024.
6
T. Mikolov, S. Kombrink, L. Burget, J. Černockỳ, S. Khudanpur, Extensions of recurrent neural network language model, in 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, (2019), 5528–5531. https://doi.org/10.1109/ICASSP.2011.5947611
7
Y. Wang, S. Tang, Y. Lei, W. Song, S. Wang, M. Zhang, Disenhan: Disentangled heterogeneous graph attention network for recommendation, in Proceedings of the 29th ACM International Conference on Information Knowledge Management, (2020), 1605–1614. https://doi.org/10.1145/3340531.3411996
8
Y. Wang, Y. Li, S. Li, W. Song, J. Fan, S. Gao, et al., Deep graph mutual learning for cross-domain recommendation, in International Conference on Database Systems for Advanced Applications, (2022), 298–305. https://doi.org/10.1007/978-3-031-00126-0_22
9

Y. Wang, X. Luo, C. Chen, X. Hua, M. Zhang, W. Ju, Disensemi: Semi-supervised graph classification via disentangled representation learning, IEEE Trans. Neural Networks Learn. Syst., (2024). https://doi.org/10.1109/TNNLS.2024.3431871

10
I. Shlizerman, S. Suwajanakorn, S. Seitz. Illumination-aware age progression, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2014), 3334–3341. https://doi.org/10.1109/CVPR.2014.426
11

H. Liu, J. Lu, J. Feng, J. Zhou, Ordinal deep learning for facial age estimation, IEEE Trans. Circuits Syst. Video Technol., 29 (2019). https://doi.org/10.1109/TCSVT.2017.2782709

12
J. Wang, W. Feng, Y. Chen, H. Yu, M. Huang, P. Yu, Visual domain adaptation with manifold embedded distribution alignment, in Proceedings of the 26th ACM international Conference on Multimedia, (2018), 402–410. https://doi.org/10.1145/3240508.3240512
13

C. Ren, Y. Zhai, Y. Luo, H. Yan, Towards unsupervised domain adaptation via domain-transformer, Int. J. Comput. Vis., 132 (2024), 6163–6183. https://link.springer.com/article/10.1007/s11263-024-02174-9

14

S. David, J. Blitzer, K. Crammer, F. Pereira, Analysis of representations for domain adaptation, Adv. Neural Inf. Process. Syst., 19 (2007), 137–144.

15

S. David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, J. W. Vaughan, A theory of learning from different domains, Mach. learn., 79 (2010), 151–175. https://doi.org/10.1007/s10994-009-5152-4

16
V. Vapnik, Estimation of Dependences Based on Empirical Data, Springer Science & Business Media, 2006. https://doi.org/10.1007/0-387-34239-7
17

S. Pan, I. Tsang, J. Kwok, Q. Yang, Domain adaptation via transfer component analysis, IEEE Trans. Neural Networks Learn. Syst., 22 (2010), 199–210. https://doi.org/10.1109/TNN.2010.2091281

18

R. Combes, H. Zhao, Y. Wang, G. Gordon, Domain adaptation with conditional distribution matching and generalized label shift, Adv. Neural Inf. Process. Syst., 33 (2020).

19
J. Wang, Y. Chen, S. Hao, W. Feng, Z. Shen, Balanced distribution adaptation for transfer learning, in 2017 IEEE International Conference on Data Mining, (2017), 1129–1134. https://doi.org/10.1109/ICDM.2017.150
20
M. Long, J. Wang, G. Ding, J. Sun, P. Yu, Transfer feature learning with joint distribution adaptation, in Proceedings of the IEEE International Conference on Computer Vision, (2013), 2200–2207. https://doi.org/10.1109/ICCV.2013.274
21

S. Li, S. Song, G. Huang, Prediction reweighting for domain adaptation, IEEE Trans. Neural Networks Learn. Syst., 28 (2016), 1682–1695. https://doi.org/10.1109/TNNLS.2016.2538282

22
S. Chen, F. Zhou, Q. Liao, Visual domain adaptation using weighted subspace alignment, in 2016 Visual Communications and Image Processing (VCIP), (2016), 1–4. https://doi.org/10.1109/VCIP.2016.7805516
23

L. Zhang, S. Wang, G. Huang, W. Zuo, J. Yang, D. Zhang, Manifold criterion guided transfer learning via intermediate domain generation, IEEE Trans. Neural Networks Learn. Syst., 30 (2019), 3759–3773. https://doi.org/10.1109/TNNLS.2019.2899037

