AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (456.9 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Highlight | Open Access

Understanding gas transport mechanisms in shale gas reservoir: Pore network modelling approach

Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)) Ministry of Education, Qingdao 266580, China
School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
Show Author Information

Abstract

This report summarizes the recent findings on gas transport mechanisms in shale gas reservoir by pore network modelling. Multi-scale pore network model was developed to accurately characterize the shale pore structure. The pore network single component gas transport model was established considering the gas slippage and real gas property. The gas transport mechanisms in shale pore systems were elaborated on this basis. A multicomponent hydrocarbon pore network transport model was further proposed considering the influences of capillary pressure and fluid occurrence on fugacity balance. The hydrocarbon composition and pore structure influences on condensate gas transport were analyzed. These results provide valuable insights on gas transport mechanisms in shale gas reservoir.

References

 
Cai, J., Wood, D. A., Hajibeygi, H., et al. Multiscale and multiphysics influences on fluids in unconventional reservoirs: Modeling and simulation. Advances in Geo-Energy Research, 2022, 6: 91-94.
 
Goral, J., Andrew, M., Olson, T., et al. Correlative core-to pore-scale imaging of shales. Marine and Petroleum Geology, 2020, 111: 886-904.
 
Loucks, R. G., Reed, R. M., Ruppel, S. C., et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 2009, 79(12): 848-861.
 
Song, W., Liu, L., Wang, D., et al. Nanoscale confined multicomponent hydrocarbon thermodynamic phase behavior and multiphase transport ability in nanoporous material. Chemical Engineering Journal, 2020, 382: 122974.
 
Song, W., Yao, J., Zhang, K., et al. The impacts of pore structure and relative humidity on gas transport in shale: A numerical study by the image-based multi-scale pore network model. Transport in Porous Media, 2021 :1-25.
 
Song, W., Yin, Y., Landry, C. J., et al. A local-effective-viscosity multirelaxation-time lattice Boltzmann pore-network coupling model for gas transport in complex nanoporous media. SPE Journal, 2021, 26(1): 461-481.
 
Tian, Z., Wei, W., Zhou, S., et al. Impacts of gas properties and transport mechanisms on the permeability of shale at pore and core scale. Energy, 2022, 244: 122707.
Advances in Geo-Energy Research
Pages 359-360
Cite this article:
Song W, Yao J, Zhang K, et al. Understanding gas transport mechanisms in shale gas reservoir: Pore network modelling approach. Advances in Geo-Energy Research, 2022, 6(4): 359-360. https://doi.org/10.46690/ager.2022.04.11

770

Views

136

Downloads

16

Crossref

14

Web of Science

17

Scopus

Altmetrics

Received: 23 June 2022
Revised: 15 July 2022
Accepted: 22 July 2022
Published: 25 July 2022
© The Author(s) 2022.

Open Access This article is distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return