AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Capsaicin Nanoparticles as Therapeutic Agents against Gliomas

Evelin Martínez-Benavidez1Inocencio Higuera-Ciapara2Sara Elisa Herrera-Rodríguez3Ofelia Yadira Lugo-Melchor1( )FranciscoMartín Goycoolea4FranciscoJavier Guerrero Jazo5
Unidad de Servicios Analíticos y Metrológicos, Centro de Investigación y Asistencia en Tecnología y Dise?o del Estado de Jalisco, A. C. (CIATEJ). Guadalajara 44270, Jalisco, México
Universidad Anáhuac Mayab, S.C. Mérida 97302, Yucatán, México
Unidad Sureste, CIATEJ. Mérida 97302, Yucatán, México
School of Food Science and Nutrition. University of Leeds. Woodhouse Ln, Leeds LS2 9JT. UK
Departamento de Neurocirugía, Hospital Civil "Dr. Juan I. Menchaca". Guadalajara, 44340, Jalisco, México
Show Author Information

Abstract

Capsaicin is an alkaloid molecule with outstanding biological activity. Several reports have shown that capsaicin exerts significant antitumoral effects in several cancer cell lines, including gliomas. However, its application has been very limited due to its hydrophobicity, low affinity, and short life span. Gliomas are a heterogeneous group of brain malignant tumors with increasing prevalence worldwide. Standard therapy against these tumors generally includes resection by surgery, radiation, and chemotherapy or their combination. However, elicitation of tumor resistance to chemical or radiation treatments remains one of the main challenges to be resolved, particularly in the case of glioblastomas. Nanotechnology is an innovative approach to the treatment of Central Nervous System diseases and especially to gliomas treatment. Indeed, the use of nanotherapeutic formulations offers several advantages over the conventional methods of drug delivery therapy. In this review, we analyzed the current literature regarding the development of capsaicin-loaded nanoparticles as a promising approach for the treatment of malignant brain tumors.

References

[1]

D.J. Newman, G.M. Cragg, Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 2016, 79: 629-661.

[2]

A. Alberti, V. Galasso, B. Kovac, et al., Probing the molecular and electronic structure of capsaicin: a spectroscopic and quantum mechanical study. Journal of Physical Chemical A, 2008, 112: 5700-5711.

[3]

C.S. Walpole, R. Wrigglesworth, S. Bevan, et al., Analogues of capsaicin with agonist activity as novel analgesic agents; structure-activity studies. 3. The hydrophobic side-chain "C-region". Journal of Medicinal Chemestry, 1993, 36: 2381-2389.

[4]

A.C. Bort, M.C. Morell, A.D. Ramos, et al., Efecto de la capsaicina en el metabolismo de células de hepatocarcinoma. Dianas, 2014, 3: e20140909.

[5]

F. Yang, J. Zheng, Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Protein & Cell, 2017, 8: 169-177.

[6]

I. Díaz-Laviada, N. Rodríguez-Henche, The potential antitumor effects of capsaicin. Progress in Drug Research, 2014, 68: 181-208.

[7]

A.A. Oyagbemi, A.B. Saba, O.I. Azeez, Capsaicin: a novel chemopreventive molecule and its underlying molecular mechanisms of action. Indian Journal of Cancer, 2010, 47: 53-58.

[8]

K.C. Pramanik, S.K. Srivastava, Role of capsaicin in cancer prevention: Role of capsaicin in oxidative stress and cancer. Springer, Dordrecht, Netherlands, 2013.

[9]

M.J. Caterina, M.A. Schumacher, M. Tominaga, et al., The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 1997, 389: 816-824.

[10]

I. Nagy, P. Sántha, G. Jancsó, et al., The role of the vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. European Journal of Pharmacology, 2004, 500: 351-369.

[11]

C. Amantini, M. Mosca, M. Nabissi, et al., Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation. Journal of Neurochemistry, 2007, 102: 977-990.

[12]

F. Yang, X. Xiao, W. Cheng, et al., Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel. Nature Chemical Biology, 2015, 11: 518-524.

