AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Sequential Nucleation Growth of ZnO Nanoflowers

Nora Elizondo1( )Dora Irma Martínez1Ana Maria Arato1Rodrigo González2Francisco Vázquez3Gustavo Rodríguez3Ernesto Torres4Víctor Manuel Castaño5( )
Department of Physics, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, N. L., Código Postal: 66455, México
Civil Engineering Faculty, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, N. L., Código Postal: 66455, México
Faculty of Mechanical and Electrical Engineering, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, N. L., Código Postal: 66455, México
Departamento de Inmunología, Facultad de Medicina, UANL, Ave. Dr. José Eleuterio González 235, Col. Mitras Centro, Monterrey, N.L. México, Código Postal: 64460
Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, México
Show Author Information

Abstract

The morphological characteristics of ZnO nanostructures were systematically studied from dense rods to flower-like shapes. The ZnO flower-like samples were prepared by direct decomposition of a Zn(OH)42– precursor and by the sequential nucleation and growth method consisted of a multistep synthesis of complex nanostructured films. Condition-dependent experiments systematically were compared as to reveal the formation and detailed growth process of ZnO nanosized crystallites and aggregates. X-ray diffraction, transmission and scanning electron microscopy indicated that the precursor, solution basicity, reaction temperature and pressure as well as reaction time, were responsible for the variations of the morphologies. ZnO flower-like and large nanorods of exceptional uniformity, orientation alignment, and optical properties have been produced in this work. Several synthesis steps are needed to produce oriented nanostructures that are more complex than simple nanorod architectures. These structures have potential applications in building functional electronics devices and optoelectronic properties.

References

[1]

Z.W. Pan, Z.R. Dai, and Z.L. Wang, Nanobelts of semiconducting oxides. Science, 2001, 291: 1947-1949.

[2]

H. Rensmo, K. Keis, H. Lindstrom, et al., High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J. Phys. Chem. B, 1997, 101: 2598-2601.

[3]

M.A. Chamjangali, S. Boroumand, Synthesis of flower-like Ag-ZnO nanostructure and its application in the photodegradation of methyl orange. J. Braz. Chem. Soc. , 2013, 24: 1329-1338.

[4]

M. Huang, S. Mao, H. Feick, et al., Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292: 1897-1899.

[5]

M. Iwasaki, Y. Inubushi, and S. Ito, New route to prepare ultrafine ZnO particles and its reaction mechanism. J. Mater. Sci. Lett. , 1997, 16: 1503-1505.

[6]

D. Jezequel, J. Guenot, N. Jouini, et al., Submicrometer zinc oxide particles: Elaboration in polyol medium and morphological characteristics. J. Mater. Res. , 1995, 10: 77-83.

[7]

O. Milosevic, D. Uskokovic, Synthesis of BaTiO3 and ZnO varistor precursor powders by reaction spray pyrolysis. Mater. Sci. Eng. A, 1993, A168: 249-252.

[8]

D.R. Chen, X. Jiao, and G. Cheng, Hydrothermal synthesis of zinc oxide powders with different morphologies. Solid State Commun. , 2000, 113: 363-366.

[9]

C.H. Lu, C.H. Yeh, Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder. Ceram. Int. , 2000, 26: 351-357.

[10]

T. Sekiguchi, S. Miyashita, K. Obara, et al., Hydrothermal growth of ZnO single crystals and their optical characterization. J. Cryst. Growth, 2000, 214/215: 72-76.

[11]

B. Cheng, E.T. Samulski, Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios. Chem. Commun., 2004, 8: 986-987.

[12]

J.M. Wang, L. Gao, Wet chemical synthesis of ultralong and straight single-crystalline ZnO nanowires and their excellent UV emission properties. J. Mater. Chem. , 2003, 13: 2551-2554.

[13]

Q.C. Li, V. Kumar, Y. Li, et al., Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chem. Mater. , 2005, 17: 1001-1006.

[14]

Z. Wang, X. Qian, J. Yin, et al., Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route. Langmuir, 2004, 20: 3441-3448.

[15]

R.A. McBride, J.M. Kelly, and D.E. McCormack, Growth of well-defined ZnO microparticles by hydroxide ion hydrolysis of zinc salts. J. Mater. Chem. , 2003, 13: 1196-1201.

[16]

Y. Zhang, H.B. Jia, X.H. Luo, et al., Synthesis, microstructure, and growth mechanism of dendrite ZnO nanowires. J. Phys. Chem. B, 2003, 107: 8289-8293.

[17]

J.P. Liu, X.T. Huang, Y.Y. Li, et al., Large-scale synthesis of flower-like ZnO structures by a surfactant-free and low-temperature process. Mater. Chem. Phys. , 2006, 98: 523-527.

[18]

X.D. Gao, X.M. Li, and W.D. Yu, Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex. J. Phys. Chem. B, 2005, 109: 1155-1161.

[19]

T.L. Breen, J. Tien, S.R.J. Oliver, et al., Design and self-assembly of open, regular, 3D mesostructures. Science, 1999, 284: 948-951.

[20]

R.F. Service, How far can we push chemical self-assembly? Science, 2005, 309: 95.

[21]

J.S. Hu, Y.G. Guo, H.P. Liang, et al., Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms. J. Am. Chem. Soc. , 2005, 127: 17090-17095.