24

Y. Grandvalet, Y. Bengio, Semi-supervised learning by entropy minimization, Neural Inf. Process. Syst., (2004), 529–536.

25
S. Ahmed, D. Raychaudhuri, S. Paul, S. Oymak, A. RoyChowdhury, Unsupervised multi-source domain adaptation without access to source data, in Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, (2021), 10103–10112. https://doi.org/10.1109/CVPR46437.2021.00997
26

Q. Tian, Y. Zhu, H. Sun, S. Chen, H. Yin, Unsupervised domain adaptation through dynamically aligning both the feature and label spaces, IEEE Trans. Circuits Syst. Video Technol., 32 (2022), 8562–8573. https://doi.org/10.1109/TCSVT.2022.3192135

27
S. Roy, M. Trapp, A. Pilzer, J. Kannala, N. Sebe, E. Ricci, et al., Uncertainty-guided source-free domain adaptation, in European Conference on Computer Vision, (2022), 537–555. https://doi.org/10.1007/978-3-031-19806-9_31
28
H. Mao, L. Du, Y. Zheng, Q. Fu, Z. Li, X. Chen, et al., Source free graph unsupervised domain adaptation, in Proceedings of the 17th ACM International Conference on Web Search and Data Mining, (2024), 520–528. https://doi.org/10.1145/3616855.3635802
29
X. Wu, L. Cheng, S. Zhang, Open set domain adaptation with entropy minimization, in Pattern Recognition and Computer Vision: Third Chinese Conference, (2020), 29–41.
30
J. Kundu, N. Venkat, A. Revanur, R. Babu, Towards inheritable models for open-set domain adaptation, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2020), 12376–12385. https://doi.org/10.1109/CVPR42600.2020.01239
31
K. Saito, K. Saenko, Ovanet: One-vs-all network for universal domain adaptation, in Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, (2021), 9000–9009. https://doi.org/10.1109/ICCV48922.2021.00887
32
Y. Lu, M. Shen, A. Ma, X. Xie, J. Lai, Mlnet: Mutual learning network with neighborhood invariance for universal domain adaptation, in Proceedings of the AAAI Conference on Artificial Intelligence, 38 (2024), 3900–3908. https://doi.org/10.1609/aaai.v38i4.28182
33
F. Qiao, L. Zhao, X. Peng, Learning to learn single domain generalization, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2020), 12556–12565. https://doi.org/10.1109/CVPR42600.2020.01257
34
K. Ricanek, T Tesafaye, Morph: A longitudinal image database of normal adult age-progression, in 7th International Conference on Automatic Face and Gesture Recognition (FGR06), (2006), 341–345. https://doi.org/10.1109/FGR.2006.78
35
X. Liu, S. Li, Y. Ge, P. Ye, J. You, J. Lu, Recursively conditional gaussian for ordinal unsupervised domain adaptation, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2021), 764–773. https://doi.org/10.1109/ICCV48922.2021.00080
36

X. Liu, S. Li, Y. Ge, P. Ye, J. You, J. Lu, Ordinal unsupervised domain adaptation with recursively conditional gaussian imposed variational disentanglement, IEEE Trans. Pattern Anal. Mach. Intell., (2022), 1–14. https://doi.org/10.1109/TPAMI.2022.3183115

37

Q. Tian, W. Zhang, M. Cao, L. Wang, S. Chen, H. Yin, Moment-guided discriminative manifold correlation learning on ordinal data, ACM Trans. Intell. Syst. Technol. (TIST), 11 (2020), 1–18. https://doi.org/10.1145/3402445

38
Z. Kang, Y. Lu, Y. Su, C. Li, Z. Xu, Similarity learning via kernel preserving embedding, in Proceedings of the AAAI Conference on Artificial Intelligence, 33 (2019), 4057–4064. https://doi.org/10.1609/aaai.v33i01.33014057
39

C. Geng, S. Chen, Metric learning-guided least squares classifier learning, IEEE Trans. Neural Networks Learn. Syst., 29 (2018), 6409–6414. https://doi.org/10.1109/TNNLS.2018.2830802

40
Y. Ganin, V. Lempitsky, Unsupervised domain adaptation by backpropagation, in International Conference on Machine Learning, (2015), 1180–1189. http://proceedings.mlr.press/v37/ganin15.html
41

Y. Yao, Y. Zhang, X. Li, Y. Ye, Discriminative distribution alignment: A unified framework for heterogeneous domain adaptation, Pattern Recognit., 101 (2020), 107165. https://doi.org/10.1016/j.patcog.2019.107165

