AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Fluorescent Magnetic Nanoprobes for in vivo Targeted Imaging and Hyperthermia Therapy of Prostate Cancer

Daxiang Cui1( )Yuedong Han2( )Zhiming Li3Hua Song1Kan Wang1Rong He1Bing Liu1Heliang Liu4Chenchen Bao1Peng Huang1Jin Ruan1Feng Gao1Hao Yang1Hoon Sung Cho5Qiushi Ren3Donglu Shi1,5
Department of Bio-Nano Science and Engineering, National Key Laboratory of Micro-Nano Fabrication Technology, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. china
Institute for Laser Medicine & Biophotonics, Shanghai Jiao Tong University, Shanghai 200240, P. R. china
Department of radio-medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, P. R. China
Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, P. R. China
Department of Chemical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
Show Author Information

Abstract

It has been a challenging task to develop nontoxic nanoprobes for targeted-imaging and selective therapy of prostate cancer. Herein, fluorescent superparamagnetic nanoparticles with a diameter of 50 nm were conjugated with single-chain Fv antibody against γ-seminoprotein. The resultant nanoprobes showed highly selective targeting, fluorescent imaging, and magnetic resonance imaging. The cytotoxicity effects were investigated on the prostate cancer cells and solid tumors under in vitro alternating magnetic field irradiation. It was found that the as-prepared nanoprobes did not show signs of toxicity within the used maximal dosage. It was also observed that the tumors implanted in nude mice were significantly reduced in size and disappeared gradually due to thermal treatment. The lifespan of post-therapeutic mice loaded with prostate cancer was considerable prolonged. High-performance singlechain Fv antibody against γ-seminoprotein-conjugated fluorescent magnetic nanoparticles may have great potential in applications such early detection and localized thermal therapy of prostate cancer.

References

[1]

Jemal A, Siegel R and Ward E. Cancer statistics. CA Cancer J Clin 2008; 58: 71-96. doi: 10.3322/CA.2007.0010

[2]

Zeller JL. Grading of prostate cancer. JAMA 2007; 298: 1596. doi: 10.1001/jama.298.13.1596

[3]

Nie S, Xing Y, Kim GJ and Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng 2007; 9: 257-288. doi: 10.1146/annurev.bioeng.9.060906.152025

[4]

Weissleder R. Molecular Imaging in cancer. Science 2006; 312: 1168-1171. doi: 10.1126/science.1125949

[5]

Lee J, Hu H, Jun Y, Seo J, Jang J, Song H, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature Medicine 2007; 13: 95-99. doi: 10.1038/nm1467

[6]

Holves AM, Heesakkers AM. The diagnostic accuracy of CT and MRI in the pelvis of lymph nodes in patients with prostate cancer: a meta-analysis. Adang Clin Radiol 2008; 63: 387-395.

[7]

Medarova Z, Pham W, Farrar C, Petkova V and Moore A. In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 2007; 13: 372-377. doi: 10.1038/nm1486

[8]

Kularatne SA, Zhou Z, Yang J, Post CB and Low PS. Design, synthesis and preclinical evaluation of prostatespecific membrane antigen targeted 99mTc-radioimaging agents. Molecular Pharmaceutics 2009; 6: 780-789. doi: 10.1021/mp900069d

[9]

Sasaki R, Habuchi T, Sato K, Akao T, Kakinuma H, Zhang LQ, et al. The clinical utility of measuring total PSA, PSA Density, γ-seminoprotein and γ-seminoprotein/total PSA in Prostate Cancer Prediction. Jpn J Clin Oncol 2000; 30 : 337-342. doi: 10.1093/jjco/hyd089

[10]

Yokota T, Milenic DE, Whitlow M and Schlom1 J. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 1992; 52: 3402-3408.

[11]

Han Y, Huan Y, Deng J, Gao F, Pan B and Cui D. Expression of Single-Chain Fv Gene Specific for gama-Seminoprotein by RTS and Its Biological Activity Identification. Biotechnol Prog 2006; 22: 1084-1089. doi: 10.1021/bp0504445

[12]

Kim DH, Lee S H, Kim KN, Kim KM, Shim IB and Lee YK. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application. J Magn Magn Mater 2005; 293: 287-292. doi: 10.1016/j.jmmm.2005.02.078

[13]

Pan B, Cui D, Sheng Y, Gao F, He R, Li Q, et al. Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res 2007; 67: 8156-8163. doi: 10.1158/0008-5472.CAN-06-4762

[14]

Sincai M, Ganga D, Ganga M, Argherie D and Bica D. Antitumor effect of magnetite nanoparticles in cat mammary adenocarcinoma. J Magn Magn Mater 2005; 293: 438-441. doi: 10.1016/j.jmmm.2005.02.074

[15]