[13]

M. Huang, G. Cheng, H. Tan, et al., Capsaicin protects cortical neurons against ischemia/reperfusion injury via down-regulating NMDA receptors. Experimental Neurology, 2017, 295: 66-76.

[14]

K.N. Browning, T. Babic, G.M. Holmes, et al., A critical re-evaluation of the specificity of action of perivagal capsaicin. Journal of Physiology, 2013, 591: 1563-1580.

[15]

O.M. Abdel-Salam, R.F. Abdel-Rahman, A.A. Sleem, et al., Modulation of lipopolysaccharide-induced oxidative stress by capsaicin. Inflammopharmacology, 2012, 20: 207-217.

[16]

D.H. Lee, K.J. Lee, K.I. Cho, et al., Brain alterations and neurocognitive dysfunction in patients with complex regional pain syndrome. Journal of Pain, 2015, 16: 580-586.

[17]

E. Mezey, Z.E. Tóth, D.N. Cortright, et al., Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97: 3655-3660.

[18]

J.A. Kauer, H.E. Gibson, Hot flash: TRPV channels in the brain. Trends in Neurosciences, 2009, 32: 215-224.

[19]

E. I. Araya, C.F.M. Nones, L.E.N. Ferreira, et al., Role of peripheral and central TRPV1 receptors in facial heat hyperalgesia in streptozotocin-induced diabetic rats. Brain Research, 2017, 1670: 146-155.

[20]

W. Xu, J. Liu, D. Ma, et al., Capsaicin reduces Alzheimer-associated tau changes in the hippocampus of type 2 diabetes rats. PLoS One, 2017, 12: e0172477.

[21]

S. Marinelli, C.W. Vaughan, M.J. Christie, et al., Capsaicin activation of glutamatergic synaptic transmission in the rat locus coeruleus in vitro. Journal of Physiology, 2002, 543: 531-540.

[22]

S.R. Kim, D.Y. Lee, E.S. Chung, et al., Transient receptor potential vanilloid subtype 1 mediates cell death of mesencephalic dopaminergic neurons in vivo and in vitro. Journal of Neuroscience, 2005, 25: 662-671.

[23]

M.J. Farrell, L.J. Cole, D. Chiapoco, et al., Neural correlates coding stimulus level and perception of capsaicin-evoked urge-to-cough in humans. NeuroImage, 2012, 61: 1324-1335.

[24]
BioDigital: 3D Human Visualization Platform for Anatomy and Disease, 2019, https://human.biodigital.com/index.html.
[25]

M.C. Marrone, A. Morabito, M. Giustizieri, et al., TRPV1 channels are critical brain inflammation detectors and neuropathic pain biomarkers in mice. Nature Communications, 2017, 8: 15292.

[26]

K.W. Ho, N.J. Ward, D. J Calkins, TRPV1: a stress response protein in the central nervous system. American Journal of Neurodegenerative Disease, 2012, 1: 1-14.

[27]

K.C. Pramanik, S.K. Srivastava, Apoptosis signal-regulating kinase 1-thioredoxin complex dissociation by capsaicin causes pancreatic tumor growth suppression by inducing apoptosis. Antioxidants & Redox Signaling, 2012, 17: 1417-1432.

[28]

K.C. Brown, T.R. Witte, W.E. Hardman, et al., Capsaicin displays anti-proliferative activity against human small cell lung cancer in cell culture and nude mice models via the E2F pathway. PLoS One, 2010, 5: e10243.

[29]

A. Mori, S. Lehmann, J. O'Kelly, et al., Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells. Cancer Research, 2006, 66: 3222-3229.

[30]

N.H. Thoennissen, J. O'Kelly, D. Lu, et al., Capsaicin causes cell-cycle arrest and apoptosis in ER-positive and -negative breast cancer cells by modulating the EGFR/HER-2 pathway. Oncogene, 2010, 29: 285-296.

[31]

J. Jin, G. Lin, H. Huang, et al., Capsaicin mediates cell cycle arrest and apoptosis in human colon cancer cells via stabilizing and activating p53. International Journal of Biological Sciences, 2014, 10: 285-295.