42
W. Zellinger, T. Grubinger, E. Lughofer, T. Natschläger, S. Platz, Central moment discrepancy (cmd) for domain-invariant representation learning, preprint, arXiv: 1702.08811.
43
B. Sun, J. Feng, K. Saenko, Return of frustratingly easy domain adaptation, in Proceedings of the AAAI Conference on Artificial Intelligence, 30 (2016), 2058–2065. https://doi.org/10.1609/aaai.v30i1.10306
44
M Long, Y Cao, J Wang, M Jordan, Learning transferable features with deep adaptation networks, in International Conference on Machine Learning, 37 (2015), 97–105.
45
C. Chen, Z. Chen, B. Jiang, X. Jin, Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation, in Proceedings of the AAAI Conference on Artificial Intelligence, 33 (2019), 3296–3303. https://doi.org/10.1609/aaai.v33i01.33013296
46

I. Goodfellow, J. Abadie, M. Mirza, B. Xu, D. Farley, S. Ozair, et al., Generative adversarial nets, Adv. Neural Inf. Process. Syst., (2014), 2672–2680.

47
E. Tzeng, J. Hoffman, K. Saenko, T. Darrell, Adversarial discriminative domain adaptation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2017), 7167–7176. https://doi.org/10.1109/CVPR.2017.316
48
H. Tang, K. Jia, Discriminative adversarial domain adaptation, in Proceedings of the AAAI Conference on Artificial Intelligence, 34 (2020), 5940–5947. https://doi.org/10.1609/aaai.v34i04.6054
49
K. Saito, K. Watanabe, Y. Ushiku, T. Harada, Maximum classifier discrepancy for unsupervised domain adaptation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2018), 3723–3732. https://doi.org/10.1109/CVPR.2018.00392
50
L. Zhou, M. Ye, X. Zhu, S. Li, Y. Liu, Class discriminative adversarial learning for unsupervised domain adaptation, in Proceedings of the 30th ACM International Conference on Multimedia, (2022), https://doi.org/10.1145/3503161.3548143
51

K. Saito, D. Kim, S. Sclaroff, K. Saenko, Universal domain adaptation through self supervision, Adv. Neural Inf. Process. Syst., 33 (2020), 16282–16292.

52
J. Wang, Y. Chen, H. Yu, M. Huang, Q. Yang, Easy transfer learning by exploiting intra-domain structures, in 2019 IEEE International Conference on Multimedia and Expo (ICME), (2019), 1210–1215. https://doi.org/10.1109/ICME.2019.00211
53
Q. Wang, T. Breckon, Unsupervised domain adaptation via structured prediction based selective pseudo-labeling, in Proceedings of the AAAI Conference on Artificial Intelligence, 34 (2020), 6243–6250. https://doi.org/10.1609/aaai.v34i04.6091
54

L. Zhang, J. Fu, S. Wang, D. Zhang, Z. Dong, C. Chen, Guide subspace learning for unsupervised domain adaptation, IEEE Trans. Neural Networks Learn. Syst., 31 (2020), 3374–3388. https://doi.org/10.1109/TNNLS.2019.2944455

55
K. He, H. Fan, Y. Wu, S. Xie, R. Girshick, Momentum contrast for unsupervised visual representation learning, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2020), 9729–9738. https://doi.org/10.1109/CVPR42600.2020.00975
56
T. Chen, S. Kornblith, M. Norouzi, G. Hinton, A simple framework for contrastive learning of visual representations, in International Conference on Machine Learning, (2020), 1597–1607. http://proceedings.mlr.press/v119/chen20j.html
57

R. Wang, Z. Wu, Z. Weng, J. Chen, G. Qi, Y. Jiang, Cross-domain contrastive learning for unsupervised domain adaptation, IEEE Trans. Multim., 25 (2023), 1665–1673. https://doi.org/10.1109/TMM.2022.3146744

58
W. Ma, J. Zhang, S. Li, C. Liu, Y. Wang, W. Li, Making the best of both worlds: A domain-oriented transformer for unsupervised domain adaptation, in Proceedings of the 30th ACM International Conference on Multimedia, (2022), 5620–5629. https://doi.org/10.1145/3503161.3548229
59
Y. Zhang, Z. Wang, J. Li, J. Zhuang, Z. Lin, Towards effective instance discrimination contrastive loss for unsupervised domain adaptation, in Proceedings of the IEEE/CVF International Conference on Computer Vision, (2023), 11388–11399. https://doi.org/10.1109/ICCV51070.2023.01046
60
H. Liu, M. Shao, Y. Fu, Structure-preserved multi-source domain adaptation, in 2016 IEEE 16th International Conference on Data Mining (ICDM), (2016), 1059–1064. https://doi.org/10.1109/ICDM.2016.0136
61

