AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Amino Acid Functionalization of Multi-Walled Carbon Nanotubes for Enhanced Apatite Formation and Biocompatibility

Ahmed Haroun1( )Zlatina Gospodinova2,3Natalia Krasteva2
Chemical Industries Research Division, National Research Centre, 12622 Dokki, Giza, Egypt
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sci, Sofia, Bulgaria
Institute of Plant Physiology and Genetics, Bulgarian Academy of Sci, Sofia, Bulgaria
Show Author Information

Abstract

The limitation in bone tissue engineering is the lack of available natural or synthetic biomaterials to replace bone tissue under need. Carbon nanotubes have great potential as bone tissue scaffolds because of their remarkable mechanical and electrical properties combined with high aspect ratio. In this work, we demonstrated for the first time a novel approach based on the sol-gel technique for functionalization of multi-walled carbon nanotubes (MWCNTs) with two amino acids: L-arginine, L(+) Arg and L-aspargine, L(+) Asp. We have examined the effect of both functionalities on physico-chemical properties of MWCNTs, cytotoxicity in osteosarcoma MG63 and normal fibroblastic BJ cells and the ability to induce nucleation and growth of hydroxyapatite (HA) crystals in vitro under physiological concentrations of Ca2+ and PO4+ (SBF). The scaffolds were characterized using Fourier transform infrared spectroscopy (FTIR-ATR), dynamic light scattering technique (DLS), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The results showed that both functionalized MWCNTs have a particle size of 269 and 411 nm, a zeta potential of –12.8 and –8.8 mV, respectively, high colloidal stability, enhanced biocompatibility, and enhanced formation of an apatite layer on the scaffolds surface in comparison to ox-MWCNTs. Altogether, the results confirmed the important role of the amino acids L(+) Arg and L(+) Asp in ox-MWCNTs-based composites for bone tissue engineering applications.

References

[1]

S. Mallakapour, A. Zadehnazari. Functionalization of multi-wall carbon nanotubes with amino acid and its influence on the properties of thiadiazol bearing poly(amide-thioester-imide) composites. Synthetic Metals 2013, 169: 1-11.

[2]

S. Mallakapour, S. Soltanian, Functionalized multi-wall carbon nanotube reinforced poly(ester-imide) bionanocomposites containing L-leucine amino acid units. J. Polym. Res. 2014, 21: 335-342.

[3]

S. Mallakapour, S. Soltanian. Vitamin C functionalized multi-walled carbon nanotubes and its reinforcement on poly(ester-imie) nanocomposites containing L-isolucine amino acid moiety. Composite Interf. 2016, 23: 209-221.

[4]

X. Ling, Y. Wei, L. Zou, S. Xu. Functionalization and dispersion of multiwalled carbon nanotubes modified with poly-lysine. Colloids Surf. A: Physico-chem Eng Aspects 2014, 443: 19-26.

[5]

L.J. Cui, Y.B. Wang, Xiu J. et al. Effect of functionalization of multiwalled carbon nanotube on the curing behavior and mechanical property of multiwalled carbon nanotube/epoxy composites. Mater. Des. 2013, 49: 279-284.

[6]

Z. Li, Z. Wu, K. Li. The high dispersion of DNA-multiwalled carbon nanotubes and their properties. Anal. Biochem. 2009, 387: 267-270.

[7]

Q. Mu, W. Liu, Y. Xing et al. Protein binding by functionalized multiwalled carbon nanotubes is governed by the surface chemistry of both parties and te nanotube diameter. J. Phys. Chem. C. 2008, 112: 3300-3307.

[8]

M. Sheikholeslam, M. Pritzker, P. Chen. Disoersion of multiwalled carbon nanotubes in water using ionic-complementary peptides. Langmuir 2012, 28: 12550-12556.