[32]

A. Sarkar, S. Bhattacharjee, D.P. Mandal, Induction of apoptosis by eugenol and capsaicin in human gastric cancer AGS cells--elucidating the role of p53. Asian Pacific Journal of Cancer Prevention, 2015, 16: 6753-6759.

[33]

M.H. Lin, Y.H. Lee, H.L. Cheng, et al., Capsaicin inhibits multiple bladder cancer cell phenotypes by inhibiting tumor-associated NADH oxidase (tNOX) and sirtuin1 (SIRT1). Molecules, 2016, 21: 849.

[34]

T. Jin, H. Wu, Y. Wang, et al., (2016) Capsaicin induces immunogenic cell death in human osteosarcoma cells. Experimental and Therapeutic Medicine, 2016, 12: 765-770.

[35]

Y.T. Lin, H.C. Wang, Y.C. Hsu, et al., Capsaicin induces autophagy and apoptosis in human nasopharyngeal carcinoma cells by downregulating the PI3K/AKT/mTOR pathway. International Journal of Molecular Sciences, 2017, 18: 1343.

[36]

A. Wutka, V. Palagani, S. Barat, et al., Capsaicin treatment attenuates cholangiocarcinoma carcinogenesis. PLoS One, 2014, 9: e95605.

[37]

D.H. Shin, O.H. Kim, H.S. Jun, et al., Inhibitory effect of capsaicin on B16-F10 melanoma cell migration via the phosphatidylinositol 3-kinase/Akt/Rac1 signal pathway. Experimental & Molecular Medicine, 2008, 40: 486-494.

[38]

Y.P. Hwang, H.J. Yun, J.H. Choi, et al., Suppression of EGF-induced tumor cell migration and matrix metalloproteinase-9 expression by capsaicin via the inhibition of EGFR-mediated FAK/Akt, PKC/Raf/ERK, p38 MAPK, and AP-1 signaling. Molecular Nutrition & Food Research, 2011, 55: 594-605.

[39]

S. Qiao, W. Li, R. Tsubouchi, et al., Involvement of peroxynitrite in capsaicin-induced apoptosis of C6 glioma cells. Neuroscience Research, 2005, 51: 175-183.

[40]

Y.G. Gil, M.K. Kang, Capsaicin induces apoptosis and terminal differentiation in human glioma A172 cells. Life Sciences, 2008, 82: 997-1003.

[41]

S. Zhang, D. Wang, J. Huang, et al., Application of capsaicin as a potential new therapeutic drug in human cancers. Journal of Clinical Pharmacy and Therapeutics, 2020, 45: 16-28.

[42]

J.K. Lau, K.C. Brown, A.M. Dom, et al., Capsaicin induces apoptosis in human small cell lung cancer via the TRPV6 receptor and the calpain pathway. Apoptosis, 2014, 19: 1190-1201.

[43]

T. Glaser, I. Han, L. Wu, et al., Targeted nanotechnology in glioblastoma multiforme. Frontiers in Pharmacology, 2017, 8: 166.

[44]
K. Suk, Proteomic analysis of glioma chemoresistance. Current Neuropharmacology, 2012, 10: 72-79.
[45]

L. Emdad, Z.A. Qadeer, L.B. Bederson, et al., Is there a common upstream link for autophagic and apoptotic cell death in human high-grade gliomas? Neuro-Oncology, 2011, 13: 725-735.

[46]

J.Y. Kim, E.H. Kim, S.U. Kim, et al., Capsaicin sensitizes malignant glioma cells to TRAIL-mediated apoptosis via DR5 upregulation and survivin downregulation. Carcinogenesis, 2010, 31: 367-375.

[47]

R. Chen, M. Smith-Cohn, A.L. Cohen, et al., Glioma subclassifications and their clinical significance. Neurotherapeutics, 2017, 14: 284-297.

[48]

S. Lepannetier, N. Zanou, X. Yerna, et al., Sphingosine-1-phosphate-activated TRPC1 channel controls chemotaxis of glioblastoma cells. Cell Calcium, 2016, 60: 373-383.