H. Liu, M. Shao, Z. Ding, Y. Fu, Structure-preserved unsupervised domain adaptation, IEEE Trans. Knowl. Data Eng., 31 (2018), 799–812. https://doi.org/10.1109/TKDE.2018.2843342

62

M. Meng, Q. Chen, J. Wu, Structure preservation adversarial network for visual domain adaptation, Inf. Sci., 579 (2021), 266–280. https://doi.org/10.1016/j.ins.2021.07.085

63

Q. Tian, H. Sun, C. Ma, M. Cao, Y. Chu, S. Chen, Heterogeneous domain adaptation with structure and classiffcation space alignment, IEEE Trans. Cybern., 52 (2022), 10328–10338. https://doi.org/10.1109/TCYB.2021.3070545

64
J. Jiang, Y. Ji, X. Wang, Y. Liu, J. Wang, M. Long, Regressive domain adaptation for unsupervised keypoint detection, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2021), 6780–6789. https://doi.org/10.1109/CVPR46437.2021.00671
65

C. Seah, I. Tsang, Y. Ong, Transfer ordinal label learning, IEEE Trans. Neural Networks Learn. Syst., 24 (2013), 1863–1876. https://doi.org/10.1109/TNNLS.2013.2268541

66
X. Chen, S. Wang, J. Wang, M. Long, Representation subspace distance for domain adaptation regression, in International Conference on Machine Learning, (2021), 1749–1759. http://proceedings.mlr.press/v139/chen21u.html
67

W. Wu, J. He, S. Wang, K. Guan, E. Ainsworth, Distribution-informed neural networks for domain adaptation regression, Adv. Neural Inf. Process. Syst., 35 (2022), 10040–10054.

68
I. Nejjar, Q. Wang, O. Fink, Dare-gram: Unsupervised domain adaptation regression by aligning inverse gram matrices, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2023), 11744–11754. https://doi.org/10.1109/CVPR52729.2023.01130
69
H. Wang, H. He, D. Katabi, Continuously indexed domain adaptation, preprint, arXiv: 2007.01807
70
X. Zhong, L. Xu, Y. Li, Z. Liu, E. Chen, A nonconvex relaxation approach for rank minimization problems, in Proceedings of the AAAI Conference on Artificial Intelligence, 29 (2015), 266–280. https://doi.org/10.1609/aaai.v29i1.9482
71

Q. Tian, M. Cao, S. Chen, H. Yin, Structure-exploiting discriminative ordinal multioutput regression, IEEE Trans. Neural Networks Learn. Syst., 32 (2020), 266–280. https://doi.org/10.1109/TNNLS.2020.2978508

72
P. Zadeh, R. Hosseini, S. Sra. Geometric mean metric learning, in International Conference on Machine Learning, (2016), 2464–2471. http://proceedings.mlr.press/v48/zadeh16.html
73

X. He, P. Niyogi, Locality preserving projections, Adv. Neural Inf. Process. Syst., (2003), 153–160.

74
Z. Niu, M. Zhou, L. Wang, X. Gao, G. Hua, Ordinal regression with multiple output cnn for age estimation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2016), 4920–4928. https://doi.org/10.1109/CVPR.2016.532
75
S. Moschoglou, A. Papaioannou, C. Sagonas, J. Deng, I. Kotsia, S. Zafeiriou Agedb: the first manually collected, in-the-wild age database, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, (2017), 51–59. https://doi.org/10.1109/CVPRW.2017.250
76
B. Sun, K. Saenko, Deep coral: Correlation alignment for deep domain adaptation, in European Conference on Computer Vision, (2016), 443–450. https://doi.org/10.1007/978-3-319-49409-8_35
77
C. Yu, J. Wang, Y. Chen, M Huang, Transfer learning with dynamic adversarial adaptation network, in 2019 IEEE International Conference on Data Mining (ICDM), (2019), 778–786. https://doi.org/10.1109/ICDM.2019.00088
Electronic Research Archive
Pages 6338-6363
Cite this article:
Tian Q, Sun C. Structure preserved ordinal unsupervised domain adaptation. Electronic Research Archive, 2024, 32(11): 6338-6363. https://doi.org/10.3934/era.2024295
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return