[9]
A.A. Haroun, H.A. Taie. Preparation and rational biological evaluation of functionalized carbon nanotube with plant extracts. Proceeding at 2nd Int. Symposium on Materials and Sustainable Development, 9-10 November, Algeria, 2015.
[10]

W. Hai-Chen, C. Xueling, L. Lei, Z. Feng, Z. Yuliang. Chemistry of carbon nanotubes in biomedical applications. J. Mater. Chem. 2010, 20: 1036-1052.

[11]

D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato. Chemistry of carbon nanotubes. Chem. Rev. 2006, 106: 1105-1136.

[12]

A.A. White, S.M. Best, I.A. Kinloch. Hydroxyapatite-carbon nanotube composites for biomedical applications: A Review. Int. J. Appl. Ceram. Technol. 2007, 4: 1-13.

[13]

A.A. Haroun, F. Ayoob, E. Nashy, O. Mohamed, A. Rabi. Sol-gel preparation and in vitro kinetic release study of albendazole-immobilized MWCNTs. Egy J. Chem 2019, 63: 645-654.

[14]

F. Ayoob, A.A. Haroun, E. Nashy, O. Mohamed, S. Abdelshafy, A. Rabi. Preparation, characterization and in vitro toxicity study of antiparasitic drugs loaded onto functionalized MWCNTs. Egy J. Chem 2020, 63: 3829-3836.

[15]

A.A. Haroun, H.A. Amin, S.H. Abd El-Alim. Preparation, Characterization and In vitro biological activity of soyasapogenol B loaded onto functionalized multi-walled carbon nanotubes. Curr Bio Comp 2018, 14: 364-372.

[16]

A.A. Haroun, H.A. Amin, S.H. Abd El-Alim. Immobilization and in vitro evaluation of soyasapogenol B onto functionalized multi-walled carbon nanotubes. IRBM 2018, 39: 35-42.

[17]

H.A. Amin, A.A. Haroun. Comparative studies of free and immobilized Aspergillus flavus onto functionalized multiwalled carbon nanotubes for soyasapogenol B production. Egy Pharm J. 2017, 16: 138-143.

[18]

A.A. Haroun, A.M. Elnahrawy, H.I. Abd-Alla. Sol-gel preparation and in vitro cytotoxic activity of nanohybrid structures based on multi-walled carbon nanotubes and silicate. Inorg Nano-Metal Chem 2017, 47: 1023-1027.

[19]

A.A. Haroun, H.A. Taie. Cytotoxicity and antioxidant activity of beta vulgaris extract released from grafted carbon nanotubes based nanocomposites. Macromolecular Symposia 2014, 337: 25-33.

[20]

B. Zhao, H. Hu, S.K. Mandal, R.C. Haddon. A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem. Mater. 2005, 17: 3235-3241.

[21]

M. Świętek, A. Brož, J. Tarasiuk, S. Wroński, W. Tokarz, A. Kozieł, M. Błażewicz, L. Bačáková. Carbon nanotube/iron oxide hybrid particles and their PCL-based 3D composites for potential bone regeneration. Mater. Sci. Eng. C 2019, 104: 109913.

[22]

C. Wang, B. Yu, Y. Fan, R.W. Ormsby, H.O. McCarthy, N. Dunne, X. Li, Incorporation of multi-walled carbon nanotubes to PMMA bone cement improves cytocompatibility and osseointegration. Mater. Sci. Eng. C 2019, 103: 109823.

[23]

S. Mombini, J. Mohammadnejad, B. Bakhshandeh, A. Narmani, J. Nourmohammadi, S. Vahdat, S. Zirak. Chitosan/PVA/CNT nanofibers as electrically conductive scaffolds for cardiovascular tissue engineering. Int. J. Biol. Macromol. 2019, 140: 278-287.

[24]

R. Teixeira-Santos, M. Gomes, L.C. Gomes, F.J. Mergulhao. Antimicrobial and anti-adhesive properties of carbon nanotube-based surfaces for medical applications: a systematic review. iScience 2020, 24: 102001.