[49]
ABTA. 2012. Glioblastoma y astrocitoma maligno. American Brain Tumor Association. Available from: https://www.abta.org/wp-content/uploads/2018/03/glioblastoma-y-astrocitoma-maligno.pdf
[50]

M. Alptekin, S. Eroglu, E. Tutar, et al., Gene expressions of TRP channels in glioblastoma multiforme and relation with survival. Tumor Biology, 2015, 36: 9209-9213.

[51]

W. Liang, B. Guo, J. Ye, et al., Vasorin stimulates malignant progression and angiogenesis in glioma. Cancer Science, 2019, 110: 2558-2572.

[52]

T. Smani, L.J. Gómez, S. Regodon, et al., TRP Channels in angiogenesis and other endothelial functions. Frontiers in Physiology, 2018, 9: 1731.

[53]

G. Santoni, M.B. Morelli, M. Santoni, et al., New deals on the transcriptional and post-transcriptional regulation of TRP channel target genes during the angiogenesis of glioma. Journal of Experimental and Integrative Medicine, 2011, 1: 221-234.

[54]

Y. Nersesyan, S. Asuthkar, K.K. Velpula, et al., Role of TRPV1 channels in glioma cell viability and survival. Biophysical Journal, 2015, 108: 124a.

[55]

R. Luo, X. Wang, Y. Dong, et al., Activation of protease-activated receptor 2 reduces glioblastoma cell apoptosis. Journal of Biomedical Science, 2014, 21: 25.

[56]

S. Ceruti, M.P. Abbracchio, Adenosine signaling in glioma cells. Advancesin Experimental Medicine and Biology, 2020, 1202: 13-33.

[57]

D. Wypych, J. Barańska, Cross-talk in nucleotide signaling in glioma C6 cells. Advancesin Experimental Medicine and Biology, 2020, 1202: 35-65.

[58]

S.E. Little, S. Popov, A. Jury, et al., Receptor tyrosine kinase genes amplified in glioblastoma exhibit a mutual exclusivity in variable proportions reflective of individual tumor heterogeneity. Cancer Research, 2012, 72: 1614-1620.

[59]

M. Nakada, D. Kita, L. Teng, et al., Receptor tyrosine kinases: principles and functions in glioma invasion. Advancesin Experimental Medicine and Biology, 2020, 1202: 151-178.

[60]

D.A. Reardon, S. Turner, K.B. Peters, et al., A review of VEGF/VEGFR-targeted therapeutics for recurrent glioblastoma. Journal of the National Comprehensive Cancer Network, 2011, 9: 414-427.

[61]

A. Ellert-Miklaszewska, I.A. Ciechomska, B. Kaminska, Cannabinoid signaling in glioma cells. Advancesin Experimental Medicine and Biology, 2020, 1202: 223-241.

[62]

S. Peñuelas, J. Anido, R.M. Prieto-Sánchez, et al., TGF-β Increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer cell, 2009, 15: 315-327.

[63]

B. Badie, J. Schartner, J. Klaver, et al., In vitro modulation of microglia motility by glioma cells is mediated by hepatocyte growth factor/scatter factor. Neurosurgery, 1999, 44: 1077-1083.

[64]

N. Egbivwie, J.V. Cockle, M. Humphries, et al., FGFR1 expression and role in migration in low and high grade pediatric gliomas. Frontiers in Oncology, 2019, 9: 103.

[65]

C. Maris, N. D'Haene, A.L. Trépant, et al., IGF-IR: a new prognostic biomarker for human glioblastoma. British Journal of Cancer, 2015, 113: 729-737.

[66]

W. Debinski, D.M. Gibo, B. Slagle, et al., Receptor for interleukin 13 is abundantly and specifically over-expressed in patients with glioblastoma multiforme. International Journal of Oncology, 1999, 15: 481-486.

[67]

H. Wu, Y. Zhan, Y. Qu, et al., Changes of folate receptor -α protein expression in human gliomas and its clinical relevance. Zhonghua Wai Ke Za Zhi, 2014, 52: 202-207.

[68]

A. Calzolari, L.M. Larocca, S. Deaglio, et al., Transferrin receptor 2 is frequently and highly expressed in glioblastomas. Translational Oncology, 2010, 3: 123-134.

