AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Multifunctional Fluorocarbon-conjugated Nano-particles of Varied Morphologies to Enhance Diagnostic Effects in Breast Cancer

Melissa Ronni Laughter1,+Anna Laura Nelson1,+Maria Bortot1Brisa Pena1Bolin Liu2Daewon Park1( )
Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045 USA
Department of Genetics, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA

+ These authors contributed equally to this work.

Show Author Information

Abstract

A multifunctional trastuzumab-nanoparticle-fluorocarbon system was developed to maximize the diagnostic effects in human epidermal growth factor receptor 2 (HER2)-positive breast cancer. The mesoporous silica nanoparticle shape (e.g. amorphous, spherical, and tubular) was altered to optimize the ultrasound contrast potential. Fluorocarbon conjugated mesoporous silica nanoparticles produced higher mean pixel intensities. At lower non-toxic concentrations, tubular shaped nanoparticles produced a higher mean pixel intensity compared to amorphous and spherical particles. All systems displayed a clear binding preference towards HER2-positive breast cancer cells. Increased incubation times and conjugation of fluorocarbon to mesoporous nanoparticles increased binding preference to HER2-positive breast cancer cells. The highest binding affinity was seen with tubular shaped nanoparticles as compared to amorphous and spherical particles. The trastuzumab-nanoparticle-fluorocarbon system of each morphology displayed functionality of enhancing contrast in ultrasound.

References

[1]

R.L. Siegel, K.D. Miller, and A. Jemal, Cancer statistics, 2018. CA. Cancer J. Clin. [Internet], 2018, 68(1): 7-30.

[2]

M.M. Moasser, Targeting the function of the HER2 oncogene in human cancer therapeutics. Oncogene, 2011, 26(46): 6577-6592.

[3]
G. Demonty, C. Bernard-Marty, F. Puglisi, et al., Progress and new standard (1); G. Demonty, C. Bernard-Marty, F. Puglisi, et al., Progress and New standards of care in the management of HER-2 positive breast cancer. Eur. J. Cancer, 2007, 43(3): 497-509.
[4]

E.H. Romond, E.A. Perez, J. Bryant, et al., Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med, 2005; 353(16): 1673-1684.

[5]

M. Khairalseed, K. Javed, G. Jashkaran, et al., Monitoring early breast cancer response to neoadjuvant therapy using h-scan ultrasound imaging. J. Ultrasound Med, 2019; 38(5): 1259-1268.

[6]

J. Fernandes, L. Sannachi, W.T. Tran, et al., Monitoring breast cancer response to neoadjuvant chemotherapy using ultrasound strain elastography. Transl. Oncol, 2019, 12(9): 1177-1184.

[7]

R. Guo, G. Lu, B. Qin, and B. Fei, Ultrasound Imaging Technologies for Breast Cancer Detection and Management: A Review. Ultrasound Med. Biol. [Internet], 2018, 44(1): 37-70.

[8]

J. Geisel, M. Raghu, and R. Hooley, The role of ultrasound in breast cancer screening: The case for and against ultrasound. semin. Ultrasound, CT MRI, 2018, 39(1): 25-34.

[9]

M.A. Hahn, A.K. Singh, P. Sharma, et al., Nanoparticles as contrast agents for in-vivo bioimaging: Current status and future perspectives. Anal. Bioanal. Chem, 2011, 399(1): 3-27.

[10]

M. Figueiredo, R. Esenaliev, PLGA nanoparticles for ultrasound-mediated gene delivery to solid tumors. J. Drug Deliv, 2012, 2012: 767839.

[11]

X. Wei, Y. Li, S. Zhang, X. Gao, et al., Ultrasound targeted apoptosis imaging in monitoring early tumor response of trastuzumab in a murine tumor xenograft model of Her-2-positive breast cancer. Transl. Oncol, 2014, 7(2): 284-291.

[12]

K.A. Kaphingst, S. Persky, and C. Lachance, Theranostic imaging of cancer. Eur. J. Radiol, 2012, 14(4): 384-399.