[25]

B. Song, Z. Zeng, G. Zeng, J. Gong, R. Xiao, M. Chen, X Tang, S. Ye, M. Shen. Effects of hydroxyl, carboxyl, and amino functionalized carbon nanotubes on the functional diversity of microbial community in riverine sediment. Chemosphere 2021, 262: 128053.

[26]

L. Liu, B. Yang, L.Q. Wang, J.P. Huang, W.Y. Chen, Q. Ban, Y. Zhang, R. You, L. Yin, Y.Q. Guan. Biomimetic bone tissues engineering hydrogel scaffolds constructed using ordered CNTs and HA induce the proliferation and differentiation of BMSCs. J. Mater. Chem. B 2020, 8: 558.

[27]

K.D. Patel, T.H. Kim, N. Mandakhbayar, R. Singh, J.H. Jang, J.H. Lee, H.W. Kim. Coating biopolymer nanofibers with carbon nanotubes accelerates tissue healing and bone regeneration through orchestrated cell- and tissue-regulatory responses. Acta Biomaterialia 2020, 108: 97-110.

[28]

B. Huang, C. Vyas, J.J. Byun, M. El-Newehy, Z. Huang, P.J. Da Silva Bartolo. Aligned multi-walled carbon nanotubes with nanohydroxyapatite in a 3D printed polycaprolactone scaffold stimulates osteogenic differentiation. Mater Sci Eng C 2020, 108: 110374.

[29]

N. Anzar, R. Hasan, M. Tyagi, ; N. Yadav, J. Narang. Carbon nanotube-A review on Synthesis, Properties and plethora of applications in the field of biomedical science. Sensors Int. 2020, 1: 100003.

[30]

A Bagherzade, M. Jamshidi. Thermo-mechanical properties of epoxy nanocomposites incorporating amino acid and acid functionalized multi-walled carbon nanotubes. J. Composite Mater 2020, 54: 1847-1861.

[31]

H. Xin, X. Xiaoling, B. Guangxu, Y. Yunjun. Studies on the effects of different multiwalled carbon nanotube functionalization techniques on the properties of bio-based hybrid non-isocyanate polyurethane. RSC Adv. 2020, 10: 2180.

[32]

H. Ravanbakhsh, G. Bao, N. Latifi, L.G. Mongeau. Functionalized carbon nanotube-based composite hydrogels for vocal fold tissue engineering: biocompatibility, rheology, and swelling. Mater Sci Eng C Mater Biol Appl. 2019, 103: 109861.

[33]

M.B. Ebrahim-Habibi, M. Ghobeh, F.A. Mahyari, . H. Rafii-Tabar, P. Sasanpour. An investigation into non-covalent functionalization of a single-walled carbon nanotube and a graphene sheet with protein G: A combined experimental and molecular dynamics study. Scientific Reports 2019, 9: 1273.

[34]

R. Rahim Ghadari, A. Kashefi. Amino acid functionalized single-wall carbon nanotubes in thermoresponsive drug delivery systems: A Computational Study. Chem Select 2019, 4: 1516-1524.

[35]

M. Tanaka, K. Aoki, H. Haniu, T. Kamanaka, T. Takizawa, A. Sobajima, K. Yoshida, M. Okamoto, H. Kato, N. Saito. Applications of carbon nanotubes in bone regenerative medicine. Nanomaterials 2020, 10: 659.

[36]

T.M. Hadi, S.S. Sara, S. Faeze. Preparation and evaluation of polycaprolactone/amine functionalized carbon nanotube electrospun nanocomposite scaffold containing mesenchymal stem cells for use in hard tissue engineering. J. Adv Mater Technol 2020, 8: 19-30.

[37]

B. Huang. Carbon nanotubes and their polymeric composites: the applications in tissue engineering. Biomanufacturing Rev 2020, 5: 3.

[38]

J.H. George, M.S. Shaffer, M.M. Stevens. Investigating the cellular response to nanofibrous materials by use of a multiwalled carbon Na-nanotube model. J. Exp. Nanosci. 2006, 1: 1-12.

