AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Chemical Detection of the Toxicity of Nanoparticles of Metals and Metal Oxides

Department of Chemistry, College of Science, University of Bahrain, Sakheer, P.O. Box 32038, Kingdom of Bahrain
Show Author Information

Abstract

The wide applications of nanoparticles increased the demand for their risk assessment, a number of studies on the diverse effects of nanoparticles on various systems have been published. This review provides an overview of the mechanisms of cellular uptake of nanoparticles (NPs) and the advanced toxicological studies of the nanoparticles of metals and metal oxides on various systems (in-vitro and in-vivo).

References

[1]

T.G. Iversen, T. Skotland, K. Sandvig, Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano today, 2011, 6: 176-185.

[2]

J. Voigt, J. Christensen, V.P. Shastri, Differential uptake of nanoparticles by endothelial cells through polyelectrolytes with affinity for caveolae. PNAS, 2014, 111(8): 2942-2947.

[3]

A. Verma, F. Stellacci, Effect of surface properties on nanoparticle-cell interactions. Small, 2012, 6(1): 12-21.

[4]

M.P. Grzelczak, S.P. Danks, R.C. Klipp, et al., Ion Transport across Biological Membranes by Carborane-Capped Gold Nanoparticles. ACS Nano, 2017, 11: 12492-12499.

[5]

D.A. Kuhn, D. Vanhecke, B. Michen, et al., Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J. Nanotechnol, 2014, 5: 1625-1636.

[6]

H. Hillaireau, P. Couvreur, Nanocarriers' entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci, 2009, 66: 2873-2896.

[7]

C. Brandenberger, C. Mühlfeld, Z. Ali, et al., Quantitative Evaluation of Cellular Uptake and Trafficking of Plain and Polyethylene Glycol‐Coated Gold Nanoparticles. Small, 2010, 6(15): 1669-1678.

[8]

G.J. Doherty, H.T. McMahon, Mechanism of Endocytosis. Annu. Rev. Biochem, 2009, 78: 31.1-31.46.

[9]

A. Aderem, Phagocytosis and the Inflammatory Response. JID, 2003, 187 (Suppl 2): S341-S345.

[10]
S. Luisoni, F. Greber, (2-Biology of Adenovirus Cell Entry: Receptors, Pathways, Mechanisms. ). Adenoviral Vectors for Gene Therapy. Academic Press, 2016: 27-58.
[11]

Stillwell Willam, (Chapter 19-membrane transport. ) An Introduction to Biological Membranes, Composition, Structure and Function. Elsevier science, 2016: 423-451.

[12]

E.M. Damm, L. Pelkmans, J. Kartenbeck, et al., Clathrin Ari Helenius - and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. The Journal of Cell Biology, 2005, 168(3): 477- 488.

[13]

M. Montalti, A. Cantelli, G. Battistelli, Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem. Soc. Rev, 2015, 44: 4853-4921.

[14]

A. Manke, L. Wang, Y. Rojanasakul, Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity. BioMed Research International, 2013, 2013: 1-15.

[15]

A. M. Knaapen, P. J. A. Borm, C. Albrecht, et al., Inhaled particles and lung cancer, part A: mechanisms. International Journal of Cancer, 2004, 109(6): 799-809.

[16]

A. Parmar, Fenton process: A case study for treatment of industrial waste water. International Journal of Innovative and Emerging Research in Engineering, 2014, 1(2): 23-30.

[17]

C. Imberti, P. Zhang, H. Huang, et al., New Designs for Phototherapeutic Transition Metal Complexes. Angew. Chem. Int. Ed, 2020, 59: 61-73.

[18]

Q. Feng, Y. Liu, J. Huang, et al., Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. SCIENTIFIC REPORTS, 2018, 8(2082): 1-13.

[19]

J. Pathak, A. Chatterjee, S.P. Singh, et al., Detection of Reactive Oxygen Species (ROS) in Cyanobacteria Using the Oxidant-sensing Probe 2', 7'-Dichlorodihydrofluorescein Diacetate (DCFH-DA). Bio-protocol, 2017, 7(17): 1-8.

[20]

L. Cai, J. Chen, Z. Liu, et al., Magnesium Oxide Nanoparticles: Effective Agriculture antibacterial Agent Against Ralsatonia Solanacearum. Frontires in Microbiology, 2018, 9(790): 1-19.

[21]

L. Kong, W. Hu, C. Lu, et al., Mechanisms underlying nickel nanoparticle induced reproductive toxicity and chemo-protective effects of vitamin C in male rats. Chemosphere, 2019, 218: 259-265.

[22]

D. Bai, X. Zhang, G. Zhang, et al., Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. International Journal of Nanomedicine, 2017, 12: 6521-6535.

[23]

L. Wang, D. Guo, Z. Wang, et al., Zinc oxide nanoparticles induce human tenon fibroblast apoptosis through reactive oxygen species and caspase signaling pathway. Archives of Biochemistry and Biophysics, 2020, 683(108324): 1-10.