[13]

A. Milgroom, M. Intrator, K. Madhavana, et al., Mesoporous silica nanoparticles as a breast-cancer targeting ultrasound contrast agent. Colloids Surf B Biointerfaces, 2016, 116: 652-657.

[14]

A.A. Alexander-Bryant, W.S. Vanden Berg-Foels, and X. Wen, Bioengineering strategies for designing targeted cancer therapies. Bioengineering, 2014, 118: 1-59.

[15]

S. Kwon, R.K. Singh, R.A. Perez, et al., Silica-based mesoporous nanoparticles for controlled drug delivery. J. Tissue Eng, 2013, 4: 20-22.

[16]

L.B. Peppas, Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug-delivery. Int. J. Pharm, 1995, 116(1): 1-9.

[17]

J.M. Correas, L. Bridal, A. Lesavre, et al., Ultrasound contrast agents: Properties, principles of action, tolerance, and artifacts. Eur. Radiol, 2001, 11(8): 1316-1328.

[18]

Y.J. Wong, L. Zhu, W.S. Teo, et al., Revisiting the Stöber method: Inhomogeneity in silica shells. J. Am. Chem. Soc, 2011, 133(30): 11422-11425.

[19]

K. Zhang, H. Chen, X. Guo, et al., Double-scattering/reflection in a single nanoparticle for intensified ultrasound imaging. Sci. Rep, 2015, 5: 1-11.

[20]

X. Huang, L. Li, T. Liu, et al., The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano, 2011, 5(7): 5390-5399.

[21]

B.G. Amsden, Liquid, injectable, hydrophobic and biodegradable polymers as drug delivery vehicles. Macromol. Biosci, 2010, 10(8): 825-835.

[22]

V. Cauda, A. Schlossbauer, and T. Bein, Bio-degradation study of colloidal mesoporous silica nanoparticles: Effect of surface functionalization with organo-silanes and poly(ethylene glycol). Microporous Mesoporous Mater, 2010, 132(1-2): 60-71.

[23]

J.Y. Oh, H.S. Kim, L. Palanikumar, et al., Cloaking nanoparticles with protein corona shield for targeted drug delivery. Nat. Commun, 2018, 9: 4548.

[24]

A. Yildirim, R. Chattaraj, N.T. Blum, et al., Stable encapsulation of air in mesoporous silica nanoparticles: fluorocarbon-free nanoscale ultrasound contrast agents. Adv. Healthc. Mater, 2016, 5(11): 1290-1298.

[25]

K. Mann, M. Kullberg, Trastuzumab-targeted gene delivery to Her2-overexpressing breast cancer cells. Cancer Gene Ther, 2016, 23(7): 221-228.

[26]

H. Sanaeishoar, M. Sabbaghan, and F. Mohave, Synthesis and characterization of micro-mesoporous MCM-41 using various ionic liquids as co-templates. Microporous Mesoporous Mater, 2015, 217: 219-224.

[27]

A. Dabbagh, R. Mahmoodian, B.J.J. Abdullah, et al., Low-melting-point polymeric nanoshells for thermal-triggered drug release under hyperthermia condition. Int. J. Hyperth, 2015, 31(8): 920-929.

[28]

L.E. van Vlerken, M.M. Amiji, Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin. Drug Deliv, 2006, 3(2): 205-216.

[29]

S. Sahoo, C.K. Chakraborti, and P.K. Behera, FTIR and Raman spectroscopic investigations of Ofloxacin / Carbopol 940 mucoadhesive suspension. Int. J. PharmTech Res, 2012, 4(1): 382-391.

[30]

S.E.A. Gratton, P.A. Ropp, P.D. Pohlhaus, et al., The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci, 2008, 105(33): 11613-11618.

[31]

A. Wani, G.H.L. Savithra, A. Abyad, et al., Surface PEGylation of mesoporous silica nanorods (MSNR): Effect on loading, release, and delivery of mitoxantrone in hypoxic cancer cells. Sci. Rep, 2017, 7(1): 1-11.