[69]

N. Skuli, S. Monferran, C. Delmas, et al., Alphavbeta3/alphavbeta5 integrins-FAK-RhoB: a novel pathway for hypoxia regulation in glioblastoma. Cancer Research, 2009, 69: 3308-3316.

[70]

S. Behrem, K. Zarković, N. Eškinja, et al., Distribution pattern of tenascin-C in glioblastoma: correlation with angiogenesis and tumor cell proliferation. Pathology & Oncology Research, 2005 11: 229-235.

[71]

D. Si, F. Yin, J. Peng, et al., High Expression of CD44 predicts a poor prognosis in glioblastomas. Cancer Management and Research, 2020, 12: 769-775.

[72]

T. Avril, A. Etcheverry, R. Pineau, et al., CD90 expression controls migration and predicts dasatinib response in glioblastoma. Clinical Cancer Research, 2017, 23: 7360-7374.

[73]

R. Brito, S. Sheth, D. Mukherjea, et al., TRPV1: A potential drug target for treating various diseases. Cells, 2014, 3: 517-545.

[74]

M.F. McCarty, J.J. DiNicolantonio, J.H. O'Keefe, Capsaicin may have important potential for promoting vascular and metabolic health. Open Heart, 2015, 2: e000262.

[75]

S. Chouaib, Y. Messai, S. Couve, et al., Hypoxia promotes tumor growth in linking angiogenesis to immune escape. Frontiers in Immunology, 2012, 3: 21-21.

[76]

H.Y. Kwan, Y. Huang, X. Yao, TRP channels in endothelial function and dysfunction. Biochimica et Biophysica Acta, 2007, 1772: 907-914.

[77]

V.P. Kale, S.G. Amin, M.K. Pandey, Targeting ion channels for cancer therapy by repurposing the approved drugs. Biochimica et Biophysica Acta, 2015, 1848: 2747-2755.

[78]

L. Leanza, A. Managò, M. Zoratti, et al., Pharmacological targeting of ion channels for cancer therapy: In vivo evidences. Biochimica et Biophysica Acta, 2016, 1863: 1385-1397.

[79]

C.J. Hutchings, P. Colussi, T.G. Clark, Ion channels as therapeutic antibody targets. MAbs, 2019, 11: 265-296.

[80]

H. Neumann, Control of glial immune function by neurons. Glia, 2001, 36: 191-199.

[81]

W.L. Kong, Y.Y. Peng, B.W. Peng, Modulation of neuroinflammation: role and therapeutic potential of TRPV1 in the neuro-immune axis. Brain, Behavior and Immunity, 2017, 64: 354-366.

[82]

J.H. Jeon, Y.J. Choi, I.H. Han, et al., Capsaicin-induced apoptosis in the human glioblastoma U87MG cells via p-38 MAPK and Bcl-2/Bax signaling pathway. Molecular & Cellular Toxicology, 2012, 8: 69-76.

[83]

Y.P. Liu, F.X. Dong, X. Chai, et al., Role of autophagy in capsaicin-induced apoptosis in U251 glioma cells. Cellular and Molecular Neurobiology, 2016, 36: 737-743.

[84]

J.H. Park, G. Saravanakumar, K. Kim, et al., Targeted delivery of low molecular drugs using chitosan and its derivatives. Advanced Drug Delivery Reviews, 2010, 62: 28-41.

[85]

L. Xie, G-H. Xiang, T. Tang, et al., Capsaicin and dihydrocapsaicin induce apoptosis in human glioma cells via ROS and Ca2+-mediated mitochondrial pathway. Molecular Medicine Reports, 2016, 14: 4198-4208.

[86]

Y.S. Lee, D.H. Nam, J.A. Kim, Induction of apoptosis by capsaicin in A172 human glioblastoma cells. Cancer Letters, 2000, 161: 121-130.

[87]

M. Kaiser, S. Pereira, L. Pohl, et al., Chitosan encapsulation modulates the effect of capsaicin on the tight junctions of MDCK cells. Scientific Reports, 2015, 5: 10048.