[22]

G.M. Whitesides, M. Boncheva, Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. , 2002, 99: 4769-4774.

[23]

K. Govender, D.S. Boyle, P.B. Kenway, et al., Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem. , 2004, 14: 2575-2591.

[24]

W. Zhang, X. Wen, and S. Yang, Controlled reactions on a copper surface: Synthesis and characterization of nanostructured copper compound films. Inorg. Chem. , 2003, 42: 5005-5014.

[25]

W. Zhang, X. Wen, S. Yang, et al., Single-crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature. Adv. Mater. , 2003, 15: 822-825.

[26]

L. Zhang, J. Yu, M. Mo, et al., A general solution-phase approach to oriented nanostructured films of metal chalcogenides on metal foils: The case of nickel sulphide. J. Am. Chem. Soc. , 2004, 126: 8116-8117.

[27]

H. Hou, Y. Xie, and Q. Li, Large-Scale synthesis of single-crystalline quasi-aligned submicrometer CuO ribbons. Cryst. Growth Des. , 2005, 5: 201-205.

[28]

Y. Li, Z. Wang, X. Ma, et al., Large-scale CdX (X=S, Se) microtube arrays on glass substrate: transformation of CdOHCl microrod arrays by a simple template-sacrificing solution method. J. Solid State Chem. , 2004, 177: 4386-4393.

[29]

S. Peulon, D. Lincot, Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions. J. Electrochem. Soc. , 1998, 145: 864-874.

[30]

R. Konenkamp, K. Boedecker, M.C. Lux-Steiner, et al., Thin film semiconductor deposition on free-standing ZnO columns. Appl. Phys. Lett. , 2000, 77: 2575-2577.

[31]

M. Wong, A. Berenov, X. Qi, et al., Electrochemical growth of ZnO nano-rods on polycrystalline Zn foil. Nanotechnology, 2003, 14: 968-973.

[32]

M. Izaki, T. Omi, Transparent zinc oxide films prepared by electrochemical reaction. Appl. Phys. Lett. , 1996, 68 : 2439-2440.

[33]

B. Canava, D. Lincot, Nucleation effects on structural and optical properties of electrodeposited zinc oxide on tin oxide. J. Appl. Electrochem. , 2000, 30: 711-716.

[34]

R. Liu, A.A. Vertegel, E.W. Bohannan, et al., Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold. Chem. Mater. , 2001, 13: 508-512.

[35]

R. Liu, F. Oba, E.W. Bohannan, et al., Shape control in epitaxial electrodeposition: Cu2O nanocubes on InP(001). Chem. Mater. , 2003, 15: 4882-4885.

[36]

M.J. Siegfried, K.S. Choi, Electrochemical crystallization of cuprous oxide with systematic shape evolution. Adv. Mater. , 2004, 16: 1743-1746.

[37]

M. Maosong, J.C. Yu, L. Zhang, et al., Self-assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres. Adv. Mater. , 2005, 17: 756-760.

[38]

Z. Wang, X. Qian, J. Yin, et al., Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route. Langmuir, 2004, 20: 3441-3448.

[39]

X. Gao, X. Li, and W. Yu, Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex. J. Phys. Chem. B, 2005, 109: 1155-1161.

[40]

A. Jackson, J. Vincent, and R. Turner, The mechanical design of nacre. Proc. R. Soc. London Ser. B, 1988, 234: 415-440.

[41]

S. Yamabi, H. Imai, Growth conditions for wurtzite zinc oxide films in aqueous solutions. J. Mater. Chem. , 2002, 12: 3773-3778.

[42]

W.J. Li, E.W. Shi, W.Z. Zhong, et al., Growth mechanism and growth habit of oxide crystals. J. Cryst. Growth, 1999, 203: 186-196.

[43]

K. Bustos, A. Martinez, G. Martinez, et al., Covalently bonded chitosan on graphene oxide via redox reaction. Materials, 2013, 6: 911-926.

[44]

G. Hernandez, F. Rojas, and V.M. Castaño, Ordered SiO2-(phenolic-formaldehyde resin) in situnanocomposites. Nanotechnology, 2003, 15: 98-103.

[45]

R.C. Desai, R. Kapral, Dynamics of self-organized and self-assembled structures. Cambridge University Press, 2009.

[46]

W. Brostow, H.E. Hagg-Lobland, Materials: Introduction and applications. John Wiley & Sons, 2017.

[47]

M.D. Bermudez, W. Brostow, F.J. Carrion-Vilches, et al., Scratch resistance of polycarbonate containing ZnO nanoparticles: Effects of sliding direction. J. Nanosci. & Nanotech., 2010, 10: 6683-6686.

Nano Biomedicine and Engineering
Pages 87-95
Cite this article:
Elizondo N, Martínez DI, Arato AM, et al. Sequential Nucleation Growth of ZnO Nanoflowers. Nano Biomedicine and Engineering, 2018, 10(1): 87-95. https://doi.org/10.5101/nbe.v10i1.p87-95

502

Views

20

Downloads

4

Crossref

3

Scopus

Altmetrics

Received: 12 January 2018
Accepted: 06 March 2018
Published: 14 March 2018
© Nora Elizondo, Dora Irma Martínez, Ana Maria Arato, Rodrigo González, Francisco Vázquez, Gustavo Rodríguez, Ernesto Torres, and Víctor Manuel Castaño.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return