[24]

M. Enea, E. Pereira, M.P. de Almeida, et al., Gold Nanoparticles Induce Oxidative Stress and Apoptosis in Human Kidney Cells. Nanomaterials, 2020, 10(995): 1-17.

[25]

J. Lojk, J. Repas, P. Veranič, et al., Toxicity mechanisms of selected engineered nanoparticles on human neural cells in vitro. Toxicology, 2020, 432(152364): 1-11.

[26]

J. Wan, W. Chu, Y. Kok, et al., Assessing the toxicity of copper oxide nanoparticles and copper sulfate in a tropical Chlorella. Journal of Applied Phycology, 2018, 30: 3153-3165.

[27]

S.A. Orabi, S.D. Abou-Hussein, Antioxidant defense mechanisms enhance oxidative stress tolerance in plants. Current Science International, 2019, 8(3): 565-576.

[28]

C. Meng, Y. Han, Y. Liu, et al., Resveratrol alleviates the injury of mice liver induced by cadmium sulfide nanoparticles. Kaohsiung J Med Sci, 2019, 35: 297-302.

[29]

P. Bucur, B. Bucur, G. Radu, Simple, selective and fast detection of acrylamide based on glutathione S-transferase. RSC Advance, 2018, 8: 23931-23936.

[30]

S. Ren, F. Zhou, Fulin, C. Xu, et al., Simple method for visual detection of glutathione S-transferase activity and inhibition using cysteamine-capped gold nanoparticles as colorimetric probes, Gold Bull, 2015, 48: 147-152.

[31]

J. Auclair, P. Turcotte, C. Gagnon, et al., The Influence of Surface Coatings of Silver Nanoparticles on the Bioavailability and Toxicity to Elliptio complanata Mussels. Journal of Nanomaterials, 2019, 2019: 1-10.

[32]

S. Lekamge, A.F. Miranda, A. Abraham, et al., The toxicity of coated silver nanoparticles to the alga Raphidocelis subcapitata. SN Applied Sciences, 2020, 2(596): 1-14.

[33]

S. Braz-Mota, D.F. Campos, T.J. MacCormack, et al., Mechanisms of toxic action of copper and copper nanoparticles in two Amazon fish species: Dwarf cichlid (Apistogramma agassizii) and cardinal tetra (Paracheirodon axelrodi). Science of the Total Environment, 2018, 630: 1168-1180.

[34]

K. Shahzad, N.M. Khan, F. Jabeen, et al., Toxicity of zinc oxide nanoparticles (ZnONPs) in tilapia (Oreochromis mossambicus): tissue accumulation, oxidative stress, histopathology and genotoxicity. International Journal of Environmental Science and Technology, 2019, 16: 1973-1984.

[35]

E.D. Getzoff, J.A. Tainer, M.M. Stempien, et al., Evolution of CuZn superoxide dismutase and the Greek key beta-barrel structural motif. Protein, 1989, 5(4): 322-336.

[36]

C.J. Weydert, J.J. Cullen, Measurement of Superoxide Dismutase, Catalase, and Glutathione Peroxidase in cultured cells and tissue. Nat Protoc, 2010, 5(1): 51-66.

[37]

S. Silva, J.M.P. Ferreira de Oliveira, M.S. Dias, et al., Antioxidant mechanisms to counteract TiO2-nanoparticles toxicity in wheat leaves and roots are organ dependent. Journal of Hazardous Materials, 2019, 380(120889): 1-10.

[38]

T. Iwase, A. Tajima, S. Sugimoto, et al., A Simple Assay for Measuring Catalase Activity: A Visual Approach. SCIENTIFIC REPORTS, 2013, 3(3081): 1-4.

[39]

G.M. Habib, Z. Shi, M.W. Lieberman, Glutathione protects cells against arsenite-induced toxicity. Free Radical Biology and Medicine, 2007, 42(2): 191-201.

[40]

U.S. Srinivasa, B.W.Q. Tana, B.A. Vellayappan, et al., ROS and the DNA damage response in cancer. Redox Biology, 2019, 25(101084): 1-9.

[42]

T. Gharsalli, Comet Assay on Toxicogenetics; Several Studies in Recent Years on Several Genotoxicological Agents. Journal of environmental and analytical toxicology, 2016, 6(6): 1-9.

[43]

A.P. McGlynn, G. Wasson, J. O'Connor, et al., The Bromodeoxyuridine Comet Assay: Detection of Maturation of Recently Replicated DNA in Individual Cells. Cancer Research, 1999, 59: 5912-5916.

[44]

M. Perde-Schrepler, A. Florea, I. Brie, et al., Size-Dependent Cytotoxicity and Genotoxicity of Silver Nanoparticles in Cochlear Cells In Vitro. Journal of Nanomaterials, 2019, 2019: 1-12.