[88]

T. Shiobara, T. Usui, J. Han, The reversible increase in tight junction permeability induced by capsaicin is mediated via cofilin-actin cytoskeletal dynamics and decreased level of occludin. PLoS One, 2013, 8: e79954.

[89]

M. Kaiser, M. Burek, S. Britz, et al., The influence of capsaicin on the integrity of microvascular endothelial cell monolayers. International Journal of Molecular Sciences, 2008, 20: 122.

[90]

M.W. Pitz, A. Desai, S.A. Grossman, Tissue concentration of systemically administered antineoplastic agents in human brain tumors. Journal of Neuro-Oncology, 2011, 104: 629-638.

[91]

C. Ferraris, R. Cavalli, P.P. Panciani, et al., Overcoming the blood-brain barrier: successes and challenges in developing nanoparticle-mediated drug delivery systems for the treatment of brain tumours. International Journal of Nanomedicine, 2020, 15: 2999-3022.

[92]

S. Beggs, X.J. Liu, C. Kwan, et al., Peripheral nerve injury and TRPV1-expressing primary afferent C-fibers cause opening of the blood-brain barrier. Molecular Pain, 2010, 6: 74.

[93]

D-E, Hu, A.S. Easton, P.A. Fraser, TRPV1 activation results in disruption of the blood-brain barrier in the rat. British Journal of Pharmacology, 2005, 146: 576-584.

[94]

Z. Jiang, X. Wang, Y. Zhang, et al., Effect of capsaicin-loading nanoparticles on gliomas. Journal of Nanoscience and Nanotechnology, 2015, 15: 9834-9839.

[95]

A. Carmo, H. Carvalheiro, I. Crespo, et al., Effect of temozolomide on the U-118 glioma cell line. Oncology Letters, 2011, 2: 1165-1170.

[96]

G.A.J. Lacerda, A.J.A. Díaz, L.S. Pérez, et al., Glioblastoma multiforme del cerebelo. Revista Cubana de Neurología y Neurocirugía, 2012, 2: 141-143.

[97]

O.A.J. Moreno, Avances farmacológicos contra el cáncer. Actualidad en farmacología y terapéutica, 2013, 11: 258.

[98]

Y. Xin, M. Yin, L. Zhao, et al., Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biology & Medicine, 2017, 14: 228-241.

[99]

J.M. Morachis, E.A. Mahmoud, A. Almutairi, Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles. Pharmacological Reviews, 2012, 64: 505-519.

[100]

I. Brigger, C. Dubernet, P. Couvreur, Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews, 2002, 54: 631-651.

[101]

J Kreuter, Nanoparticulate systems for brain delivery of drugs. Advanced Drug Delivery Reviews, 2001, 47: 65-81.

[102]

M. Masserini, Nanoparticles for brain drug delivery. ISRN Biochemistry, 2013, 2013: 238428.

[103]

J. Chang, Y. Jallouli, M. Kroubi, et al., Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier. International Journal of Pharmaceutics, 2009, 379: 285-292.

[104]

H. Xin, X. Jiang, J. Gu, et al., Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials, 2011, 32: 4293-4305.

[105]

K.J. Lim, S. Bisht, E.E. Bar, et al., A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biology & Therapy, 2011, 11: 464-473.

[106]

M.R. Saboktakin, R.M. Tabatabaie, A. Maharramov, et al., Synthesis and characterization of pH-dependent glycol chitosan and dextran sulfate nanoparticles for effective brain cancer treatment. International Journal of Biological Macromolecules, 2011, 49: 747-751.

[107]

W. Geldenhuys, D. Wehrung, A. Groshev, et al., Brain-targeted delivery of doxorubicin using glutathione-coated nanoparticles for brain cancers. Pharmaceutical Development and Technology, 2015, 20: 497-506.

[108]

L. Yang, S. Gao, S. Asghar, et al., Hyaluronic acid/chitosan nanoparticles for delivery of curcuminoid and its in vitro evaluation in glioma cells. International Journal of Biological Macromolecules, 2015, 72: 1391-1401.

[109]

C. Fornaguera, A. Dols-Perez, G. Calderó, et al., PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood-brain barrier. Journal of Controlled Release, 2015, 211: 134-143.