[39]

L.P. Zanello, B. Zhao, H. Hu, R.C. Haddon. Bone cell proliferation on carbon nanotubes. Nano Lett. 2006, 6: 562-567.

[40]

D. Pantarota, M. Prato, A. Bianco. Translocation of bioactive peptides across cell membrane by carbon nanotubes. Chem. Commun. 2004, 1: 16-17.

[41]

C.M. Sayes, J.D. Fortner, W. Guo, D. Lyon, The differential cytotoxicity of water soluble fullerenes. Nano Lett. 2004, 4: 1881-1887.

[42]

M.F.L. De Volder, S.H. Tawfick, R.H. Baughman et al. Carbon nanotubes: present and future commercial applications. Science 2013, 339; 535-539.

[43]

S.T. Yang, X. Wang, G; Jia et al. Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicology Lett. 2008, 181: 182-189.

[44]

R. Singh, D. Pantarotto, L. Lacerda, G. Pastorin, C. Klumpp, M. Prato, A. Bianco, K. Kostarelos, Tissue biodistribution and blood clearance rates of intravenously administrated NT radiotracers. Proc. Natl. Acad. Sci. 2006, 103: 3357-3362.

[45]

A. A Haroun, B.M. Zaki, M. Shalash, R.A. Morsy. Preparation and histological study of multiwalled cacrbon nanotubes bone graft in management of class Ⅱ furcation defects in dogs. Open Access Macedonian J Med. Sci. 2018, 7: 3634-3641.

[46]

A. A Haroun, A.H. Neamat, S.A. Nasry. Histological study of novel bone grafts based on ß-cyclodextrin/hydroxyapatite for class Ⅱ furcation defects in dogs. J. Appl Sci Res 2013, 9: 3820-3833.

[47]

A. A Haroun, A.H. Mossa, S.M. Mohafrash. Preparation and biochemical evaluation of functionalized multi-walled carbon nanotubes with P. granatum extract. Curr Bio Comp 2019, 15: 138-144.

[48]

B. Palazzo, D. Walsh, M. Iafisco, E. Foresti, L. Bertinetti et al. Amino acid synergetic effect on structure, morphology and surface properties of bio-mimetic apatite nano-crystals. Acta Biomater 2009, 5: 1241-1252.

[49]

W.H. Lee, C.Y. Loo, A.V. Zavgorodny, R. Rohanizadeh. High protein adsorptive capacity of amino-acid functionalized hydroxyapatite. J Biomed Mater Res A 2011, 101: 873-883.

[50]

K.P.T. ank, K.S. Chudasama, V.S. Thaker, MJ. Joshi. Cobalt doped nano hydroxyapatite: synthesis, characterization, antimicrobial and haemolytic studies. J Nanopart Res 2013, 15: 1644-1654.

[51]

T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro. Solutions able to reproduce in vivo surface-structure change in bioactive glass-ceramic A-W. J Biomed Mater Res 1990, 24: 721–34.

[52]

T. Kokubo. Bioactive glass ceramics: properties and applications. Biomaterials 1991, 12: 155-163.

[53]

H.M. Elgendy, M.E. Norman, A.R. Keaton, C.T. Laurencin. Osteoblast-like cell (MC3T3-E1) proliferation, on bioreodible polymers: An approach towards the development of bone-bioreodible polymer composite material. Biomater 1993, 14: 263-269.

[54]

K.A. Athanasiou, G.G. Niederauer, C.M. Agrawal. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomater 1996, 17: 93-102.

[55]

TA. Horbett. The role of adsorbed proteins in animal cell adhesion. Coll Surf: Biointerf 1994, 2: 225-240.

[56]

D. Puleo, R. Bizios. Formation of focal contacts by osteoblasts cultured on orthopedic biomaterials. J Biomed Mater Res 1992, 26: 291-301.

[57]

D.T. Haider, D.S. Ahmed., M.R. Mohamed, A.J. Haider Modification of functionalized multi-walled carbon nanotubes by olive oil as economic method for bacterial capture and prevention. Biosci. Biotech Res. Asia 2017, 1513.