[45]

N. Hadrup, A.T. Saber, Z.O. Kyjovska, et al., Pulmonary toxicity of Fe2O3, ZnFe2O4, NiFe2O4 and NiZnFe4O8 nanomaterials: Inflammation and DNA strand breaks. Environmental Toxicology and Pharmacology, 2020, 74(103303): 1-11.

[46]

J. Lebedová, Y.S. Hedberg, I.O. Wallinder, et al., Size-dependent genotoxicity of silver, gold and platinum nanoparticles studied using the mini-gel comet assay and micronucleus scoring with flow cytometry. Mutagenesis, 2018, 33(1): 77-85.

[47]

B. Sarkar, S. Bhattacharjee, A. Daware, et al., Selenium Nanoparticles for Stress-Resilient Fish and Livestock. Nanoscale Research Letters, 2015, 10(371): 1-14.

[48]

D. Rossetto, N. Avvakumov, J. Côté, Histone phosphorylation A chromatin modification involved in diverse nuclear events. Epigenetics, 2012, 7(10): 1098-1108.

[49]

R.M. Martin, M.C. Cardoso, Chromatin condensation modulates access and binding of nuclear proteins. FASEB, 2010, 24(4): 1066-1072.

[50]

L. Wang, Z. Xu, M.B. Khawar, et al., The histone codes for meiosis. Reproduction, 2017, 154: R65-R79.

[51]

G.T. Charras, A short history of blebbing. Journal of Microscopy, 2008, 231(3): 466-478.

[52]

H.A. Kadhem, S.A. Ibraheem, M.S. Jabir, et al., Zinc Oxide Nanoparticles Induce Apoptosis in Human Breast Cancer Cells via Caspase-8 and P53 Pathway. Nano Biomed. Eng, 2019, 11(1): 35-43.

[53]

K. Liu, P. Liu, R. Liu, et al., Dual AO/EB Staining to Detect Apoptosis in Osteosarcoma Cells Compared with Flow Cytometry. Med Sci Monit Basic Res, 2015, 21: 15-20.

[54]

D. Fernando, A. Adhikari, C. Nanayakkara, et al., Cytotoxic effects of ergone, a compound isolated from Fulviformes fastuosus. BMC Complementary and Alternative Medicine, 2016, 16(484): 1-11.

[55]

T. Liu, W. Zhu, X. Yang, et al., Detection of Apoptosis Based on the Interaction between Annexin V and Phosphatidylserine. Anal. Chem, 2009, 81: 2410-2413.

[57]

A. Ayala, M.F. Muñoz, S. Argüelles, Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Medicine and Cellular Longevity, 2014, 2014: 1-31.

[58]

W. Wang, H. Yang, D. Johnson, et al., Chemistry and biology of ω-3 PUFA peroxidation-derived compounds, Prostaglandins and Other Lipid Mediators, 2017, 132: 84-91.

[59]

D. Tsikas, Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Analytical Biochemistry, 2017, 524: 13-30.

[60]

T. Weitner, S. Inić, J. Jablan, et al., Spectrophotometric Determination of Malondialdehyde in Urine Suitable for Epidemiological Studies. Croat. Chem. Acta, 2016, 89(1): 133-139.

[61]

P. Paciorek, M. Zuberek, A. Grzelak, Products of Lipid Peroxidation as a Factor in the Toxic Effect of Silver Nanoparticles. Materials, 2020, 13(2460): 1-18.

[62]

F. Wang, R. Gómez-Sintes, P. Boya, Lysosomal membrane permeabilization and cell death. Traffic, 2018, 19: 918-931.

[63]

K. Levada, S. Pshenichnikov, A. Omelyanchik, et al., Progressive lysosomal membrane permeabilization induced by iron oxide nanoparticles drives hepatic cell autophagy and apoptosis. Nano Convergence, 2020, 7: 1-17.

[64]

C. Chen, W.U. Chen, M. Zhou, et al., Probing the cathepsin D using a BODIPY FL-pepstatin A: applications in fluorescence polarization and microscopy. J. Biochem. Biophys. Methods, 2000, 42: 137-151.

[65]

B. Mao, Z. Chen, Y. Wang, et al., Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. SCIENTIFIC REPORTS, 2018, 8(2445): 1-16.

[66]

M. Abdulsalam, I. Al-Homidan, T. Ebeid, et al., Effect of Silver Nanoparticle Administration on Productive Performance, Blood Parameters, Antioxidative Status, and Silver Residues in Growing Rabbits under Hot Climate. Animals, 2019, 9(845): 1-14.

Nano Biomedicine and Engineering
Pages 401-413
Cite this article:
Ahmed Rashdan S. Chemical Detection of the Toxicity of Nanoparticles of Metals and Metal Oxides. Nano Biomedicine and Engineering, 2021, 13(4): 401-413. https://doi.org/10.5101/nbe.v13i4.p401-413

652

Views

34

Downloads

2

Crossref

2

Scopus

Altmetrics

Received: 29 April 2021
Accepted: 02 December 2021
Published: 13 December 2021
© Suad Ahmed Rashdan.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return