[110]

Y. Cui, M. Zhang, F. Zeng, et al., Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Applied Materials & Interfaces, 2016, 8: 32159-32169.

[111]

C. Fang, K. Wang, Z.R. Stephen, et al., Temozolomide nanoparticles for targeted glioblastoma therapy. ACS Applied Materials & Interfaces, 2015, 7: 6674-6682.

[112]

X. Gao, T. Yu, G. Xu, et al., Enhancing the anti-glioma therapy of doxorubicin by honokiol with biodegradable self-assembling micelles through multiple evaluations. Scientific Reports, 2017, 7: 43501.

[113]

M. Sack-Zschauer, S. Bader, P. Brenneisen, Cerium oxide nanoparticles as novel tool in glioma treatment: an in vitro study. Journal of Nanomedicine and Nanotechnology, 2017, 8: 474

[114]

Y-C. Kuo, C-C. Hsu, Anti-melanotransferrin and apolipoprotein E on doxorubicin-loaded cationic solid lipid nanoparticles for pharmacotherapy of glioblastoma multiforme. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77: 10-20.

[115]

Y. Malinovskaya, P. Melnikov, V. Baklaushev, et al., Delivery of doxorubicin-loaded PLGA nanoparticles into U87 human glioblastoma cells. International Journal of Pharmaceutics, 2017, 524: 77-90.

[116]

Y. Xu, S. Asghar, L. Yang, et al., Lactoferrin-coated polysaccharide nanoparticles based on chitosan hydrochloride/hyaluronic acid/PEG for treating brain glioma. Carbohydrate Polymers, 2017, 157: 419-428.

[117]

F.C. Lam, S.W. Morton, J. Wyckoff J, et al., Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles. Nature Communications, 2018, 9: 1991.

[118]

Frosina G, Advances in drug delivery to high grade gliomas. Brain Pathology, 2016, 26: 689-700.

[119]

N.Y. Hernández-Pedro, E. Rangel-López, R. Magaña-Maldonado, et al., Application of nanoparticles on diagnosis and therapy in gliomas. BioMed Research International, 2013, 2013: 351031.

[120]

F.M. Kievit, A. Cooper, S. Jana, et al., Aligned chitosan-polycaprolactone polyblend nanofibers promote the migration of glioblastoma cells. Advanced Healthcare Materials, 2013, 2: 1651-1659.

[121]

M. Irani, G. Mir Mohamad Sadeghi, I. Haririan, A novel biocompatible drug delivery system of chitosan/temozolomide nanoparticles loaded PCL-PU nanofibers for sustained delivery of temozolomide. International Journal of Biological Macromolecules, 2017, 97: 744-751.

[122]

R.A.A. Muzzarelli, C. Muzzarelli, Chitosan chemistry: relevance to the biomedical sciences: Polysaccharides I: Structure, Characterization and Use. 2005, Springer, Berlin Heidelberg.

[123]
M.W. Saltzman, CED of nanoparticles loading with novel agents for improved treatment of gliomas. 2017, Project online: https://projectreporter.nih.gov/project_info_description.cfm?aid=9297226&icde=0YALE University.
[124]
M.G. Castro, HDL-loaded nanoparticles for glioma therapeutics. 2016, Project online: https://projectreporter.nih.gov/project_info_description.cfm?aid=9004659&map=y: University of Michigan.
[125]

N. Abbott, L. Rönnbäck, E. Hansson, Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews Neuroscience, 2006, 7: 41-53.

[126]
L.Y. Ljubimova, Nanoconjugate delivery of proliferation and checkpoint inhibitors to treat glial tumors. 2017, Project online: https://projectreporter.nih.gov/project_info_description.cfm?aid=9266719&icde=0: CEDARS-SINAI Medical Center.
[127]
E. Karathanasis, Treatment of glioblastoma using chain-like nanoparticles. 2017, Project online: https://projectreporter.nih.gov/project_info_description.cfm?aid=9335795&icde=0: Case Western Reserve University.
[128]

G.P. Mantellero, C. Gómez-Gaete, C.J. Luengo, et al., Desarrollo de nanopartículas biodegradables de capsaicina y evaluación de cesión del principio activo desde formulaciones semisólidas. Revista de Farmacología de Chile, 2014, 7: 41-49.