[58]

A.A. Haroun, A.M Elnahrawy, P. Maincent, Enoxaparin-immobilized poly(caprolactone)-based nanogels for sustained drug delivery systems. Pure Appl. Chem. 2014, 86: 691.

[59]

T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? J Biomater 2006, 27: 2907-2915.

[60]

A. Oyane, H.M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, T. Nakamura, Preparation and assessment of revised simulated body fluids. J. Biomed. Mater. Res. 2003, 65A: 188-195.

[61]

H.J. Lee, S.J. Oh, J.Y. Choi, J. Kim, L.S. Han, J.B. Back. In situ synthesis of poly(ethylene terephthalate) (PET) in ethylene glycol containing terephthalic acid and functionalized multiwalled carbon nanotubes (MWNTs) as an approach to MWNT/PET nanocomposites. Chem. Mater. 2005, 17: 5057-5064.

[62]

F. Avilés, J.V. Cauich-Rodríguez, J.A. Rodríguez-González, A. May-Pat, Oxidation and silanization of MWCNTs for MWCNT/vinyl ester composites. eXPRESS Polym Lett 2011, 5: 766-776.

[63]

S. Goyanes, G.R. Rubiolo, A. Salazar, A. Jimeno, M.A. Corcuera, I. Mondragon, Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy. Diamond Related Mater 2007, 16: 412-417.

[64]

E.J. Gomes, J.A. Lima, P.T.C. Freire, G.S Pinheiro, F.F. de Sousa, C.M.R. Remédios, Effect of Fe (Ⅲ) on L-asparagine monohydrate investigated under low-and high-temperature conditions. Spectrochimica Acta Part A: Mol Biomol Spectroscopy 2020, 241: 118643.

[65]

E. Courvoisier, P.A. Williams, G.K. Lim, C.E. Hughes, K.M. Harris, The crystal structure of L-arginine. Chem. Commun. 2012, 48: 2761-2763.

[66]

Y.W. Hsu, C.C. Wu, S.M. Wu, C.C. Su, Synthesis and propertie of carbon nanotube-grafted silica nanoarchitecture-reinforced poly(lactic acid). Materials 2017, 10: 829-844.

[67]

S. Mallakpour, A. Abdolmaleki, S. Borandeh, L-phyenylalanine amino acid functionalized multiwalled carbon nanotube (MWCNT) as reinforced filler for improving mechanical and morphological properties of poly(vinyl alcohol) MWCNT composite. Prog. Org. Coat. 2014, 77: 1966-1971.

[68]
AA. Haroun, H.M. Ahmed, E.F. Ahmed, Functionalized multi-walled carbon nanotubes as emerging carrier for biological applications. Proceedings of the 5th World Congress on New Technologies (NewTech'19) Lisbon, Portugal, August 18-20, Paper No. ICNFA 106 (2019).
[69]

J.M. Berg, A. Romoser, N. Banerjee, R. Zebda, C.M. Sayes, The relationship between pH and zeta potential of ~30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations. Nanotoxicology 2009, 3: 276-283.

[70]

C.F. Yang, W.C. Hsu, S.M. Wu, C.C. Su, Elucidating how surface functionalization of multiwalled carbon nanotube affects nanostructured MWCNT/Titania hybrid material. J. Nanomater. 2015.

[71]

Y.C. Hsieh, Y.C. Chou, C.P. Lin, T.F. Hsieh, C.M. Shu, Thermal analysis of multi-walled carbon nanotubes by Kissinger's corrected kinetic equation. Aerosol Air Qual. Res. 2010, 10: 212-218.

[72]

M.C. Chang, C.C. Ko, W.H. Douglas, Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials 2003, 24: 2853.

[73]

M.C. Chang, J. Tanaka, FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials 2002, 23: 4811-4818.