[32]

X. Huang, X. Teng, D. Chen, et al., The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials, 2010, 31(3): 438-448.

[33]

A. Banerjee, J. Qi, R. Gogoi, et al., Role of nanoparticle size, shape and surface chemistry in oral drug delivery HHS public access. J Control Release, 2016, 238(805): 176-185.

[34]

S. Casciaro, F. Conversano, A. Ragusa, et al., Optimal enhancement configuration of silica nanoparticles for ultrasound imaging and automatic detection at conventional diagnostic frequencies. Invest. Radiol, 2010, 45(11): 715-724.

[35]

P.J. Kempen, S. Greasley, K.A. Parker, et al., Theranostic mesoporous silica nanoparticles biodegrade after pro-survival drug delivery and ultrasound / magnetic resonance imaging of stem cells. Theranostics, 2015, 5(6): 631-642.

[36]

A. Chonn, S.C. Semple, and P.R. Cullis, Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. J. Biol. Chem, 1992, 267(26): 18759-18765.

[37]

P. Jackson, S. Periasamy, V. Bansal, et al., Evaluation of the effects of gold nanoparticle shape and size on contrast enhancement in radiological imaging. Australas. Phys. Eng. Sci. Med, 2011, 34(2): 243-249.

[38]

V.T. Cong, K. Gaus, R.D. Tilley, et al., Rod-shaped mesoporous silica nanoparticles for nanomedicine: recent progress and perspectives. Expert Opin. Drug Deliv, 2018, 15(9): 881-892.

[39]

N.P. Truong, M.R. Whittaker, C.W. Mak, et al., The importance of nanoparticle shape in cancer drug delivery. Expert Opin. Drug Deliv, 2015, 12(1): 129-42.

[40]

C. Kinnear, T.L. Moore, L. Rodriguez-Lorenzo, et al., Form follows function: nanoparticle shape and its implications for nanomedicine. Chem. Rev, 2017, 117(17): 11476-11521.

[41]

K. Kettler, K. Veltman, D. van de Meent, et al., Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ. Toxicol. Chem, 2014, 33(3): 481-492.

[42]

F. Lu, S.H. Wu, Y. Hung, et al., Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small, 2009, 5(12): 1408-1413.

[43]

Q. Mu, N.S. Hondow, L. Krzemiński, et al., Mechanism of cellular uptake of genotoxic silica nanoparticles. Part. Fibre Toxicol, 2012, 9: 1-11.

[44]

E. Quaia. Microbubble ultrasound contrast agents: An update. Eur. Radiol, 2007, 17(8): 1995-2008.

[45]

D. Cosgrove. Ultrasound contrast agents: An overview. Eur. J. Radiol, 2006, 60(3): 324-330.

[46]

F. Calliada, R. Campani, O. Bottinelli, et al., Ultrasound contrast agents: Basic principles. Eur. J. Radiol, 1998, 27: 157-160.

[47]

A. Albanese, P.S. Tang, and W.C.W. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng, 2012, 14: 1-16.

[48]

W.I. Hagens, A.G. Oomen, W.H. de Jong, et al., What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul. Toxicol. Pharmacol, 2007, 49(3): 217-29.

Nano Biomedicine and Engineering
Pages 52-61
Cite this article:
Laughter MR, Nelson AL, Bortot M, et al. Multifunctional Fluorocarbon-conjugated Nano-particles of Varied Morphologies to Enhance Diagnostic Effects in Breast Cancer. Nano Biomedicine and Engineering, 2021, 13(1): 52-61. https://doi.org/10.5101/nbe.v13i1.p52-61

475

Views

17

Downloads

2

Crossref

2

Scopus

Altmetrics

Received: 10 September 2017
Accepted: 20 September 2017
Published: 27 September 2017
© Melissa Ronni Laughter, Anna Laura Nelson, Maria Bortot, Brisa Pena, Bolin Liu, and Daewon Park.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return