[129]

N.J. Amruthraj, J.P. Preetam Raj, A. Lebel, Capsaicin-capped silver nanoparticles: its kinetics, characterization and biocompatibility assay. Applied Nanoscience, 2015, 5: 403-409.

[130]

F. Xing, G. Cheng, K. Yi, et al., Nanoencapsulation of capsaicin by complex coacervation of gelatin, acacia, and tannins. Journal of Applied Polymer Science, 2005, 96: 2225-2229.

[131]

A. Sharma, M. Jindal, G.K. Aggarwal, et al., Development of a novel method for fabrication of solid lipid nanoparticles: using high shear homogenization and ultrasonication. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2010, 1: 265-274.

[132]

P. Bejrapha. S. Surassmo, M.J. Choi, et al., Studies on the role of gelatin as a cryo- and lyo-protectant in the stability of capsicum oleoresin nanocapsules in gelatin matrix. Journal of Food Engineering, 2011, 105: 320-331.

[133]

Y. Zhu, M. Wang, J. Zhang, et al., Improved oral bioavailability of capsaicin via liposomal nanoformulation: preparation, in vitro drug release and pharmacokinetics in rats. Archives of Pharmacal Research, 2015, 38: 512-521.

[134]

Y. Zhu, J. Yu, S. Tong, et al., Preparation and in vitro evaluation of povidone-sodium cholate-phospholipid mixed micelles for the solubilization of poorly soluble drugs. Archives of Pharmacal Research, 2010, 33: 911-917.

[135]

Y. Zhu, W. Peng, J. Zhang, et al., Enhanced oral bioavailability of capsaicin in mixed polymeric micelles: Preparation, in vitro and in vivo evaluation. Journal of Functional Foods, 2014, 8: 358-366.

[136]

W. Peng, X.Y. Jiang, Y. Zhu, et al., Oral delivery of capsaicin using MPEG-PCL nanoparticles. Acta Pharmacologica Sinica, 2015, 36: 139-148.

[137]

L.M. Cirino, D.M. Vergne, P.F. Santana, et al., Decreased inflammatory response in rat bladder after intravesical administration of capsaicin-loaded liposomes. Annals of the Brazilian Academy of Sciences, 2016, 88: 1539-1547.

[138]

F.M. Goycoolea, A. Valle-Gallego, R. Stefani R, et al., Chitosan-based nanocapsules: physical characterization, stability in biological media and capsaicin encapsulation. Colloid and Polymer Science, 2012, 290: 1423-1434.

[139]

T.K. Giri, P. Mukherjee, T.K. Barman, et al., Nano-encapsulation of capsaicin on lipid vesicle and evaluation of their hepatocellular protective effect. International Journal of Biological Macromolecules, 2016, 88: 236-243.

[140]

E. Martínez-Benavidez, S.E. Herrera-Rodríguez, O.Y. Lugo-Melchor, et al., Nanocápsulas de capsaicina y su actividad antitumoral en células de glioblastoma humano. Revista Salud Jalisco, 2020, 7: 96-102.

Nano Biomedicine and Engineering
Pages 433-445
Cite this article:
Martínez-Benavidez E, Higuera-Ciapara I, Elisa Herrera-Rodríguez S, et al. Capsaicin Nanoparticles as Therapeutic Agents against Gliomas. Nano Biomedicine and Engineering, 2021, 13(4): 433-445. https://doi.org/10.5101/nbe.v13i4.p433-445

1096

Views

110

Downloads

0

Crossref

1

Scopus

Altmetrics

Received: 03 November 2020
Accepted: 02 December 2021
Published: 16 December 2022
© Evelin Martínez-Benavidez, Inocencio Higuera-Ciapara, Sara Elisa Herrera-Rodríguez, Ofelia Yadira Lugo-Melchor, Francisco Martín Goycoolea, and Francisco Javier Guerrero Jazo.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return