[74]

P. Zhu, Y. Masuda, K. Koumoto, The effect of surface charge on hydroxyapatite nucleation Biomaterials 2004, 25: 3915-3921.

[75]

A.A. Haroun, V. Migonney, Synthesis and in vitro evaluation of gelatin/hydroxyapatite graft copolymers to form bionanocomposites. Int J Biol Macromol 2010, 46: 310-316.

[76]

A.A. Haroun, H.H. Beherei, M.A. Abd El-Ghaffar, Preparation, characterization and in vitro application of composite films based on gelatin and collagen from natural resources. J Appl Polym Sci 2010, 116: 2083-2094.

[77]

M.S. Abdel-Hamid, M.W. Saad, G.A. Badawy, H.A. Hamza, A.A. Haroun. Synthesis and examination of hydroxyapatite nanocomposites based on alginate extracted by Azotobacter chroococcum new strain MWGH-ShKB invitro. Bioscience Res 2018, 1: 3293-3306.

[78]

L.L. Hench. Bioactive materials: The potential for tissue regeneration. J Biomed Mater Res 1998, 41: 511.

[79]

T. Miyazaki, M. Imamura, E. Ishida, M. Ashizuka, C. Ohtsuki, Apatite formation abilities and mechanical properties of hydroxyethylmethacrylate-based organic-inorganic hybrids incorporated with sulfonic groups and calcium ions. J. Mater. Sci. Mater. Med. 2009, 20: 157-161.

[80]

L. Ding, J. Stilwell, T. Zhang, et al. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett 2005, 5: 2448-2464.

[81]

A. Magrez, S. Kasas, V. Salicio, et al. Cellular toxicity of carbon-based nanomaterials. Nano Lett 2006, 6: 1121-1125.

[82]

L. Zhu, D.W. Chang, L. Dai, et al. DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Lett 2007, 7: 3592-3597.

[83]

P.P. Fu, Q. Xia, H.M. Hwang, P.C. Ray, H. Yu, Mechanisms of nanotoxicity: Generation of reactive oxygen species. J. Food Drug Analys 2014, 22: 64-75.

[84]

E. Aldieri, I. Fenoglio, F. Cesano, E. Gazzano, G. Gulino, D. Scarano, A. Attanasio, G. azzucco, D. Ghigo, B. Fubini, The role of iron impurities in the toxic effects exerted by short multiwalled carbon nanotubes (MWCNT) in murine alveolar macrophages. J. Toxicol. Environ. Health A 2013, 76: 1056-1071.

[85]

M. Allegri, D.K. Perivoliotis, M.G. Bianchi, M. Chiu, A. Pagliaro, M.A. Koklioti, T.A. Trompeta, E. Bergamaschi, O. Bussolati, C.A. Charitidis. Toxicity determinants of multi-walled carbon nanotubes: The relationship between functionalization and agglomeration. Toxicology Reports 2016, 3: 230-243.

[86]

P.M. Costa, M. Bourgognon, T.W. Wang, K.T. Al-Jamal. Functionalised carbon nanotubes: From intracellular uptake and cell-related toxicity to systemic brain delivery. J. Control Releas 2016, 241: 200-219.

[87]

M. Luo, P. Chen, J. Wang, et al. The cytotoxicity of oxidized multi-walled carbon nanotubes on macrophages. Sci. China Chem. 2016, 59: 918-926.

Nano Biomedicine and Engineering
Pages 380-393
Cite this article:
Haroun A, Gospodinova Z, Krasteva N. Amino Acid Functionalization of Multi-Walled Carbon Nanotubes for Enhanced Apatite Formation and Biocompatibility. Nano Biomedicine and Engineering, 2021, 13(4): 380-393. https://doi.org/10.5101/nbe.v13i4.p380-393

747

Views

50

Downloads

4

Crossref

5

Scopus

Altmetrics

Received: 30 April 2021
Accepted: 09 September 2021
Published: 23 November 2021
© Ahmed Haroun, Zlatina Gospodinova, and Natalia Krasteva.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return