AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Highlight | Open Access

Hydraulic fracturing-induced seismicity characterization through coupled modeling of stress and fracture-fault systems

Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N1N4, Canada
College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, P. R. China
Research Institute of Petroleum Exploration and Development CNPC, Beijing 10083, P. R. China
Show Author Information

Abstract

This work summarizes our recent findings on hydraulic fracturing-induced seismicity nucleated in the Duvernay shale reservoirs within the Western Canada Sedimentary Basin. A coupled model of in-situ stress and fracture-fault systems was built to quantify four-dimensional stress and pressure changes and spatiotemporal seismicity nucleation during hydraulic fracturing. Five triggering mechanisms were successfully recognized in seismicity-frequent areas, including a direct hydraulic connection between impermeable faults and hydraulic fractures, fault slip owing to downward pressure diffusion, fault reactivation due to upward poroelastic stress perturbation, aftershocks of mainshock events, and reactivation of natural fractures surrounding the faults. This work shed light on how fracturing operations triggered the induced seismicity, providing a solid foundation for the investigation of controlling factors and mitigation strategies for hydraulic fracturing-induced seismicity.

References

 
Atkinson, G. M., Eaton, D. W., Ghofrani, H., et al. Hydraulic fracturing and seismicity in the western Canada sedimentary Basin. Seismological Research Letters, 2016, 87: 631-647.
 
Hui, G., Chen, S., Chen, Z., et al. An integrated approach to characterize hydraulic fracturing-induced seismicity in shale reservoirs. Journal of Petroleum Science and Engineering, 2021a, 196: 107624.
 
Hui, G., Chen, S., Chen, Z., et al. Investigation on two Mw 3.6 and Mw 4.1 earthquakes triggered by poroelastic effects of hydraulic fracturing operations near crooked lake, Alberta. Journal of Geophysical Research: Solid Earth, 2021b, 126: e2020JB020308.
 
Hui, G., Chen, S., Chen, Z., et al. Comprehensive characterization and mitigation of hydraulic fracturing-induced seismicity in Fox Creek, Alberta. SPE Journal, 2021c, 26(5): 2736-2747.
 
Hui, G., Chen, S., Gu, F., et al. Insights on controlling factors of hydraulically induced seismicity in the Duvernay East Shale Basin. Geochemistry, Geophysics, Geosystems, 2021d, 22: e2020GC009563.
Advances in Geo-Energy Research
Pages 269-270
Cite this article:
Hui G, Chen Z, Chen S, et al. Hydraulic fracturing-induced seismicity characterization through coupled modeling of stress and fracture-fault systems. Advances in Geo-Energy Research, 2022, 6(3): 269-270. https://doi.org/10.46690/ager.2022.03.11

909

Views

101

Downloads

24

Crossref

23

Web of Science

27

Scopus

Altmetrics

Received: 19 May 2022
Revised: 26 May 2022
Accepted: 30 May 2022
Published: 30 May 2022
© The Author(s) 2022.

Open Access This article is distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return