Sincai M, Ganga D, Ganga M, Argherie D and Bica D. Antitumor effect of magnetite nanoparticles in cat mammary adenocarcinoma. J Magn Magn Mater 2005; 293: 438-441. doi: 10.1016/j.jmmm.2005.02.074

[16]

Medintz IL, Uyeda HT, Goldman ER and Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater 2005; 4: 435-446. doi: 10.1038/nmat1390

[17]

Xu P, Cui D, Pan B, Gao F, He R, Li Q, et al. A facile strategy for covalent binding of nanoparticles onto carbon nanotubes. Appl Surf Sci 2008; 254: 5236-5240. doi: 10.1016/j.apsusc.2008.02.082

[18]

He R, You X, Shao J, Gao F, Pan B and Cui D. Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation. Nanotechnology 2007; 18: 315601. doi: 10.1088/0957-4484/18/31/315601

[19]

You X, He R, Gao F, Shao J, Pan B and Cui D. Nanotechnology 2007; 18: 035701. doi: 10.1088/0957-4484/18/3/035701

[20]

Alivisatos AP. The use of nanocrystals in biological detection. Nature Biotechnology 2004; 22: 47-52. doi: 10.1038/nbt927

[21]

Bulte JWM, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, et al. Magnetodendrimers allow endosomal magnetic labeling and in vivotracking of stem cells. Nat Biotechnol 2001; 19 : 1141-1147. doi: 10.1038/nbt1201-1141

[22]

Burton JB, Johnson M, Sato M, Koh SBS, Mulholland DJ, Stout D, et al. Adnovirus-mediated gene expression imaging to directly detect sentinel lymph node metastasis of prostate cancer. Nature Medicine 2008; 14: 882-888. doi: 10.1038/nm.1727

[23]

Cui D, Pan B, Zhang H, Wang J, Wu R, F Gao, et al. Selfassembly of carbon nanotubes and quantum dots for ultrasensitive DNA and antigen detection. Analytical Chemistry 2008; 80: 7996-8001. doi: 10.1021/ac800992m

[24]

Cui D, Tian F, Ozkan CS, Wang M and Gao H. Effects of single wall carbon nanotubes on human HEK293 cells. Toxicology Letters 2005; 155: 73-85. doi: 10.1016/j.toxlet.2004.08.015

[25]

Cui D, Jin G, Gao T, Sun T, Tian F, Estrada GG, et al. Characterization of BRCAA1 and its novel antigen epitope identification. Cancer Epidemiology, Biomarkers & Prevention 2004; 13: 1136-1145.

[26]

Hilger I, Hergt R and Kaiser WA. Towards breast cancer treatment by magnetic heating. J Magn Magn Mater 2005; 293: 314-319. doi: 10.1016/j.jmmm.2005.02.026

[27]

Wang X, Gu H and Yang Z. The heating effect of magnetic fluids in an alternating magnetic field. J Magn Magn Mater 2005; 293: 334-340. doi: 10.1016/j.jmmm.2005.02.028

[28]

Park JH, Im KH, Lee SH, Kim DH, Lee DY, Lee YK, et al. Preparation and characterization of magnetic chitosan particles for hyperthermia application. J. Magn Magn Mater 2005; 293: 328-333. doi: 10.1016/j.jmmm.2005.02.027

[29]

Sharma P and Schreiber-Agus N. Mouse models of prostate cancer. Oncogene 1999; 18: 5349-5355. doi: 10.1038/sj.onc.1203037

[30]

Lee D, Khaja S, Velasquez-Castano JC, Dasari M, Sun C, Petros J, et al. In vivoimaging of hydrogen peroxide with chemiluminescent nanoparticles. Nature Mater 2007; 6: 765-769. doi: 10.1038/nmat1983

[31]

El-Assal ON, Yamanoi A, Soda Y, Yamaguchi M, Igarashi M, Yamamoto A, et al. Clinical significance of microvessel density and vascular endothelial growth factor expression in hepatocellular carcinoma and surrounding liver: Possible involvement of vascular endothelial growth factor in the angiogenesis of cirrhotic liver. Hepatology 2003; 27: 1554- 1562. doi: 10.1002/hep.510270613

[32]

Hogemann D, Ntziachristos V, Josephson L and Weissleder R. High throughput magnetic resonance imaging for evaluating targeted nanoparticle probes. Bioconjug Chem 2002; 13: 116-21. doi: 10.1021/bc015549h

[33]

Ferrari M. Cancer nanotechnology: Opportunites and challenges. Nature Reviews Cancer 2005; 5: 161-171. doi: 10.1038/nrc1566

[34]

Thrall JH. Nanotechnology and Medicine. Radiology 2004; 230: 315-318. doi: 10.1148/radiol.2302031698

[35]

Shi D, Cho HS, Chen Y, Xu H, Gu H, Lian J, et al, Fluorescent Polystyrene–Fe3O4 Composite Nanospheres for In vivo Imaging and Hyperthermia. Adv Mater 2009; 21: 1–4. doi: 10.1002/adma.200803159

[36]

Rice RF. Nanomaterials show signs of toxicity. Science 2003; 300: 243. doi: 10.1126/science.300.5617.243a

[37]

Puech P, Huglo D, Petyt G, Lemaitre L, Villers A. Imaging of organ-confined prostate cancer: functional ultrasound, MRI and PET/computed tomography. Current Opinion in Urology 2009; 19: 168-176. doi: 10.1097/MOU.0b013e328323f5ed

[38]

Herschmanh R. Molecular imaging: Looking at problems, seeing solutions. Science 2003; 302: 605-8. doi: 10.1126/science.1090585

[39]

Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol 2000; 18: 410-414. doi: 10.1038/74464

[40]

Jayaprakash S, Wang X, Heston WD and Kozikowski AP. Design and synthesis of a PSMA inhibitor-doxorubicin conjugate for targeted prostate cancer therapy. Chem Med Chem 2006; 1: 299-302. doi: 10.1002/cmdc.200500044

[41]

Tilki D, Seitz M, Singer B, Irmak S, Stief C, Reich O, et al. Molecular Imaging of Tumor Blood Vessels in Prostate Cancer. Anticancer Research 2009; 29: 1823-1829.

[42]

Weissleder R, Bogdanov A, Neuwelt EA and Papisov M. Long-circulating iron oxides for MR imaging. Adv Drug Deliver Rev 1995; 16: 321-324. doi: 10.1016/0169-409X(95)00033-4

[43]

Blasberg RG. Molecular imaging and cancer. Mol Cancer Ther 2003; 2: 335-343.

[44]

Xu RX, Povoski SP. Diffuse optical imaging and spectroscopy for cancer. Expert Rev Med Devices 2007; 4: 83-95. doi: 10.1586/17434440.4.1.83

[45]

Islam T and Josephson L. Current state and future applications of active targeting in malignancies using superparamagnetic iron oxide nanoparticles. Cancer Biomarkers 2009; 5: 99-107.

[46]

Ntziachristos V, Yodh AG, Schnall M, and Chance B. MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions. Neoplasia 2002; 4: 347-354. doi: 10.1038/sj.neo.7900244

[47]

Yang,L, Mao H, Cao Z, Wang Y, Peng X, Wang X, et al. Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles. Gastroenterology 2009; 136: 1514-1525. doi: 10.1053/j.gastro.2009.01.006

[48]

Medarova Z, Pharm W, Kim Y, and Moore A. In vivo imaging of tumor response to therapy using a dual-modality imaging strategy. Int. J. Cancer 2006; 118: 2796-2802. doi: 10.1002/ijc.21672

[49]

Schroeder RPJ, van Weerden WM, Bangma C, Krenning EP and de Jong M. Peptide receptor imaging of prostate cancer with radiolabelled bombesin analogues. Methods 2009; 48: 200-204. doi: 10.1016/j.ymeth.2009.04.002

[50]

Kim SH, Lee SH, Tian H, Chen X and Park TG. Prostate cancer cell-specific VEGF siRNA delivery system using cell targeting peptide conjugated polyplexes. Journal of Drug Targeting 2009; 17: 311-317. doi: 10.1080/10611860902767232

[51]

Colcher D, bird R, Rosell M. In vivo tumor targeting of a recombinant single-chain antigen-binding protein. J. Natl. Cancer Inst 1990; 82: 1191-1197. doi: 10.1093/jnci/82.14.1191

[52]

Vaupel P, Kallinowski F and Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 1989; 49: 6449-6455.

[53]

Li Z, Huang P, Zhang X, Lin J, Yang S, Liu B, et al. RGDConjugated Dendrimer-Modified Gold Nanorods for in vivo Tumor Targeting and Photothermal Therapy. Molecular Pharmaceutics 2010, in press. doi: 10.1021/mp9001415

[54]

Chen Z, Chen H, Meng H, Xing G, Gao X, Sun B, et al. Bio-distribution and metabolic paths of silica coated CdSeS quantum dots. Toxicol Appl Pharmacol 2008; 230: 364-71. doi:10.1016/j.taap.2008.03.022

Nano Biomedicine and Engineering
Pages 61-74
Cite this article:
Cui D, Han Y, Li Z, et al. Fluorescent Magnetic Nanoprobes for in vivo Targeted Imaging and Hyperthermia Therapy of Prostate Cancer. Nano Biomedicine and Engineering, 2009, 1(1): 61-74. https://doi.org/10.5101/nbe.v1i1.p61-74

362

Views

5

Downloads

32

Crossref

54

Scopus

Altmetrics

Received: 10 November 2009
Accepted: 06 December 2009
Published: 09 December 2009
© 2009 D. Cui et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return